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Abstract. To facilitate the continued growth of offshore wind farm developments, operations and maintenance (O&M) costs, 

which are estimated at 30% of the lifetime costs of wind farms must be reduced. This could be achieved by moving current 

maintenance strategies to a predictive strategy. Predictive strategies use the turbine monitoring data to determine component 

remaining useful lifetimes, predict failure windows or detect drops in performance and then provide an optimised 15 

maintenance plan. To enable these strategies in practice, failure prediction models must be developed, that are useable by the 

wind farm operator for key components. This work identifies that power converters are responsible for significant downtime 

at some wind farms and prediction of their failures could offer significant improvements in turbine availability. Through an 

analysis of their failure mechanisms, the signals required to detect failures in the power converters are identified and the 

insufficiencies in the SCADA data available to operators are highlighted. Several machine learning and deep learning 20 

models are trained on the SCADA to predict the power converter failures, and a novel scoring function is applied to evaluate 

their performance when applied to the operational decision-making context. Results suggest that implementing an artificial 

neural network failure prediction model offers approximately 40% reduction in power converter maintenance costs 

compared to business as usual. Further improvements to these models will require the acquisition of high frequency 

monitoring data specific to the power electronics in the power converters. Applying predictive maintenance strategies will 25 

generate extra wind farm revenues, reduce the number of maintenance actions taken and facilitate the work of maintenance 

teams. 

1 Introduction 

Offshore wind developments continue to grow globally at a rapid pace, with growth estimates of 630GW between 2022 

and 2050 (Kuhn et al., 2022). Reducing operations and maintenance (O&M) costs, estimated at 30% of the lifetime costs of a 30 
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wind farm (BVG Associates, 2019; Stehly and Duffy, 2021), offers opportunities to reduce costs and facilitate continued 

growth. With offshore wind farms (OWFs) increasing in size; moving further offshore; and the first floating offshore wind 

farms being deployed recently (GWEC, 2023), it is increasingly important to develop and deploy O&M strategies that can 

reduce costs. 

A method of reducing O&M costs is to move from existing maintenance strategies towards condition based maintenance 35 

(CBM) techniques (Tian et al., 2011) as existing strategies are not deemed optimal (Leite et al., 2018). CBM consists in 

taking maintenance decisions based on evidence of actual health states, to find the optimal point between corrective and 

preventative maintenance (Artigao et al., 2018). Such evidence can be obtained from monitoring apparatus, inspections, or 

data analytics. Implementing CBM strategies requires the development of models that can assess the health, or predict 

failures, of key turbine components. Therefore, developing methods of predicting failures for key components at wind farms 40 

is essential for implementing a CBM strategy. Furthermore, it is important to understand and evaluate the performance of 

failure prediction models in an operational setting to assess how they can be applied in practice. This paper presents a 

systematic method for developing failure predictions for use in operation and applies this method to the case study of wind 

turbine (WT) power converter failures at an operational wind farm. The method can be split into the following steps, which 

are detailed in the remainder of the paper: 45 

1. Root cause failure analysis. To identify the symptoms of failures and data required to detect them. This helps with 

feature selection for failure prediction models. 

2. Collection of the relevant data for training of failure prediction models. 

3. Training of failure prediction models. 

4. Evaluation of failure prediction models in an operational context. 50 

1.1 Aims & objectives 

The aim of this paper is to implement the method described above on a case study of power converters at an operational 

wind farm. It further aims to develop failure prediction models based on the data available to most wind farm operators 

(without need for additional sensors to be installed) to reduce revenue losses from converter failures in operation. This 

involves an analysis of failure modes to identify leading indicators of per converter failure; a gap analysis of the data 55 

available to operators and that which is needed to detect failures; and finally, the development and evaluation of failure 

prediction models in an operational setting. The objectives are: 

• Review the symptoms of power converter failures and what data is needed to monitor and predict these. 

• Identify gaps between required monitoring data and data available to operators. 

• Develop and understand the performance of a failure prediction model using the data available at an operational 60 

wind farm. 

• Develop a novel scoring function that assesses failure prediction models based on their operational use. 

• Produce practical recommendations for minimising the effects of power converter failures on O&M costs and losses 

at a wind farm. 
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1.2 Contribution and paper structure 65 

This paper provides three main contributions. Firstly, it presents the improvements in data collection required at 

operational wind farms to realise power converter failure prediction models that are useable by the wind farm operator. Thus 

far models have been developed on test benches or simulations and do not use the SCADA data that is available to operators 

when monitoring power converters and therefore cannot be implemented in practice. Secondly, a set of failure prediction 

model architectures, trained on historic SCADA data are presented. Finally, a novel method of assessing the performance of 70 

these models focussed on their use in an operational context is presented. The rest of the paper is structured following the 

four steps described above: in Sect. 2 the existing literature on power converter failure modes, monitoring systems and fault 

diagnosis is reviewed. From this analysis, the data needed for developing failure prediction models is identified. In Sect. 3 

the methodology for developing failure prediction models using the data available to OWF operators for the power 

converters is presented. The differences in the data available to operators and that which is required is highlighted. The 75 

results of the developed failure prediction models and a discussion of their performance and the limitations of the training 

data are presented in Sect. 4. The paper closes with recommendations to operators and OEMs to allow development of power 

converter failure prediction models and minimise revenue losses from their failures; a summary of the main conclusions, and 

outlook for future work in Sect. 5. 

2 Literature review 80 

2.1 Wind turbine power converters 

A comprehensive description of power converter designs is provided by (Fischer et al., 2012). Power converters are an 

essential component of nearly all wind turbines. They are positioned between the generator and the transformer (e.g. Fig. 1). 

Their purpose is to convert the irregular wave form generated by the variable speed turbine to a sinusoidal, compliant with 

the fixed frequencies required by the grid. There are four common generator topologies: 85 

1. Doubly-fed induction generators (DFIG); 

2. Squirrel-cage induction generators with full-scale converters (SCIG); 

3. Permanent-magnet synchronous generators with full rated converters (PMSG); 

4. Electrically excited synchronous generators with fully rated converters (EESG). 

The power converters are either located in the nacelle or the tower base. All topologies typically have the same converter 90 

technology of insulated gate bipolar transistor (IGBT) converters in a back-to-back AC-DC-AC configuration, with a 

generator-side rectifier and grid-side inverter connected by a DC-link, illustrated in Fig. 2. Details of IGBTs can be found in 

(Wintrich et al., 2015). The converters consist of stacks which are made up of half-bridge or single-switch IGBTs, typically 

connected in parallel; a set of sensors; and driver boards which link the generator control to the IGBT modules. The stacks 

are mounted on a heat-sink and are either water-cooled or air-cooled. Each half-bridge is further composed of many IGBTs. 95 

The IGBTs normally have a reverse blocking ability of 1200V or 1700V with a DC-voltage level between 750 and 1200V. 
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Nominal AC-line voltages are typically between 490 and 690V. The purpose of the DC-link is to provide fault ride through 

capability, which allows the turbine to remain connected to the grid in the case of grid faults by dissipating excess power 

(Moheb et al., 2022). Stacks are typically combined into phase modules, or units, of which there are three per side. In a 

DFIG topology the generator-side rectifier has a rated power larger than that of the grid-side inverter, as it needs to fulfil 100 

additional generator control requirements. In full-scale converters the ratings on both sides are identical. A typical converter 

module is seen in Fig. 3. 

 

 

Figure 1: Example diagram for an SCIG wind turbine layout with the converters shown. Adapted from (Attouri et al., 2023). 105 

 

Figure 2: Converter modules used in WTs, (a) exterior view, (b) disassembled. Taken from (Fischer et al., 2012). 

The modules are packed to connect multiple semiconductor chips and the circuit, connect the modules to cooling systems 

and to protect the chips (Wintrich et al., 2015). There are two packaging types, shown in Fig. 4, press-pack and power 

module technology. The power module technology is the most used technology. Within this technology, as shown in Fig. 5, 110 

modules either come with or without a baseplate. Modules without a baseplate are typically only used in lower power 

applications. The IGBT chips are then also covered with an insulating layer to protect the components from shock and 

vibrations. By contrast the driver boards are not well protected and are accessible for air which can carry contaminants.  
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Figure 3: Example circuit diagram of a WT power converter made up of six units each containing three converter modules. Taken 115 
from (Fischer et al., 2012). 

 

Figure 4: Different packaging technologies. Press-pack left, power module right. Taken from (Fischer et al., 2012). 

 

Figure 5: Power modules with (left) and without (right) baseplates. Taken from (Wintrich et al., 2015). 120 
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2.2 Wind turbine power converter reliability 

An analysis of the failure data for an OWF, presented in (Moros et al., 2024a) and which will be used as a case study in 

this paper, revealed that the electrical systems of the WTs account for 27% of the total maintenance costs at the wind farm, 

illustrated graphically in Fig. 6. The electrical systems also make up the largest proportion of costs associated to lost 

revenues due to downtimes (10% of all maintenance costs). A further internal reliability study across a fleet of OWFs has 125 

shown that downtime and failures of converters has accounted for 15% of total maintenance costs in one year, these costs 

were up to 62% for certain turbine models. 

 

Figure 6: Back-to-back bar plot comparing normalised maintenance costs and revenue losses due to downtime for the turbine 

subsystems (Moros et al., 2024a). 130 

The importance of downtime due to electrical system faults is confirmed across the industry (Bakdi et al., 2019; Faulstich 

et al., 2011; Liang et al., 2022; Reder et al., 2016; Stenberg and Holttinen, 2010), with downtimes and fault rates by wind 

turbine component shown in Fig. 7. As seen in Fig. 8, 65% of the electrical failures, at the OWF in (Moros et al., 2024a), are 

attributed to the power converter, composed of the phase module and other converter or inverter failures. This trend is 

confirmed by Xiao et al. (2021) which states that the “phase module” accounts for the largest share of power converter 135 

failures. The phase module includes power semiconductor modules with gate-driver boards, the DC-link capacitors, and 

busbars. These results highlight that it is essential to reduce the impact of power converter modules on wind turbine 

maintenance costs, firstly through improved design which would reduce failures in operation. Secondly through improved 

monitoring and failure predictions to allow replacement of faulty converters before their failure, reducing the downtime and 

revenue losses caused by failures in operation. Furthermore, it is shown that converter failure rates have not improved with 140 

newer generations of turbines, (Fischer et al., 2019b), and therefore have not been designed out of newer fleets, highlighting 

the continued importance of power converter failures to wind turbine performance. 

 

https://doi.org/10.5194/wes-2025-84
Preprint. Discussion started: 21 May 2025
c© Author(s) 2025. CC BY 4.0 License.



7 

 

 
 

(a) (b) 

Figure 7: Annual fault rate (a) and downtime percentage (b) of wind power system main components. Taken from (Liang et al., 

2022). 145 

 

Figure 8: Proportion of electrical failures at an OWF by component. 

2.3 Power converter failure modes 

A comprehensive review on power converter failure mechanisms and statistics, covering a range of converter 

manufacturers, has been done by (Fischer et al., 2012, 2015, 2019a, b, 2021; Pelka and Fischer, 2022). Fischer et al. (2019b) 150 

demonstrate that within the converter the components responsible for the largest number of failures are the phase modules 

(26% of failures) followed by the cooling systems and the control boards. Within the phase module, the power modules and 

driver-boards account for the largest share of failures, happening at similar frequencies. They are the dominant failure 

locations over the DC link capacitors or busbars.  

Failure mechanisms can be split as open-circuit (OC) or short-circuit (SC) faults (Song and Wang, 2013). SC faults are 155 

typically characterised by overcurrents and explosive failures with severe damage. Their faults can develop rapidly, 

therefore, most SC fault detection systems are based around hardware circuits, such as circuit breakers or fast fuses, to offer 
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rapid protection by shutting down the converter. Their root cause can be difficult to identify due to the damage caused to the 

components. By contrast OC faults develop slowly and generally cause less damage but do degrade the performance of the 

overall converter. They are typically characterised by generator torque oscillations and a reduction in grid power factor. 160 

Whilst initial damage is low, they can cause secondary damage to other components and can develop into more severe and 

damaging faults. They do not cause significant changes in currents and voltages and therefore can remain undetected for a 

long time.  

Failure mechanisms can be further split, as per Yang and Chai (2016), as package-based, chip-based or DC-based. 

Package-based failure mechanisms describe the failures that are attributable to components outside of the chips themselves. 165 

Chip-based failure mechanisms are attributable to the chips themselves or the driver boards, although they may be 

interlinked with package-based modes for a failure event. DC-based failure mechanisms refer to failures on the DC-link. The 

monitoring of power electronic devices is still in its early stages with many significant advancements needed to practically 

implement accurate online monitoring methods (Yang et al., 2010). Moreover, many of the methods have limited 

applicability due to required sensitivity of measurements or modifications required to be made for converter devices (Choi et 170 

al., 2017). It is incredibly challenging to develop monitoring systems due to the small physical size of the power electronic 

devices and the fast acting and sometimes minimal changes in the degradation signals. 

2.3.1 Open circuit faults 

Package-based 

Package-based OC faults are typically due to thermal degradation and ageing due to fluctuations in temperature cycles 175 

and can be one of the following: 

• Bond-wire lift-off 

• Solder fatigue 

• Degradation of thermal paste 

• Fretting corrosion 180 

 

Traditionally these are taken as the dominant failure modes for power converters, in particular bond-wire lift-off and solder 

fatigue, across all industries. Both statistical analysis and through forensic inspections of both failed and operational 

converter modules concluded that this is not a critical failure mode for wind turbines (Fischer et al., 2012) and (Fischer et al., 

2019a). 185 

Bond-wire lift off, solder fatigue and fretting corrosion arise due to the different coefficients of thermal expansion (CTE) 

between the materials in the power modules. As the temperature in the module increases the materials expand by differing 

amounts. Lifetime estimation models based on the accumulated damage from thermal cycles are well developed and can be 

used to estimate the remaining life of a module (Infineon, 2021). Bond-wire lift off is typically detected through monitoring 

of changes in the ON-state voltage (VCE,sat) or resistance (RON) (Choi et al., 2017; Sun et al., 2017; Yang et al., 2010) or 190 

through an installed sensor which measures voltage drop across the bond wires (Lehmann et al., 2003). Deviation in these 
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values can be used to detect bond-wire lift off. Solder degradation is typically detected by monitoring the thermal resistance 

Rth of the module (Yang et al., 2010), where an increase indicates crack formation in the solder. This is calculated through 

sensors which monitor junction temperatures Tj, case temperatures Tc, heat sink temperature Ts and device current. Power 

losses can also be used to with thermal models and cycle counting methods that estimate the total damage. Xiang et al. 195 

(2012) developed a method that looks at changes in the harmonics in the output voltage of the device to detect solder-fatigue 

for devices under steady state operation. As a thermal based degradation mechanism thermal paste degradation detected 

using the same methods as for solder fatigue failures (Avenas et al., 2015). Fretting corrosion, which can also arise due to 

vibrations in the converter, is monitored using the ON-state voltage (VCE,sat) or resistance (RON) (Liu et al., 2023) where 

an increase in these values indicates its occurrence. Arcing can also be detecting by abnormal acoustic emissions (AE) (Liu 200 

et al., 2023). Bond-wire liftoff and solder fatigue have been refuted as a dominant failure mechanism in wind turbine 

applications for the following reasons (Fischer et al., 2019a): 

1. Generator side converters in DFIGs, which are subject to stronger thermal cycling do not have larger failure rates 

than the grid side converters. 

2. There is not an increasing failure rate with age but rather infant mortality. 205 

3. Investigations into destroyed and working chips have shown no signs of degradation. 

 

At the OWF presented by Moros et al. (2024), the failure rates of the converters have been approximately constant over 

the lifetime of the wind farm so far. Additionally, a plot of the lifetimes of the failed converters, shown in Fig. 9, reveals that 

the 80% of the converters have a lifetime of less than 5 years, with 37% of failed converters having a lifetime of less than 210 

250 days. These findings, along with discussion of the observed failure mechanisms at the wind farm (which are typically 

overcurrent failures) support the hypothesis that age or fatigue related failures of the converters are not amongst the relevant 

failure modes. Evidence of degradation in the thermal paste has been found in wind turbines (Fischer et al., 2012, 2015). 

However, measurements by manufacturers have instead showed improvements in the thermal conduction with ageing 

(Fischer et al., 2019a). Thermal paste degradation is likely a relevant but not dominant failure mode for wind turbines. 215 

Fretting corrosion is not considered an important failure mode for wind turbine power converters. An analysis of failure rates 

against converter location showed that there was no disadvantage of the converter being positioned in the nacelle, where it 

would be subject to larger vibrations, compared to the tower base (Fischer et al., 2019b). 

Chip -based 

Chip-based OC faults are typically due faults in the driver boards which can be from: 220 

• Manufacturing defects 

• Electromagnetic interference 

• Insufficient gate voltages 

As described earlier, the driver boards account for a significant portion of power converter failures. Manufacturing defects 

can often only be detected based on detailed inspections. High electromagnetic interferences can be monitored through 225 

measurement of gate switch time. In IGBTs switch times are in the range of 10-500ns making direct measurement 

impractical (Yang et al., 2010). To overcome this limitation an under-sampling and reconstruction technique based on the 
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collector voltage VCE is proposed by Zhong et al. (2017). Where the gate voltage provided is too low for full switching of 

the IGBT there is a switching operation with a large loss as the on resistance is increased. The large power loss can lead to 

rapid thermal destruction of the IGBT. This type of failure mode could be monitored through measurement of the gate 230 

voltage signals or the power losses across the converter (Yang et al., 2010). These are all considered as important failure 

modes for wind turbine power converters and their occurrence is exacerbated by the presence of moisture in the converter 

(Fischer et al., 2019a). 

 

Figure 9: Histogram of lifetimes of failed case-study OWF power converters. 235 

DC-based 

DC-based OC faults can arise when there is a detachment of the film-roll inside the snubber capacitor. This increases the 

capacitors inductance, reducing its ability to limit high-frequency over-voltages leading to failures of the semiconductor 

devices. This is considered an important failure mode at wind turbines. Degradation of the capacitors is typically monitored 

by measuring the capacitance (C) or the equivalent series resistance (ESR) of the capacitors (Soliman et al., 2016).  240 

2.3.2. Short-circuit faults 

Package-based 

Package-based SC faults can be due to the formation of tin whiskers, shown in Fig. 10, which can cause highly 

destructive short-circuits. Their growth mechanism is not well understood and they can have incubation periods ranging 
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from days to 20 years (McDowell, 1992). There is not an established monitoring method for detecting them except for 245 

manual inspection using hand-held X-ray fluorescence devices (Barr, 2007). Given that damage can occur in ms, detecting 

their presence in monitoring signals is unlikely. The forensic investigation by Fischer et al. (2015) did not detect the 

presence of any tin whiskers. 

 

Figure 10: Tin Whisker growing between terminals of an electromagnetic relay. Taken from (Basic Information Regarding Tin 250 
Whiskers, 2024). 

Chip-based 

Chip-based failure mechanisms are dominated by SC faults, which are typically one of the following: 

• Electrical overstress (EOS) 

• Latch-up and triggering of parasitic inductances 255 

• Electrostatic discharge (ESD) 

• Contamination 

• Electrochemical migration and corrosion 

• Single event breakdown due to cosmic rays 

• Lightning Strikes 260 

 

EOS covers failure mechanisms that cannot be explained due to the explosive damage caused, as seen in Fig. 11, which 

account for one-fifth to one-third of failures at wind turbine power converters (Fischer et al., 2019a). There are no sufficient 

monitoring systems in place for these types of failures because their exact cause is unknown, and they can happen rapidly. 

They can sometimes be mitigated with fast fuses or circuit breakers (Liang et al., 2022). A general method for detecting 265 

short-circuit faults is based on the voltage waveform during IGBT turn-on which displays a different pattern between faulty 

and faultless (Rodríguez et al., 2007). This requires a high frequency measurement of the gate voltage signal. 
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Figure 11: Destroyed IGBT module. Taken from (Fischer et al., 2019a). 270 

The result of parasitic inductances, caused by a too rapid rate of change of voltage during turn OFF for an IGBT, is a 

difference in the currents between phases that parallel connected IGBTs are subjected to. This results in either current 

overloads or accelerated lifetime consumption of the more heavily loaded devices. Latch-up is avoided through intelligent 

circuit design (Yang et al., 2010). Current asymmetries can be monitored by measurements of the input and output currents 

on each phase and comparing them (Sattarov et al., 2023). Current asymmetries are considered to play a role in converter 275 

failures at wind turbines (Fischer et al., 2019a). ESD can cause arc-flash events or lead to gate failures. Arc-flash events can 

be monitored with AE. Gate failures can be monitored by measuring the rate of decay of gate charge (Grant and Gower, 

1989). ESD is thought to be an unlikely cause of failures at wind turbines because in practice static should be discharged 

bypassing the converters (Fischer et al., 2015). 

The power converters can become contaminated by coal or environmental dust, salt, insects, and moisture. 280 

Contamination can lead to short circuit failures by reducing the clearances between parts or creating conducting paths. 

Additionally, moisture can cause failures through a degradation of the insulation materials, for example in the DC-link 

leading to short-circuit failures. Contamination can only practically be monitored through visual inspections. Moisture levels 

can possibly be estimated through humidity measurements in the converter cabinets as there is a strong indication that 

humidity has an influence on failure rates (Pelka and Fischer, 2022). It is considered a significant cause of failure at wind 285 

turbines (Fischer et al., 2019a), particularly in the case of moisture contamination. 

Electrochemical migration can cause short circuits to form or reduce the blocking ability of the semiconductors. The 

effect is susceptible to humidity (Zhong et al., 2017). Typically the degradation of blocking devices and presence of short 

circuits is monitored through measuring of the leakage currents (Zorn and Kaminski, 2015). As with moisture contamination, 

humidity could be used as a way of estimating the presence of an electrolytic later. As a humidity driven failure mode, it is  290 

an important cause of failures at wind turbines (Fischer et al., 2019a).  

Cosmic radiation particles can interact with the silicon atoms in the power converter and lead to a destruction of the 

device in single event breakdown (SEB) (Zhong et al., 2017). The frequency of these events varies at approximately 11-year 

cycles. Given the spontaneous nature of SEB, it is not possible to detect it in advance of failure. This is not considered an 

important failure mechanism for wind turbines, as an investigation of failure rates with radiation flux has revealed no 295 
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correlation, and based on a theoretical failure-rate due to cosmic radiation, only a negligible number of failures could be 

explained (Fischer et al., 2019a). 

Lightning can lead to converter destruction by striking the turbine and finding a discharge path through the converter. 

This would be characterised as an overvoltage event. These are not events that can be predicted, although they can be 

mitigated by ensuring that the lightning protection systems are sufficiently well maintained. Fischer et al. (2015) found a 300 

significant correlation between lightning strikes and converter failures indicating an importance in power converter failure 

modes. 

 

DC-based 

DC-side short-circuit faults can arise for the following reasons (Fischer et al., 2019a): 305 

• Insulation degradation 

• Snubber or DC-link capacitor failure 

 

Insulation degradation is exacerbated by the presence of moisture. The importance of this failure mechanism in wind 

turbines is dependent on the manufacturer. Short circuit faults are harder to directly monitor. However, C and ESR can be 310 

used to infer some of the key properties such as abnormal currents, temperatures and voltages (Soliman et al., 2016). 

2.4. Power converter fault diagnosis 

Fault diagnosis (FD) of power converters identifies the causes of failure and aims for rapid detection after the fault has 

developed. These can be seen as the first stage in anticipating and minimising the effects of converter failures. .Liang et al. 

(2022) and Catalan et al. (2023) have performed a comprehensive review on FD methods for power converters. 315 

FD methods can be broadly split as per Yang et al. (2010) into model based and signal based. Model based methods 

create a model of the power converter system based on physical knowledge of the system and then residuals between the 

measured values and the estimated values are analysed to identify a fault. Signal based methods can be further split into 

threshold-based methods and data-driven or system identification methods. Threshold-based methods study the measured 

signals in the build-up to failure and set thresholds on them to differentiate between faulty behaviour and normal behaviour. 320 

Data-driven methods make use of a history of operation data to identify a system state and then either fault pattern 

recognition is trained, or residuals are calculated between an estimated signal and a measured signal which are analysed to 

identify the presence of a fault. Note that there is overlap between the methodologies. A common point between them is that 

they require the monitoring of signals produced by different components of the power converters. The data-driven 

approaches can also attempt to approximate these signals without direct measurement by training models on more easily 325 

measurable data, such as the converter input currents and output voltages, as an input to predict the fault signals 

(Mohagheghi et al., 2009). A limitation of most methods is that they have been developed using simulations or lab tests 

rather than under actual operating conditions and using the data available to operators. To the best of the author’s knowledge 

the method developed by Xiao et al. (2021) is the only one that makes use of the SCADA data available to operators. 
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2.4.1. Signal based fault diagnosis methods 330 

Many methods to detect converter faults use the signals described in Sect. 2.1. but methods have also been developed 

based on input or output currents and voltages. Current-based methods are applicable across a range of faults whilst voltage-

based methods are applicable to switch faults. Current-based methods typically don’t require the implementation of extra 

sensors, whilst voltage-based methods do. Liang et al. (2022) provide a detailed review of these in the context of wind 

power. A summary of the key methods will be presented here. 335 

 

Threshold-based Methods 

Threshold-based methods can use either a fixed threshold or an adaptive threshold, which can respond to the varying 

operating conditions of the converter, to detect deviation from normal (healthy) operation of the converter. They can be 

considered a form of normal behaviour model (NBM), which is an approach that predicts the normal behaviour of a turbine 340 

and detect faults by analysing difference between a predicted signal and a measured signal (Tautz-Weinert and Watson, 

2017). NBMs are often seen in data-driven models. 

Current-based approaches have attracted most attention because they have been developed to avoid installation of 

additional sensors. These methods all have a foundation in Park’s current vector approach (Mendes, 2023). An advantage of 

the additional hardware often required for voltage-based methods is that they can allow designing of fault tolerant systems, 345 

e.g. in (Shahbazi et al., 2018), whereby a fault on an IGBT can be bypassed through the installation of additional IGBTs 

which are used in the case of faults. In general voltage-based methods provide a quicker identification of a fault. 

 

Data-driven Methods 

Data-driven methods look to identify faulty performance of a system by analysing changes in the system response with 350 

component degradation. There are a variety of methods employed which can generally be split into statistical, probabilistic, 

machine learning (ML), deep learning (DL) and expert systems. Typically, they require a signal processing and feature 

extraction phase followed by a pattern training and recognition phase. Their success is reliant on the volume of data provided 

and a correlation existing between the measured data and the fault being detected. 

The methods analysed are dominated by ML methods and DL methods. These include support vector machines (SVM) 355 

(Duan et al., 2020; Liang et al., 2020; Wang et al., 2016); long-short-term-memory (LSTM) models (Han et al., 2022; Xue et 

al., 2020) and convolutional neural networks (CNN) (Xiao et al., 2021; Xue et al., 2019). Probabilistic methods developed 

include hidden Markov models (HMM) (Kouadri et al., 2020) and Bayesian networks (BN) (Cai et al., 2017). Finally fuzzy 

logic has been applied in an adaptive neuro-fuzzy inference system (ANFIS) (Liu et al., 2015). 

An advantage of data-driven methods over model-based and signal-based methods is that they are relatively easier to 360 

create and implement without detailed knowledge of the system. Additionally, none of the methods assessed require the 

installation of extra hardware, instead most use the high frequency (kHz scale) current and voltage measurements available 
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to the controller. Their main drawback lies in a heavier computational load in training than other methods, this is most of the 

time acceptable as the training only needs to be done in the models’ design phase and can be done using cloud services for a 

reasonable price. Once the model is deployed, the computational load is minimal.  365 

2.4.2. Model Based Fault Detection Methods 

Model based methods can work either by state estimation or parameter estimation. State estimation creates a model of a 

system to estimate a set of outputs given a set of inputs and calculate the residuals between the measured and estimated 

signals. A healthy system has minimal residuals. Parameter estimation instead estimates the parameters related to a fault and 

then analyses the parameters to obtain a fault state. Development of models and comparison to a measured signal is 370 

analogous to an NBMs. In general, the model-based methods have a slower response time than the threshold-based methods. 

2.5. Summary 

The traditionally assumed dominant failure modes for power converters of thermally induced fatigue are not the most 

applicable for wind turbine applications. Instead faults at the driver boards, contamination, electrochemical migration, and 

parasitic inductances drive most failures at wind turbines. Many failures remain unexplained and fit into the EOS category. 375 

The main signals that can be used for monitoring are, VCE, switch times, gate voltages, input and output currents and 

leakage currents. It should be noted that due to the random nature or rapid development of some of the failure modes, it is 

not possible to monitor for their development. Humidity is a significant influencing factor on the development of many of 

these failure modes. Table 1 lists the failure modes; their relevance in wind turbine converter failures; what signals can be 

used to monitor them; and the main influencing factors.  380 

Table 2 provides a summary of some of the FD methods, covering their approach; the faults that they can be used for; the 

signals used; their fault detection time and validation methods. Approximately 75%, of methods have been developed for OC 

faults (Liang et al., 2022), with particular focus on the fatigue driven thermal cycling failures. This attention is explained by 

two factors. Firstly, they are the considered the dominant failure mechanisms for power converters, outside of the wind 

industry. Secondly, they are slower to develop than SC faults and they offer clearer degradation signals in the monitored 385 

data. As discussed, these are not the dominant failure modes for wind turbines which instead are more frequently driver 

board or chip-based failures which tend to develop much more quickly or don’t have obvious degradation signals. More 

effort must be given towards detection and prediction of these faults. Only Xiao et al. (2021), have validated their method 

against operational wind turbine data. This method has the benefit of using the 10-min averaged SCADA data available to 

the operator and was able to detect some faulty converters 3 days in advance of the full failure. The other methods rely on 390 

high frequency signals that either require extra hardware or use the signals that are fed into the controller of the converter. 

The controller signals are not available to the wind farm operator, therefore more attention must be paid to developing 

methods that make use of the SCADA, or efforts should be made to gain access to the controller signals. Additionally, it is 

the only method reviewed that has been tested on an operational wind farm’s data. More efforts should be made to validate 
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proposed methods on an actual wind farm where the operating conditions can differ significantly from simulations and 395 

experiments. 

Whilst FD offers the potential to reduce the damage of faults, it does not offer a solution to reducing the downtime 

caused by converter faults. Once a fault is detected the turbine must still be shut down until the faulty component can be 

replaced. Given the rapid development of faults from detection time to complete failure implementing FD methods will have 

a negligible impact on the revenue losses due to downtime from converter faults. Failure prediction models that can predict 400 

or detect a faulty converter, days in advance of its full failure, are needed. This will allow time for mobilisation and 

replacement of a converter, thus avoiding failures in operation. 

 

Table 1: Summary of power converter failure modes, their importance in wind turbines, commonly used monitoring signals and 

influential factors. 405 

Failure Mode Importance for 

wind turbine 

converters 

Monitoring Signals Influencing Factors 

Bond-wire lift-off Low VCE,Sat. RON Temperature cycles 

Solder fatigue Low Rth, Tj, Tc, Ts Temperature cycles 

Degradation of thermal paste Medium Rth, Tj, Tc, Ts Temperature cycles 

Fretting corrosion Low VCE,Sat. RON, AE Vibrations 

Tin whiskers Low X-ray Inspections Unknown 

Driver board faults High 
Inspections, VCE, switch 

times, gate-voltages 

Manufacturing defects, 

interference, humidity 

EOS High Potentially gate voltages Unknown 

ESD Low AE, decay of gate charge Faulty discharge paths 

Parasitic inductances High 
Input and output currents to 

the converter and IGBTs 
Improper converter design 

Contamination High Inspections 
Humidity, converter cabinet 

design 

Electrochemical migration High Leakage currents Humidity 

SEB Low N/A Geographical location 

Lightning strike High N/A 
Faulty lightning protection 

systems 

DC faults Medium C, ESR Humidity 

 

Table 2: Summary of FD methods for power converters. 

Source Method Faults 

Detected 

Signal Used Sampling 

Frequency 

Fault 

detection 

time  

Validation 

method 

(Xu et al., 

2022) 

Instantaneous current 

amplitude 

General 

IGBT OC 

faults 

Converter Input and 

Output 3-phase 

currents 

kHz scale ~3ms 
Simulation & 

Experimental 

(Qiu et 

al., 2016) 

Current vector 

pattern 

General 

IGBT OC 

faults 

Converter Input and 

Output 3-phase 

currents 

kHz scale - 
Simulation & 

Experimental 
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Source Method Faults 

Detected 

Signal Used Sampling 

Frequency 

Fault 

detection 

time  

Validation 

method 

(Shahbazi 

et al., 

2018) 

Residuals between 

estimated and 

measured voltages 

IGBT OC 

switch 

faults 

Pole Voltage, DC-

link voltage 
kHz scale 30μs 

Simulation & 

Experimental 

(Ismail et 

al., 2019) 

Short time Fourier 

Transform to detect 

DC-link oscillations. 

General 

IGBT OC 

faults 

DC-link voltage kHz scale 9ms Simulation 

(Kouadri 

et al., 

2020) 

HMM 

General 

IGBT OC 

and SC 

faults 

Converter input and 

output currents, 

generator speed, 

DC-link voltage, 

output power 

kHz scale - Simulation 

(Duan et 

al., 2020) 
SVM 

General 

IGBT OC 

faults 

Converter Input and 

Output 3-phase 

currents 

kHz scale ~1ms Simulation 

(Cai et 

al., 2017) 
BN 

General 

IGBT OC 

faults 

Converter output 

line-to-line voltages 
kHz scale - 

Simulation & 

Experimental 

(Liu et 

al., 2015) 
ANFIS 

General 

IGBT SC 

faults 

Converter three 

phase output 

voltages 

kHz scale - Simulation 

(Han et 

al., 2022) 
LSTM 

General 

IGBT OC 

and SC 

faults 

IGBT arm currents kHz scale - Experimental 

(Xiao et 

al., 2021) 
CNN 

General 

converter 

faults 

Wind speed, rotor 

angle, active power, 

reactive power, rotor 

speed, grid side 

converter voltage, 

generator torque set 

point 

10-min 

averages 
- Operational 

(Deng et 

al., 2015) 

Kalman filter with 

thresholds 

General 

IGBT OC 

faults 

IGBT arm voltages 

and currents 
kHz scale ~100ms 

Simulation & 

Experimental 

(Zhang et 

al., 2020) 

Measured voltages 

compared to 

reference voltages 

General 

IGBT OC 

faults 

IGBT voltages kHz scale 200μs Experimental 

(Jlassi et 

al., 2015) 

Luenberger observer 

with thresholds 

General 

IGBT OC 

faults 

Converter 3-phase 

input and output 

currents 

kHz scale 3ms 
Simulation & 

Experimental 
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3. Methodology 

3.1. The offshore wind farm for case-study 

The operational wind farm used for case-study in this paper is composed of 27, 2.3MW turbines. The WTs have a 410 

squirrel cage induction generator (SCIG) topology with the converters located in the tower. Data have been accessed for 8 

years of operation, corresponding to years 2-9 of the wind farm’s life, for the Computerised Maintenance Management 

System (CMMS) and for four years of operation, corresponding to years 6-9 of the wind farm’s life, for the SCADA system, 

which monitors key turbine components. Along with a condition monitoring system (CMS) installed on the WT gearboxes 

and metocean data these make up the suite of data available to the operators of the wind farm. This allowed consideration of 415 

the development of failure prediction methods in a live operational setting to highlight the constraints in data availability and 

requirements for operators to use them. 

3.2. Data 

Given the failure mechanisms and fault detection methods identified in Sect. 2.3., the ideal monitoring signals for 

detecting faults at WT power converters are high frequency measurements of gate voltages, switch times, VCE, leakage 420 

currents, input and output currents and capacitance. Table 3 gives a list of the data fields and sampling rates available tags 

available to the operator at the case-study wind farm that are most applicable to power converter failure predictions. There is 

a clear gap between the signals required and those available, particularly in sampling frequency, gate voltages, switch times, 

VCE, leakage currents and capacitance. Therefore, it is likely to be difficult to predict converter failures using the SCADA 

data available to operators. Furthermore, the faults such as EOS, lightning strikes, and contamination, are either undetectable 425 

or happen randomly, further making it harder to predict all power converter failures. 

 

Table 3: List of SCADA tags available and their sampling rate. 

Tag Sample Rate 

Active Power 10-min averages 

Wind Speed 10-min averages 

Generator RPM 10-min averages 

Ambient Temperature 10-min averages 

Three phase converter input currents 10-min averages 

Three phase converter output voltages 10-min averages 

Converter coolant pressure 10-min averages 

Converter coolant temperature 10-min averages 

Tower Humidity 10-min averages 
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Nevertheless, failure prediction models were trained to attempt to classify power converters as healthy or unhealthy, and 430 

therefore requiring replacement, based on their monitoring data. Data-driven methods were chosen because they can easily 

be applied to the historical data without requiring new sensors and based on the data available to the operator and the review 

of established methods in Sect. 2.2. are the most sensible. The purpose of the trained models is not to identify a root cause of 

failure but to anticipate a failure in advance of it occurring, whether the model detects this based on secondary symptoms or 

root causes is not important; however, it will be more likely to predict these failures based on the correct data identified in 435 

the root cause failure analysis. 

4 years of data from the case-study wind farm were used. The data sources were the maintenance logs from the CMMS 

and measurement time series from the SCADA system. From the CMMS data 16 corrective converter replacements have 

taken place. Each intervention can correspond to one or multiple individual phase modules, for example sometimes one 

phase module on the grid side is replaced and sometimes three on grid and generator side are replaced. It is unknown; 440 

however, which phase modules have been replaced in each instance. Therefore, each intervention is considered as a single 

maintenance action and will be referred to as a corrective replacement (CR) from hereon. Each CR has a corresponding 

timestamp which allows precise identification of the failure point. SCADA data is then taken for 6 months before each 

replacement and 12 months after each replacement in order to capture all seasonality variation in healthy data. The 18 

months considered corresponds to ~70k timestamps for each CR. Whilst the dataset doesn't correspond to a full turbine 445 

lifecycle, the converter failure rate has been shown to be relatively constant, and ageing-related failures of converters at 

OWFs have been discarded as a significant failure mode, therefore there should be little sample bias of the models towards 

early lifetime failures. Furthermore, the models can be retrained as the wind farm ages further and more data becomes 

available to the operator. 

3.3. Failure prediction model architectures 450 

The problem is set up as a binary classification problem, where the target variable is the time to failure interval and the 

input variables are the SCADA tags and any derived features. The time to failure interval is split as greater than 8 weeks to 

failure and less than 8 weeks to failure. This failure interval was chosen based on tests where it was shown that an ANN can 

best distinguish between a faulty and healthy converter at the 8 weeks until failure point. The following 8 model 

architectures were used: 455 

1. Logistic Regression (LR) – 6 input features 

2. Decision Tree (DT) – 6 input features 

3. Random Forest (RF) – 6 input features 

4. XGBoost (XGB) – 6 input features 

5. ANN (ANN6) – 6 input features 460 

6. ANN (ANN12) – 12 input features 

7. InceptionTime network (IT6) – 6 input features 

8. InceptionTime network (IT12) – 12 input features 
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16 models were trained for each architecture, with one CR kept separate as the test data in each instance. The data for the 465 

remaining CRs were used as the training data. For example, if CR 1 was held back as test data, the model was trained on 

CRs 2-16, illustrated in Fig. 12. This allowed investigation of the effects of different training splits on the performance of the 

models. A set of healthy converters on which there were no recorded failures or maintenance was also used as a test set to 

identify if the models predict false positives. 

 470 

Figure 12: Examples of training and test data split by CR. 

 

The ANN models were first introduced in (Moros et al., 2024b) with a description of their hyperparameters. The LR, DT, 

RF and XGB models had their hyperparameters tuned in an exhaustive grid search procedure. Along with the ANN models 

they do not make use of the temporal structure of the data. They consider each 10-minute sampled point in isolation and do 475 

not utilise information that came before it.  The IT6 and IT12 models were used to leverage the time series nature of the data 

and are based on the InceptionTime architecture introduced by Fawaz et al. (2020) which is the state of the art in time-series 

classification. The InceptionTime architecture is based on an ensemble of 5 Inception networks, illustrated in Fig. 13. Each 

Inception network is composed of two connected residual blocks made up of 3 Inception modules each. The Inception 

modules, illustrated in Fig. 14, take a multivariate time-series, reduce its dimensionality in a bottleneck layer, apply multiple 480 

convolutions and form an output multivariate time-series which feeds to the next module. It was expected that utilising a 

model that could exploit the temporal structure of the data would lead to better predictions. 

 

 

               3   2       0  9                 3  2

   Training  ata

Test   ata

               3   2       0  9                 3   
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3.4. Preprocessing 485 

Before being used to train predictive models, the SCADA data were pre-processed using the following steps:  

1. The installation date of each converter is identified, and the cumulative energy converted from installation to each 

timestamp is calculated. This captures an energy-based ageing of the converter. 

2. The data for each corrective replacement were checked to see if it overlaps with a separate pre-emptive replacement. 

Timestamps for 8 weeks prior to a pre-emptive replacement were removed. 490 

3. The data were under and oversampled to a ratio of 5:1 between the greater than 8 weeks to failure and less than 8 

weeks to failure classes to address the class imbalance problem. 

4. Current and voltage difference features are engineered by subtracting one phase from the others. E.g. current L1 – 

L2 and current L1-L3. 

5. Data are assigned a time to failure interval of longer than 8 weeks to failure or within 8 weeks. 495 

6. Features are scaled using either min-max scaling or for the active power, against the rated power. Missing values 

are replaced with the mean of the timestamps before and after. 

7. The target variable is ordinal encoded. 

8. Highly correlated features are removed. 

The selected pre-processed features for the models that use 6-input features and those that use 12-input features are 500 

shown in Table 4 below. The difference is that the 6-input feature models do not make use of the current and voltage 

measurements. 

 

 

Figure 13: Inception network. Taken from (Fawaz et al., 2020). 505 
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Figure 14: Inception module. Taken from (Fawaz et al., 2020). 

 

Table 4: pre-processed features and the models they were used for. 

Feature 6-feature models 12- feature models 

Active power ✓ ✓ 

Wind speed ✓ ✓ 

Converter coolant temperature  ✓ ✓ 

Inverter coolant pressure  ✓ ✓ 

Tower humidity ✓ ✓ 

Cumulative energy converted ✓ ✓ 

Current phase L1-L2 difference  ✓ 

Current phase L1-L3 difference  ✓ 

Current phase L2-L3 difference  ✓ 

Voltage phase L1-L2 difference  ✓ 

Voltage phase L1-L3 difference  ✓ 

Voltage phase L2-L3 difference  ✓ 

 510 

For the IT6 and IT12 models there was an extra pre-processing step to convert the input data for the models into a 3D 

tensor, where each sample corresponds to the previous week of measurements. The data were stepped forward by one day 

for each sample, meaning that the output of the models was a daily prediction of failure (or not) within 8 weeks based on the 

previous week’s worth of data. 
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3.5. Performance Metrics 515 

Typical performance metrics for imbalanced problems are precision and recall. In the case of wind turbine prognostics, 

high recall models will miss fewer component failures but may lead to a higher number of unnecessary maintenance 

interventions. Whereas a high precision model will lead to fewer unnecessary maintenance interventions but will miss more 

component failures, potentially leading to more catastrophic failures. Based on an analysis of the wind farm cost data a 

failure in operation costs approximately 4 times as much as a preventative replacement, including revenue losses from 520 

downtime, therefore more false positives can be afforded than false negatives.  

These metrics; however, do not capture the true cost of deployment of models when used in operation. How will the 

operator make decisions based on the output of the models and what impact does this have on costs? When deployed, the 

operator of the windfarm will need to make a replacement decision based on the output of the model. Based on the criteria 

for making decisions, the performance of the models will change from just the recall and precision metrics. Therefore, a new 525 

metric for scoring the models based on the estimated costs of deployment is introduced. Firstly, one prediction every 10 

minute is not useful for an operator to decide on replacement. Therefore, the modal daily predictions are calculated. Then a 

threshold for decision making is determined, this can be done through discussion with the operating teams or through an 

optimisation process. For example, after three consecutive unhealthy predictions a decision is made to replace the 

component. Then based on the data and decision threshold a failure rate of x failures per turbine per year; a false positive 530 

replacement rate of y per turbine per year; and a successful detection rate of z are calculated. Then for a time frame of n 

years equation (1) can be used to calculate the expected cost of deployment: 

  =cp(ny+nzx)+ccnx( -z) (1) 

where cp and cc are the cost of a preventative replacement and the cost of a corrective replacement, respectively. This allows 

calculation of a single metric that can be used for assessing the actual cost of deploying a model. The decision-making 

threshold for determining if a replacement should be made is decided based on the time requirements for planning 535 

maintenance. For example, replacement of small components that are always kept in stock and do not require specialist 

technicians or vessels can be scheduled on a time scale of days in advance of the failure. On the other hand, major 

component replacement (MCR) activities, such as gearbox replacements require a timescale of months for planning. In this 

way, the operational planning constraints, such as vessel availability and waiting for a suitable weather window can be 

considered. In addition, Eq. (1) considers the cost of false positive replacements which also require time and resource. A 540 

business as usual (BAU) baseline should be calculated which considers the current status of anticipating failures of that 

component. By comparing the models evaluated in their operational context with the current performance of the offshore 

wind farm potential reductions in costs related to the component of interest can be calculated. For each model 10-different 

decision-making thresholds were used to evaluate the expected cost of deployment. 3-day, 5-day, 7-day, 10-day, 21-day and 

28-day consecutive faulty prediction thresholds and weekly, 2-weekly, 3-weekly and 4-weekly modal predictions. These 545 

thresholds were determined based on consultation with the case-study windfarm based on the minimum time that would be 
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needed by the maintenance teams to prepare for the replacement of the power converters. In this case, the required planning 

time is relatively short as the spare parts are always kept in stock and replacement of a power converter does not require any 

specialist technicians or vessels, so therefore the logistical constraints are always available on site. Three days was given as 

the minimum time, because the technicians at the wind farm do not work on the weekends, therefore if a failure were to 550 

happen on a Monday, the earliest it could be replaced in advance is the preceding Friday. 

4. Results and discussion 

4.1. Results 

Table 5 shows the average precision and recall for each model architecture. The full breakdown of precision and recall by 

corrective replacement for the models can be found in the appendix. The performance of the models is highly variable 555 

depending on which CR is held back as the test data. The LR model has no predictive ability whilst the two best performing 

models are the ANN6 and XGB models. The two time-series based models perform poorly with low recall meaning that 

several failures were missed. 

 

Table 5: Precision and recall average across 16 CRs for each model architecture. 560 

Model Average Recall (%) Average Precision (%) 

LR 0 0 

DT 26 49 

RF 51 24 

XGB 56 29 

ANN6 57 39 

ANN12 24 34 

IT6 14 100 

IT12 15 100 

 

Figure 15 illustrates an example of the variability in performance depending on which CR is held back. It shows for 

ANN6, a model that performs well and a model that performs poorly. For the model where the test data were from CR2 the 

model correctly makes healthy predictions until just before the 8-week to failure mark after which it consistently predicts an 

unhealthy converter. For the model where the test data were from CR5; however, the model makes a majority of healthy 565 

predictions even when there are fewer than 8 weeks to failure, with a scattering of unhealthy predictions before this point. It 

cannot be used for failure predictions. 
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Figure 15: Modal daily predictions for a good model (left) and a bad model (right) 

It is important to consider the results of the models in the context of their operational performance. For each model, and 

each replacement decision threshold described in Sect. 3.4., the number of successful failures that would have been detected 570 

in time for a replacement, the number of missed failures and the number of false positives have been calculated, based on the 

performance of the models on the test datasets. Each successful replacement and false positive replacement were assigned a 

cost of  , whilst missed failures were assigned a cost of  . This leads to a “business as usual” (BAU) case, where no false 

replacements were made but all failures were missed, having a cost of 64. The expected cost of deployment was also 

calculated using equation (1) with an n of 15 years; a failure rate of 0.17 per turbine per year; and a cp of 1 and a cc of 4. The 575 

BAU baseline is therefore a score of 10. A comparison of the total costs of deployment for the replacement decision 

thresholds is given in Table 6.  

Table 6: Comparison of replacement decision thresholds by average, minimum and maximum costs. 

Decision Threshold Average Total Cost Minimum Total Cost Maximum Total Cost 

3-day consecutive 69.6 37.0 102.0 

5-day consecutive 56.4 40.0 65.0 

7-day consecutive 56.3 43.0 64.0 

10-day consecutive 55.3 46.0 64.0 

21-day consecutive 60.3 46.0 66.0 

28-day consecutive 62.1 46.0 68.0 

Weekly modal 66.0 40.0 90.0 

Two weekly modal 59.3 40.0 72.0 

Three weekly modal 59.5 43.0 72.0 

Four weekly modal 58.5 46.0 66.0 
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Whilst the 3-day consecutive threshold has the lowest minimum cost it also has the largest maximum cost. The large 580 

maximum cost is driven by many false positives replacement decisions made by the DT, RF and XGB models. Taking the 

approach that a decision threshold is as a good as its best model, the four best thresholds to use would be the 3-day 

consecutive threshold; 5-day consecutive threshold; the weekly modal threshold and the two weekly modal threshold. There 

are improvements in the BAU baseline for all cases. Table 7 provides a breakdown for the 3-day consecutive, 5-day 

consecutive and weekly modal replacement decision thresholds of the expected costs of deployment, which are illustrated 585 

graphically in Fig. 16. When considering the expected cost of deployment, only the ANN6 and ANN12 models lead to 

improvements on the BAU baseline. This is not the case if only the total cost, scored only on the test datasets, is used. In this 

case more models show improvement over the BAU baseline, in particular for the 5-day consecutive threshold all models 

show an improvement in this score. This shows the importance of considering the expected cost of deployment of the models 

over a long term rather than just for the test dataset. The test dataset is naturally limited by the amount of data available and 590 

therefore doesn’t capture the long-term behaviour of the model. The best model to choose would be the ANN12 model with 

a 3-day consecutive replacement decision threshold which would lead to an expected reduction in costs of approximately 

42% over the BAU baseline. Even though this model does not have the highest successful detection rate, 0.56 compared to 

0.88 for the XGB model with a weekly modal replacement decision threshold, it has a significantly lower false positive rate 

bringing the long-term costs of deployment down. Despite the relatively low detection rate of 0.56, improvements are seen 595 

over the BAU case because there are currently no monitoring or prediction systems in place at the wind farm, therefore even 

though some failures will remain undetected, these same failures would remain undetected under the current monitoring and 

processes at the wind farm. 

 

Figure 16: Comparison of expected cost of deployment for each model and decision threshold and compared to the BAU case. 600 
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Table 7: Comparison of models and replacement decision thresholds with expected costs of deployment. 

Decision 

Threshold 

Model Successful 

Failures 

Prevented 

Missed 

Failures 

False 

Positives 

Total 

Cost 

Detection 

Rate 

False 

Positive 

Rate 

Expected 

Cost of 

Deployment 

(n=15) 

3-day 

consecutive 
ANN6 8.00 8.00 0.00 40.00 0.50 0.00 6.25 

3-day 

consecutive 
ANN12 9.00 7.00 0.00 37.00 0.56 0.00 5.78 

3-day 

consecutive 
IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45 

3-day 

consecutive 
IT12 4.00 12.00 4.00 56.00 0.25 0.19 10.98 

3-day 

consecutive 
LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00 

3-day 

consecutive 
DT 13.00 3.00 73.00 98.00 0.81 1.78 30.58 

3-day 

consecutive 
RF 12.00 4.00 73.00 101.00 0.75 1.77 30.94 

3-day 

consecutive 
XGB 13.00 3.00 77.00 102.00 0.81 1.82 31.18 

5-day 

consecutive 
ANN6 8.00 8.00 0.00 40.00 0.50 0.00 6.25 

5-day 

consecutive 
ANN12 8.00 8.00 0.00 40.00 0.50 0.00 6.25 

5-day 

consecutive 
IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45 

5-day 

consecutive 
IT12 3.00 13.00 4.00 59.00 0.19 0.19 11.45 

5-day 

consecutive 
LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00 

5-day 

consecutive 
DT 12.00 4.00 35.00 63.00 0.75 0.94 18.42 

5-day 

consecutive 
RF 12.00 4.00 33.00 61.00 0.75 0.86 17.22 

5-day 

consecutive 
XGB 12.00 4.00 37.00 65.00 0.75 0.91 17.99 

Weekly modal ANN6 8.00 8.00 0.00 40.00 0.50 0.00 6.25 

Weekly modal ANN12 8.00 8.00 0.00 40.00 0.50 0.00 6.25 

Weekly modal IT6 3.00 13.00 4.00 59.00 0.19 0.19 11.45 

Weekly modal IT12 3.00 13.00 4.00 59.00 0.19 0.19 11.45 

Weekly modal LR 0.00 16.00 0.00 64.00 0.00 0.00 10.00 

Weekly modal DT 13.00 3.00 64.00 89.00 0.81 1.63 28.40 

Weekly modal RF 12.00 4.00 59.00 87.00 0.75 1.54 27.47 

Weekly modal XGB 14.00 2.00 68.00 90.00 0.88 1.67 28.53 
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4.2. Discussion 

4.2.1. Variable performance with CR 

Depending on which CR was used for the test dataset, the precision and recall metrics vary significantly. The variation in 

model performance could be explained by either the data used, or the model used. As shown in Sect. 2.3., converters have 605 

different failure mechanisms. Where the models perform well, it is possible that the pattern in the data of their failure 

mechanism is represented by another replacement in the training dataset. It is also possible that the failure mechanism is 

detectable in the 10-minute average time series. Where the models don’t perform well; however, could be attributed to the 

inverse. Either their failure mechanisms are unique and not captured by patterns in the data for other failures in the training 

dataset, or the failure mechanisms are not detectable in the 10-minute averaged SCADA data. Considering that many failure 610 

mechanisms are either short circuits that develop in μs or are only detectable with high frequency measurements with 

internal converter signals it is likely that most failures are not predictable using the SCADA data. The data either do not have 

the correct measurements or the sampling rate is too low. Furthermore, within the SCADA data many of the data features are 

not directly measuring the converter, for example a general tower humidity measurement is provided rather than the 

converter cabinet humidity, whilst they will be linked some error will be introduced by this. There are no details of the 615 

failure mechanisms for each converter; therefore, it cannot be confirmed if the presence of shared failure mechanisms in the 

training data with the test data leads to better model performance. All these factors, highlight the challenge of trying to 

develop failure prediction models as the wind farm operator and stress the importance of developing models based on real 

world data rather than idealised lab tests. 

To tackle the variety of failure mechanisms more data should be utilised, either by collecting data from more failures or 620 

using synthetic data. Collection more data of converter failures at the case-study OWF would be a slow process with ~ only 

6 per year. Alternatively, converter failure data from other wind farms which use a similar turbine architecture could be used. 

The other wind farms will have different operating conditions and therefore perhaps different failure patterns, but this offers 

a much faster way to increase the size of the dataset. Generating synthetic data (Khan et al., 2021) could offer a way to 

generate a large volume of new training data and address the class imbalance problem. There are many methods to generate 625 

synthetic data and Generative Adversarial Networks (GANs) have been shown to be effective (Figueira and Vaz, 2022) in 

improving ML model performance. The main drawback of only utilising synthetic data is that it will only generate data 

similar to that which it is trained on, therefore it could not capture additional failure modes that have not been seen at the 

case-study OWF. A combination of the two approaches could be of value. 

4.2.2. Poor time series model performance 630 

Contrary to expectation the IT6 and IT12 models do not offer an improvement in predictive performance over the ANN6 

and ANN12 models and have very low detection rates. Either there are no obvious temporal patterns of degradation in the 
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input data, or the models are not suitable for the data available. The InceptionTime architectures are large with 

approximately 500k parameters to fit, there may not have been enough input data to fit these models correctly. 

4.3. Summary 635 

Data-driven methods can offer a promising method of developing failure prediction models for WT power converters. 

Their success; however, is limited when trained on the SCADA data available to operators. It is likely that the failure modes 

described in the previous sections, are either unpredictable in enough time to alleviate their impacts on turbine downtime or 

their fault signatures do not appear in the SCADA data. The best prediction success rate of 56% is low and whilst it is an 

improvement over the BAU case, the computational effort and time required to further improve these models is perhaps not 640 

worth it. Before significant effort is made in developing improved converter failure prediction models, increased efforts need 

to be made to understand the fault symptoms of the various failure modes and high frequency data collected in their buildup. 

There is a gap between the 10-minute averaged SCADA data available to operators and the data in which faulty converter 

signals are detectable. This must be bridged to allow deployment of converter failure predictions at operating wind farms and 

beyond just simulation and laboratory tests. It has also been shown that when designing failure prediction models their 645 

performance needs to be evaluated in the context of maintenance decision making. When considered in the context of a 

model’s impact on long term maintenance costs it is shown that a “good” model may lead to increases in long term costs. 

5. Conclusions and recommendations for operators 

A method that an OWF operator can apply to an asset to reduce O&M costs has been demonstrated on the case study of 

power converter failures. The approach outlined above can be used by wind farm operators to follow a step-by-step process 650 

for developing failure prediction models. By first understanding the failure mechanisms of each component and their fault 

signals, operators can understand what data is required to detect the faults and identify gaps in the data currently available to 

them. If it is apparent that the data available are insufficient, a data collection strategy can be designed avoiding wasted 

effort on developing failure prediction models that will perform poorly due to insufficient data. There is a clear gap between 

the data that are available to the operators and that which is required to detect power converter failures at wind farms. 655 

Turbine OEMs or wind farm operators should install sensors and collect data that captures the symptoms of the dominant 

power converter failure modes. This involves high frequency measurements of IGBT VCE, switch times, gate voltages, input 

and output currents and leakage currents. This gap has been demonstrated through the performance of trained failure 

predictions models where even the best model was only able to achieve a 56% faulty detection rate. Finally, it has been 

shown that predictive models need to be analysed in the context of their use in operation. A new scoring function which 660 

combines preventative and corrective costs, false positive rates and fault detection rates has been demonstrated. It is shown 

that considering the long-term performance of models through this scoring function can change the conclusions on whether a 

model is successful or not. 
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The analysis suffered from a few limitations. Firstly, the failure mechanism and precise location of failure for the 

converters is unknown. These details could allow grouping of failures into their own test and training datasets, allowing for 665 

more precise failure prediction models to be developed. Secondly data for converter failures were only available for four 

years. A larger dataset is especially beneficial for data-driven models and would perhaps allow exposure to a greater range of 

failure mechanisms. Finally, the operational scoring function does not consider the knock-on effects of planning 

maintenance for these predicted failures on all other wind farm maintenance. There are limited resources for planning 

maintenance and there is therefore an opportunity cost associated with deciding to perform one maintenance action over 670 

another. Future work should consider the opportunity costs and optimal assignment of jobs based on predictive model 

success by developing decision making models that can be used by the maintenance teams. Despite this, the operational 

scoring function remains a step towards considering the performance of predictive models in a live environment. 

Appendix A – Precision and recall by CR 

Table A1: Precision and Recall on test CR data for LR & DT & RF. 675 

Test CR 
LR DT RF 

Precision Recall Precision Recall Precision Recall 

CR 1 - 0.00% 0.00% 0.00% 0.00% 0.00% 

CR 2 - 0.00% 50.00% 3.85% 100.00% 3.85% 

CR 3 - 0.00% 73.47% 64.29% 77.08% 66.07% 

CR 4 - 0.00% 5.26% 1.72% 5.26% 1.72% 

CR 5 - 0.00% 25.00% 14.04% 6.67% 3.51% 

CR 6 - 0.00% 100.00% 56.52% 100.00% 57.39% 

CR 7 - 0.00% 94.12% 41.03% 100.00% 43.59% 

CR 8 - 0.00% 100.00% 44.35% 98.15% 42.74% 

CR 9 - 0.00% 63.64% 12.28% 50.00% 5.26% 

CR 10 - 0.00% 63.16% 63.16% 71.15% 64.91% 

CR 11 - 0.00% 60.66% 64.91% 60.32% 66.67% 

CR 12 - 0.00% 43.48% 17.54% 37.50% 10.53% 

CR 13 - 0.00% 8.33% 3.51% 9.52% 3.51% 

CR 14 - 0.00% 0.00% 0.00% 0.00% 0.00% 

CR 15 - 0.00% 3.23% 2.78% 0.00% 0.00% 

CR 16 - 0.00% 100.00% 22.81% 100.00% 19.30% 
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Table A2: Precision and Recall on test CR data for XGB & ANN6 & ANN12. 

Test CR 
XGB ANN6 ANN12 

Precision Recall Precision Recall Precision Recall 

CR 1 0.00% 0.00% - 0.00% 3.33% 0.25% 

CR 2 100.00% 3.85% 5.31% 2.99% 0.18% 0.06% 

CR 3 81.82% 80.36% 88.94% 100.00% 50.46% 25.63% 

CR 4 0.00% 0.00% 85.15% 100.00% 7.95% 22.30% 

CR 5 17.24% 8.77% 45.09% 33.76% 33.07% 15.18% 

CR 6 98.68% 65.22% 29.81% 2.04% 61.60% 23.59% 

CR 7 100.00% 52.99% 68.08% 66.31% 63.95% 35.55% 

CR 8 100.00% 50.81% 16.05% 5.25% 26.17% 42.44% 

CR 9 100.00% 12.28% 99.57% 30.02% 28.56% 5.61% 

CR 10 75.51% 64.91% 71.31% 98.13% 79.81% 75.40% 

CR 11 56.41% 77.19% 99.69% 64.60% 62.32% 44.85% 

CR 12 48.00% 21.05% 0.00% 0.00% 44.22% 15.34% 

CR 13 7.69% 3.51% 52.87% 100.00% 5.83% 2.25% 

CR 14 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

CR 15 3.45% 2.78% 93.62% 7.84% 28.87% 68.78% 

CR 16 100.00% 14.04% 99.79% 17.59% 44.06% 8.30% 

 

Table A3: Precision and Recall on test CR data for IT6 & IT12. 680 

Test CR 
IT6 IT12 

Precision Recall Precision Recall 

CR 1 - 0.00% - 0.00% 

CR 2 100.00% 9.09% - 0.00% 

CR 3 - 0.00% - 0.00% 

CR 4 - 0.00% - 0.00% 

CR 5 100.00% 42.41% 100.00% 51.27% 

CR 6 100.00% 68.79% 100.00% 61.78% 

CR 7 100.00% 57.23% 100.00% 63.52% 

CR 8 100.00% 49.56% 100.00% 58.41% 

CR 9 - 0.00% - 0.00% 

CR 10 - 0.00% - 0.00% 
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CR 11 - 0.00% - 0.00% 

CR 12 - 0.00% - 0.00% 

CR 13 - 0.00% - 0.00% 

CR 14 100.00% 1.15% - 0.00% 

CR 15 - 0.00% 100.00% 3.23% 

CR 16 - 0.00% - 0.00% 
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