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Abstract. The rapid development of the U.S. offshore wind industry has necessitated accurate assessment and prediction of

offshore wind profiles to manage and forecast generated power. In 2021, the Bureau of Ocean Energy Management (BOEM)

identified two areas on the Pacific Outer Continental Shelf (OCS), the Humboldt and Morro Bay Wind Energy Areas (WEAs),

as potential locations for offshore wind farms. Although these areas have historically lacked high-quality observations of wind

characteristics at typical wind turbine hub heights, scientific buoys sponsored by the Department of Energy and deployed5

by the Pacific Northwest National Laboratory (PNNL) recently made precise hub-height wind data available for the first

time in these locations, introducing novel opportunities for model validation and intercomparison. Performances of 100-meter

AMSL wind speed prediction are compared between a conventional physical law-based approach, known as the stability-

corrected logarithmic law (S-C log law), and three machine learning (ML) approaches, known as random forest (RF), Guassian

process regression (GPR), and long short-term memory neural network (LSTM). Predictor variables for the ML approaches10

are constrained to only sea surface-elevation measurements, and the ML algorithms are respectively trained and tested between

the two separate locations (over a notable extrapolation distance of 631 kilometers) in order to simulate realistic industry

applications and preclude model overfitting from biasing performance metrics. The S-C log law and LSTM produce the most

accurate predictions, with average root mean squared error (RMSE) of 1.33 m/s and 1.38 m/s respectively. The error metrics

of all three ML methods generally improve when a longer training time is implemented and when the algorithms are trained15

and tested at the same location, with many performance metrics of LSTM surpassing those of the S-C log law. The LSTM

and GPR techniques overall exhibit similar or improved offshore wind speed prediction capabilities in comparison to the S-C

log law, which is a widely accepted wind speed extrapolation method. These ML techniques are more adaptable for wind

energy purposes than conventional physical extrapolation laws, as they can be used to predict other wind parameters and

generate short-term forecasts. The increasing future availability and fidelity of vertical wind profile data from the Pacific OCS20

will be vital for determining the degrees of ML performance degradation over smaller train-test distances and for evaluating

performance and power output metrics of larger offshore turbines.
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1 Introduction

Wind energy is a renewable energy technology that is continuing to rapidly expand and evolve across the globe. Wind energy

generation has grown by approximately 15% annually over the past decade, making it the current largest source of renewable25

energy in the United States ESMAP. With record installations of wind turbines worldwide in 2023, global wind power capac-

ity has surpassed 1 terawatt and currently supplies approximately 10% of global electricity demand WWEA (2024). Recent

technological advances and stakeholder interest are allowing new areas to become feasible for wind farm construction. Bottom-

mounted and floating wind turbine structures allow for construction and operation of wind farms in offshore locations, where

wind speeds tend to be higher and more consistent than over land Wang and Wang (2015). The U.S. Bureau of Ocean Energy30

Management (BOEM) has approved several wind energy lease areas along the Atlantic Coast. Three offshore wind sites on the

Atlantic coast are already in operation and demonstrate the economic and energetic feasibility of offshore wind energy siting

(BOEM, 2025).

Sections of the Pacific Outer Continental Shelf (OCS), the area of ocean extending to about 200 nautical miles from the U.S.

West Coast, have recently come into consideration for offshore wind development. In May of 2021, plans were announced to35

develop floating offshore wind farms in two Pacific OCS locations off the coast of Morro Bay and Humboldt County, which

together have the potential to provide up to 4.6 GW of electricity, equivalent to powering 1.6 million homes Release (2021).

These two locations were titled as “Wind Energy Areas” (WEAs) by BOEM after collaborating with federal agencies, the state

of California, local tribes and communities, and the public to consider potential impacts on the environment as well as ocean

resources and commerce. In 2022, the WEAs were split into five subareas for lease and auctioned off to private developers40

McCoy et al. (2024).

Figure 1. The geographic areas of the Humboldt and Morro Bay Wind Energy Areas (WEAs) identified by the U.S. Bureau of Ocean Energy

Management. (Images adapted from BOEM.gov, BOEM (a, b))
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Along the U.S. West Coast, the impact of atmospheric and oceanographic conditions on offshore wind turbines is largely

unknown. Due to the sharp gradient in the bathymetry of the seafloor extending from the coastline, future wind farms will

primarily be composed of floating offshore wind turbines. Furthermore, existing high-resolution models for estimating the

wind resource are challenged by complex wind-wave-terrain interactions, large amounts of cloudiness, and shallow atmo-45

spheric boundary layers typically observed in this region. Therefore, the development of offshore wind farms requires exten-

sive research of atmospheric and oceanographic factors that affect wind farm layout, predicted power output, and fatigue load

estimations. Until recently, only a few sea surface-monitoring buoys scattered along the Pacific OCS have provided direct ob-

servational data of offshore meteorological and oceanic characteristics. These buoys measure only surface variables and do not

provide vertical profiles of winds and turbulence throughout the surface atmospheric boundary layer (ABL), which is critical50

information needed by wind energy developers.

As of September 2020, a research campaign funded by BOEM and the U.S. Department of Energy (DOE) has made direct,

consistent observations of above-surface wind characteristics in the Pacific OCS available for the first time. The Pacific cam-

paign consisted of two specialized research buoys stationed in the Humboldt and Morro Bay WEAs. These buoys measure

wind speed and direction up to 250 meters above mean sea level (AMSL) as well as a large set of surface variables (Krishna-55

murthy et al., 2023). This data can be used to assess the wind resource at potential turbine heights in these Pacific OCS sites.

It also introduces new possibilities for validating wind prediction models in the Pacific OCS region. More specifically, the

observational data is vital for identifying model biases and optimizing the performance of statistical, physical, and intelligent

learning wind prediction methods Shao et al. (2021); Sheridan et al. (2024); Liu et al. (2024); Bodini et al. (2024).

New strategies for wind speed extrapolation from sea surface-elevation data could prove to be more adaptable and site-60

specific than relatively complex and computationally-expensive numerical weather prediction (NWP) models (de Montera

et al., 2022). Additionally, improved wind modeling accuracy and new intelligent modeling approaches may help to enhance

confidence in turbine and wind plant power production estimates, which would have significant impacts on downstream anal-

yses, including grid integration and expansion Ortega et al. (2020); Mahoney et al. (2012); Hasager et al. (2015) as well as

life-cycle cost analyses of floating offshore wind energy production Jong et al. (2017). At both California WEAs, reanalysis65

data consistently falls short in capturing the full potential of the rotor-level wind resource (Sheridan et al., 2022). The most sig-

nificant errors arise during stable atmospheric conditions, when wind speeds surpass 10 m/s, which is critical for peak turbine

power generation, and when diurnal the wind speed variation in summer months is poorly represented, leading to substantial

errors in estimation of wind energy potential (Sheridan et al., 2024). Considering the recency of the collected Pacific OCS wind

data, an imminent research need is to test out different wind prediction models and assess which techniques provide the best70

wind estimates for energy developers (Gaudet et al., 2024; Liu et al., 2024, 2025).

A large suite of wind prediction techniques are in use by the wind industry and could potentially be tested in these off-

shore areas. One category of techniques is physical modeling, wherein meteorological variables are input into physical law

equations to calculate other weather characteristics (Fairall et al., 1996; Edson et al., 2013). Another contemporary group of

techniques are intelligent learning methods, which most often use machine learning (ML) architecture to draw complex statis-75
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tical relationships between input data and subsequently make predictions (Crippa et al., 2021; Optis et al., 2021; Vassallo et al.,

2020a).

In this study, prediction methods from both of these categories are tested by comparing their accuracy and adaptability

across the Humboldt and Morro Bay WEAs. The hub-height wind characteristics are analyzed to find relationships between

these hub-height winds and surface variables, where “hub height" is generalized as 100 AMSL for this study, but could be80

extended to any height to match newer offshore turbine sizes. These relationships are drawn from analyzing correlations of

100-meter AMSL winds to surface wind speed, air and sea temperature, atmospheric pressure, and temporal characteristics.

The primary goal is to compare vertical wind extrapolation performance of a widely-used physical law approach, the stability-

corrected logarithmic law (denoted as S-C log law), versus the machine learning methods of random forest (RF), Gaussian

process regression (GPR), and long short-term memory neural network (LSTM).85

The three aforementioned ML algorithms were selected for this study due to their varied advantages and shortcomings for

wind profiling purposes. RF effectively handles missing values, nonlinear parameters, and outlier data, though its stable nature

may limit its effectiveness in capturing stochastic variability in time series data. GPR also handles missing and nonlinear data

well and provides confidence intervals for predictions, but the computational intensity required by its nonparametric design

may limit efficiency for large datasets. LSTM has demonstrated high accuracy for wind speed prediction due to its specific90

design for retaining long-term patterns in time series data, but it requires more hyperparameter tuning to each specific use case

as well as complete datasets. To the authors’ knowledge, these three ML algorithms have not been compared within one wind

speed prediction study. Additionally, applications of these algorithms to the Pacific OCS wind resource are sparse due to the

historical data limitations and previous lack of research motivation.

Comparison of these ML algorithms against a standard physical law-based approach offers new insights into the most95

suitable current methods for Pacific OCS wind speed prediction. The ML models are developed by training on one buoy’s sea

surface-elevation data and testing using the other buoy’s data to minimize training location bias and assess the adaptability

of each ML algorithm to other offshore locations (Bodini and Optis, 2020). This style of testing helps gauge the greater

applicability of these ML methods to other Pacific OCS offshore areas where meteorological data are only available at the sea

surface elevation.100

2 Methods

2.1 Source Data

Data from the DOE/PNNL lidar buoys is retrieved from the Atmosphere to Electrons Data Archive and Portal, which is

supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Wind Energy Technologies

Office. The data is publicly available at a2e.energy.gov DOE (2021); Krishnamurthy et al. (2023). All analysis performed in105

this study uses 10-minute averaged data. For the Humboldt WEA, the data included in this analysis span from October 2020 to

January 2022. Due to instrument failure from the end of December 2020 through May 2021, the Humboldt buoy was deployed

until July 2022 in order to retrieve a full annual cycle of wind data, but data following January 2022 was not obtained before
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the completion of this study. The Morro Bay buoy provides mostly continuous data coverage from September 2020 to October

2021.110

The motion-corrected Doppler lidar data were filtered for appropriate signal-to-noise ratios of less than -23 dB. The re-

maining values are not expected to fall outside of instrument technical specifications of ±0.1 m/s wind speed accuracy and

±2◦ wind direction accuracy Vaisala. Standard filtering thresholds were also applied to the surface-monitoring and in-situ sea

surface measurement instruments (Krishnamurthy et al., 2023).

The predictor features were selected based on analysis of surface variable correlations to 100-meter AMSL wind speed and115

are listed in Table 1. Time of day is cyclically encoded into cosine and sine components for use by the ML algorithms. This

transformation creates a polar representation of time to reduce the numerical difference in magnitude between different parts of

the day, while also maintaining continuity between consecutive hours of the day. An important drawback of this transformation

is that the sine and cosine components must be considered together to identify a unique time of day. Thus, algorithms which

handle only one input feature at a time may deflate the overall predictive power of the encoded time features.

Predictor Feature Unit Measurement Height (m AMSL)

Surface Wind Speed m/s 4

Air Temperature ◦C 3.7

Sea Surface Temperature ◦C 0

Air-Sea Temp. Difference ◦C -

Atmospheric Pressure mbar ∼ 1

Time of Day (cosine) - -

Time of Day (sine) - -

Table 1. Input feature variables used for ML training and prediction of 100-meter AMSL wind speed.

120

Considering the frequency of missing or filtered buoy data which resulted in many data gaps spanning more than a day, the

selection of train-test datasets was conducted based on the following criteria:

– Parallel day-of-year data availability at both Humboldt and Morro Bay sites

– Approximately one month-long continuous data, with no longer than one continuous day of missing data for any variable

– No data overlap with other train-test datasets125

The data selection based on the above criteria resulted in six datasets, detailed in Table 2. Because of the limited data

availability, assessment of the ML algorithms’ longer-term wind speed prediction capabilities over variable seasonal conditions

is not included in this analysis.
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Dataset Month Range Dates (Month/Day) No. of Days

October 10/01 - 10/31 31

November 11/01 - 11/30 30

December 12/01 - 12/28 28

January 01/01 - 01/23 23

June 06/01 - 06/30 30

July-August 07/12 - 08/04 23

Table 2. Train-test dataset ranges, selected for data completion and continuity.

Within the selected datasets, 2.1% of Humboldt and 1.5% of Morro Bay data remain sporadically missing. Missing values

were filled using the mean hourly value within the month containing the missing value. Though random forest and Guassian130

process regression do not technically require fully-complete datasets, the same filled datasets are used for all ML methods due

to the complete-data requirement of LSTM. The first 80% of data in each dataset is used for model training, with the remaining

20% used for testing. The 10-minute data is averaged hourly for faster overall computation time.

Prior to ML algorithm training, input features are scaled through transformation to a standardized z-score in order to prevent

features with wider ranges from exerting more influence on the target prediction. Standardization is performed using the135

StandardScaler function from the scikit-learn preprocessing module. After data are scaled, principal component analysis (PCA)

is used to reduce the dimensionality of the input data. PCA is performed using the scikit-learn PCA module with a lower

variance threshold of 0.95, meaning at least 95% of original dataset variance is captured by the modified features.

2.2 Hub-height Wind Characteristics

Frequency distributions of hub-height (100 meters AMSL) wind speeds in both WEAs are shown in Figure 2. Wind speeds140

at hub-height in these areas average around 8-10 m/s, with strong gusts reaching 25-30 m/s. These wind speed attributes are

desirable to wind energy developers, as the technically viable lower limit for 100-meter AMSL offshore wind speeds is 7 m/s

for the current performance standards of offshore wind turbines ESMAP and the cut-out speed is roughly 25 m/s. The Weibull

distribution shown in Figure 2 is fit to each dataset using the maximum likelihood method, but the mismatch with the data

demonstrates that more sophisticated methods are necessary to accurately model even general hub-height wind characteristics145

in these areas.

Average hub-height wind direction is obtained from the lidar data and shown in Figure 3. Hub-height winds hail predomi-

nantly from the north in the Humboldt WEA and from the northwest in the Morro Bay WEA. The occurrences of wind direction

reversal, visible in the Humboldt windrose, take place in October through December, though other aspects of the seasonal wind

direction pattern may be missing due to the data gap from February through May.150

The lidar instrument data from 40 to 250 meters AMSL provides surface ABL wind speed profiles across seasonal timescales.

The profiles displayed in Figure 4 were created using a 30-day window rolling average of wind speeds at each elevation. The
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Figure 2. 100-meter AMSL wind speed frequency distributions in the Humboldt and Morro Bay WEAs, based on Humboldt lidar data from

October 2020 to January 2022 (with data missing February through May 2021) and Morro Bay lidar data from September 2020 to October

2021.

7

Figure 3. 100-meter AMSL wind direction distributions in the Humboldt and Morro Bay WEAs. The dates of the source data are the same

as Figure 2 above. (Satellite imagery adapted from © Google Earth).
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Figure 4. Average interseasonal wind speed profiles from 40 to 250 meters AMSL in the Humboldt and Morro Bay WEAs. The dates of the

source data are the same as Figure 2 above, with data wrapped around across years and January not shown for Humboldt.

irregular signatures appearing above 175 meters may be due to a higher ratio of missing data at these heights. Less consistent

data at higher elevations is an inherent drawback of lidar wind monitoring, as signal-to-noise ratios from these heights are more

likely to be of lower quality and result in data infidelity.155

Clear seasonal signatures of increased wind speed occur in springtime months at the Morro Bay site, with the subsequent

profile minima occurring in the summertime months. The seasonal wind speed profile variation in Humboldt is less clear due

to the large volume of missing data, but the available data does not exhibit seasonal similarities to Morro Bay.

Machine learning algorithms used for time-series data prediction may overfit to long-term patterns within the training data,

resulting in reduced prediction accuracy when applied in other locations where similar patterns are not present. The differing160

seasonal wind speed patterns between the two WEAs thus raise a potential issue for training and applying the ML models

across the two locations. The ML models in this study are likely less prone to these types of errors due to the short-term training

datasets, which reduce the influence of meteorological patterns present across interseasonal timescales. This consideration is

more important for future studies of the Pacific OCS wind resource that may use multiseasonal data from one location to

perform wind prediction or forecasting at another location.165

2.3 Atmospheric Stability Calculations

2.3.1 Stability Classification

Categorization of atmospheric stability conditions throughout the data collection period is important for identifying conditions

in the ABL that correlate with greater model uncertainty or error. The dimensionless height parameter, z/L, was obtained from

bulk Richardson number (RIB) calculations and application of Monin-Obukhov stability theory (Grachev and Fairall, 1997).170

Further details are given in Chang (2022). This methodology is hereafter referred to as the “profile method”. z/L approaching

zero indicates neutral atmospheric conditions, while positive and negative values indicate more stable or unstable, respectively.

8

https://doi.org/10.5194/wes-2025-85
Preprint. Discussion started: 25 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Probability distributions of calculated z/L using the “profile method”. Calculations are based on all available, complete 10-minute

data from October 2020 through January 2022.

Figure 5 shows the z/L probabilities from each 10-minute averaged data point over the entire deployment period. Both

probability distributions exhibit a slight negative skew, indicating a relatively higher ratio of unstable conditions to stable

conditions in both locations.175

Stability conditions can be labeled by respective Obukhov length L for each time point, as categorized in Table 4.3 of Chang

(2022). Percentages of data in each atmospheric stability class are given in Table 3. Both the Humboldt and Morro Bay WEAs

primarily experience unstable atmospheric conditions. The Morro Bay ratios are more meaningful as they represent a full year

of nearly complete data, while the Humboldt data may exert inherent bias toward summertime and autumnal conditions given

the absence of data from February through May.180

Chang (2022) includes comparisons of stability calculations with those from the COARE algorithm, a more sophisticated

approach relying on additional meteorological variables. Overall, the stability classification using the profile method agrees

well with the results from COARE, with a small skew of the Profile Method toward unstable conditions. The profile method is

therefore used in further atmospheric stability analysis for simplicity.

Study Location % Unstable % Neutral % Stable

Humboldt 46.8 20.1 33.1

Morro Bay 59.4 24.1 16.5
Table 3. Percentage classification of atmospheric stability conditions in the Humboldt and Morro Bay WEAs. The classification scheme,

based on the value of Obukhov length L, is detailed in Table 4.3 of Chang (2022).
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2.4 Physical Law Calculations185

2.4.1 Stability-Corrected Logarithmic Law

The physical law extrapolations of wind speed are conducted using the stability-corrected logarithmic law, denoted as S-C log

law. The logarithmic profile describes the vertical distribution of mean horizontal wind speeds within the surface layer of the

ABL, which typically ranges up to 100 meters above the surface during the day or approximately 10% of the boundary layer

depth Geernaert (2003). The stability-corrected logarithmic wind profile can be written as:190

U(z) =
u∗
κ

[
ln

(
z

z0

)
−ψm

( z
L
,
z0
L

)]
(1)

where U is the horizontal wind speed at height z above the surface, u∗ is the friction velocity, κ is the von Kármán constant

(0.4), z0 is the surface roughness, ψm is the universal stability function for momentum, and L is the Obukhov length, with

further details in Chang (2022).

The friction velocity u∗ is a dynamic fundamental scaling velocity derived from surface stress and air density measurements.195

A sonic anemometer instrument is typically used to capture fine-scale wind speed fluctuations in order to calculate the friction

velocity. However, the longitudinal and vertical wind speed fluctuation data measured by the 2D ultrasonic anemometers on

lidar buoys is not publicly available. Therefore, the above equation is reformulated into a modified logarithmic law, in which

the wind speeds at the buoy sea surface-monitoring height are used as a reference measurement:

U(z) = U4m




ln
(

z
z0

)
−ψm

(
z
L ,

z0
L

)

ln
(

z4m

z0

)
−ψm

(
z4m

L , z0
L

)


 (2)200

where U4m is the horizontal wind speed at 4 meters above mean sea level and z4m is equal to 4 meters, the height above mean

sea level of the buoy’s cup anemometer and wind vane.

The surface roughness z0 is typically determined empirically using the friction velocity. Other methods to estimate z0 with-

out empirically-derived friction velocity exist, such as analytical methods of the COARE model Fairall et al. (1996); Grachev

and Fairall (1997) or statistical methods using data from multiple vertical wind measurement points Golbazi and Archer (2020)205

or using the height and steepness of the waves Taylor and Yelland (2001). However, the former case involves computationally-

intensive iterative calculations and a large suite of input parameters, some of which are not publicly available or reliably

measured from the Pacific OCS buoy deployments. In the latter case, there is a need for multiple vertical measurement points

throughout the surface layer, which does not meet the study’s practical constraint of only using sea surface-elevation measure-

ments as input data.210

With these considerations, calculations for atmospheric stability and logarithmic wind profiles are simplified and subse-

quently cross-referenced with COARE 3.6 outputs. Instead of the iterative solving used in the COARE algorithm, surface

roughness is characterized according to the Davenport roughness classification of z0 = 0.0002 m for sea surface with fetch
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greater than 3 kilometers. Roughness lengths of this classification scheme have been well-studied and reassessed Wieringa

(1992), and this sea roughness parameter is used commonly in related offshore atmospheric stability studies Barthelmie et al.215

(2007); Lange et al. (2004); Dhiman and Deb (2020).

2.5 Machine Learning Techniques

All ML algorithms are trained on one location and tested on the other (i.e. Morro Bay WEA wind speed predictions are made

from an ML model trained on Humboldt WEA data, and vice versa), unless otherwise stated. This method is used to eliminate

model bias to the same train-test location and to simulate a realistic application of the model to a different location.220

2.5.1 Random Forest

Random forest (RF) is one of the most commonly-used ML algorithms across the field of data science. It is a supervised

ensemble ML technique, meaning that it uses labeled data and aggregates multiple submodels to make predictions. In this case,

the submodels are decision trees, which work by finding the optimal binary splits in input data to generate the most accurate

possible prediction of the output. In the case of continuous input data, such as the meteorological and oceanic DOE buoy data,225

the decision trees are often called “regression trees". The RF algorithm constructs independent regression trees to subsets of

the training data, then aggregates these weak predictions into a more accurate, overall prediction Vassallo et al. (2020b). The

features used for splitting include 4-meter AMSL wind speed, sea surface temperature, air temperature, and air-sea temperature

difference.

Random forest regression is performed using the RandomForestRegressor module from the scikit-learn Python machine230

learning library. 3-fold grid search cross validation is used to determine the optimal hyperparameter values of the RF model

for each train-test dataset. The range of values considered for each hyperparameter is shown below in Table 4.

RF Hyperparameter Range of Values

Number of estimators (trees) 10 - 1000

Maximum depth 4 - 40

Max number of features considered at a node 2 - 6

Min number of samples to split a node 2 - 10

Min number of samples at each end node 1 - 15

Table 4. Hyperparameters optimized in each training run of random forest regression.

2.5.2 Gaussian Process Regression

Similar to RF, Guassian process regression (GPR) is a supervised ML method used widely for both regression and classifi-

cation problems. Unlike the traditional RF model, GPR is probabilistic in that it calculates a probability distribution over the235
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prediction, lending GPR the powerful advantage of quantifying empirical uncertainty over all of its predictions Rasmussen

and Williams (2008). GPR defines a mathematical distribution over all the possible functions that can fit some observed data

points. Hyperparameters within the radial basis function (RBF) kernel used for this model include vertical scale (the values

that the averaged function can span) and horizontal scale (the strength of correlation between two points as distance between

them increases). Other hyperparameter specifications include the mean of the prior distribution (either zero or the training data240

mean) and allowable noise level in the targets. The empirical confidence intervals in areas of interest allow the user to decide

if or how the prediction should be refit.

Guassian process regression is performed using the GaussianProcessRegressor module from the scikit-learn Python ML

library. All input values are normalized by mean removal and scaling to unit variance to ensure that the Gaussian assumptions

of GPR are met. An additive kernel consisting of RBF and noise kernels is used. The smoothness of the output function, defined245

by the RBF length scale ℓ, is optimized within the bounds (1e-2, 1e3) with an initialization value of 0.1. The noise level is

optimized within the bounds (1e-15, 1e5) with an initialization value of 0.12.

2.5.3 Long Short-Term Memory Neural Network

Long short-term memory (LSTM) neural networks were introduced in 1997 by Hochreiter and Schmidhuber Hochreiter and

Schmidhuber (1997) as an advanced type of recurrent neural network (RNN) to more effectively model long-term dependen-250

cies. RNNs are still a widely used machine-learning method for modeling of dynamic temporal data Moon et al. (2019). LSTM

is state-of-the-art neural network architecture that captures patterns with long-term dependencies within time series data, which

RF and GPR are not specifically designed to handle. A disadvantage of LSTM is the need for complete training and testing

datasets at regular time intervals. Adverse weather conditions and instrument failure make missing values a common occur-

rence in wind measurement data, meaning that missing data must be filled in order to use LSTM.255

LSTM is implemented here using modules from the Keras Python library with a Tensorflow backend. A stacked LSTM with

four layers is used to increase levels of abstraction to the input data, essentially creating representations of the data at different

timescales. A dropout algorithm with a rate of 0.2 is applied to randomly omit 20% of each layer’s information to help prevent

overfitting. Mean absolute error (MAE) is used as the loss function, and the Adam optimization algorithm, which is an efficient

method of stochastic gradient descent, is used as the optimizer. 200 epochs and a batch size of 72 are used for iteration over260

the dataset, which were determined by empirical observations of the loss function and runtime.

3 Results & Analysis

3.1 Prediction Performance & Comparison

3.1.1 Variable Importance

Random forest provides a measure of variable importance (VI) by calculating the increase in mean square error (MSE) when265

each input variable is randomly permuted. Figure 6 illustrates that the significant majority of prediction power is sourced from
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Figure 6. Variable Importance (VI) of each input feature, calculated automatically via random forest regression.

the 4-meter AMSL wind speed, exerting over 90% VI. Out of the three temperature parameters, air-sea temperature difference

demonstrates more predictive power than the values of air temperature or sea surface temperature (SST) alone.

Despite a clear diurnal signature of 100-meter wind speed for most months of the year (see Figure 5.9 of Chang (2022)), the

combined sine and cosine components of the time of day exert the least predictive power out of all considered features. This270

result does not mean that time of day is insignificant in predicting the hub-height wind speed. It is likely that RF inherently

reduces the importance of the time of day sine and cosine components (which encode unique times of the day only when

considered together) because the regression trees split only one feature at a time. It is also possible that the 100-meter wind

speed pattern correlated to the time of day may be more precisely encoded by the pattern of near-surface wind speed and/or

air-sea temperature fluctuations.275

The obtained VI implies that the S-C log law utilizes the two most important parameters (surface wind speed and air-sea

temperature difference) for extrapolating hub-height wind speeds from surface measurements. This importance is relative to

the seven predictors considered in this study and omits an exhaustive search of other possible predictor variables, such as

significant wave height, surface current strength, and wind direction. The following assessment and intercomparison of model

performances demonstrate the sufficiency of using only these seven features to obtain accurate predictions of 100-meter AMSL280

wind speed.

3.1.2 ML Prediction Samples

Across all three ML method hub-height wind speed predictions, the hourly fluctuations and multi-day trends of hub-height

wind speed are well represented. The relative accuracy of each model over these dates is not easily inferred due to the varying

lengths and instances of prediction inaccuracies between the three methods. Figure 7 visualizes samples of each algorithm’s285

performance on the same subset of testing data.
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Figure 7. Samples of ML predictions of 100-meter AMSL wind speeds in the Humboldt WEA from 2021/07/30 - 2021/08/04. Algorithm

training was conducted on roughly one month of preceding data from the Morro Bay WEA. The confidence interval computed by GPR is

shaded around the mean prediction function.

The 95% confidence interval (CI) calculated over the underlying functions of GPR is displayed in the second graph of Figure

7. The CI narrows around higher-confidence predictions, but is always non-zero due to the multitude of possible underlying

functions and the inclusion of a noise kernel. The reliability of the regression is highly dependent on the selection of the

covariance function, which must be specifically tuned to the nature of patterns in the target variable.290

The first half of the displayed data in the GPR sample, where some of the observational data falls outside of the confidence

interval, highlights important considerations to make when using GPR. The likely cause of the large deviation from observa-

tional data is a model limitation around capturing longer-term temporal trends. It is possible that the performance of RF and

GPR in this instance could be improved by longer training time, or for GPR specifically, more trial-and-error fine-tuning of the

kernel.295

As discussed, the case-specific, iterative adjustments necessary to improve these two methods’ prediction accuracies are

a detriment to their overall usefulness for offshore wind modeling. However, it is important to consider the large distance
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between the ML training and testing sites in this study, which is 631 km (341 miles) between the Humboldt and Morro Bay

WEAs. It is probable that model performance would greatly improve given a shorter distance between training and testing

data locations, which would likely be the case in practical offshore wind energy applications of these models. Future studies300

employing these models across shorter train-test distances would help to quantify the prediction accuracy reduced by the large

spatial extrapolation extent, but this is currently not possible with the limited available data.

3.1.3 ML Performance vs. Stability-Corrected Logarithmic Law

Figure 8. Sample comparison of ML predictions of 100-meter AMSL wind speeds versus values calculated from the Stability-Corrected

Logarithmic Law. The testing data subset is from the Morro Bay WEA from 12/25/2020 to 12/27/2020. ML algorithm training was conducted

on roughly one month of preceding data from the Humboldt WEA.

A comparison of the ML methods against the S-C log law on a slice of hourly Morro Bay test data from 2020/12/25 -

2020/12/27 is displayed in Figure 8. The S-C log law demonstrates similar performance to the ML techniques, and in some305

instances provides the most accurate comparison to the lidar data. Most similar in performance to the S-C log law are LSTM

and GPR, which generally exhibit inaccuracies in conjunction with those of the S-C log law.

Figure 8 also illustrates an expected shortcoming of employing RF for wind energy purposes, which is smoothed predictions

of stochastic wind speed extremes. Though the RF predictions respond to general wind speed pattern changes, the MAE

from the RF predictions is highest for the majority of time points. This limitation can be attributed to the inherent process310

of regression tree averaging in RF, which makes the method robust to outlier data, but also less capable of accounting for

anomalous wind events that may not be captured in the training data.

Hub-height wind speed prediction performance is generally assessed using bias, centered root mean squared error (cRMSE),

square of correlation coefficient (R2), and Earth-mover’s distance (EMD) as the key performance metricsOptis et al. (2020).

The decomposition of typical error metrics, such as root mean squared error (RMSE) and MAE, into more distinct components315

is useful for identifying specific aspects of each method’s strengths and shortcomings, though RMSE is also taken into account
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Figure 9. Comparison of observed and predicted diurnal averages of normalized 100-meter AMSL wind speed. The ML prediction data are

only from runs using different train-test locations (i.e. the Humboldt predictions are made from a model trained on Morro Bay data, and vice

versa). All averages are drawn from the times corresponding to the six sets of testing data, as detailed in Table 2. Red and blue background

coloration indicates approximate daytime and nighttime conditions.

as a metric of overall prediction quality. The performance metrics of each prediction method are averaged over the 6 train-test

datasets to obtain the compared values.

Figure 9 displays the average hourly 100-meter AMSL wind speed predictions across the diurnal cycle, with each prediction

series normalized to the respective mean. The generalized offshore wind speed trend is again observable, with reductions320

induced by the more stable nighttime conditions beginning around 5 UTC and increased speeds brought about by convective

daytime conditions beginning around 18 UTC.

The view of normalized wind speed per hour of the day elucidates some important aspects of ML model performance.

RF demonstrates significant error across all parts of the diurnal cycle, as it tends to underestimate hub-height wind speeds

in nighttime conditions and overestimates speeds in the daytime across both WEA locations. Individual model performances325

between the two locations appear to be relatively similar, which supports that the ML models’ performances are not largely

dependent on the particular training location in this study, lending confidence to the proficiency and applicability of each ML

model’s architecture.

The key performance metrics for each model are illustrated in the bar graphs in Figure 10. Table 5.3 in Chang (2022) also

shows the average runtime of training and testing each algorithm over the six datasets. RF has the longest average runtime due330

to the computationally intensive process of training data subsetting and regression tree fitting. Though the number and depth

of trees could be manually lowered to improve the runtime, prediction accuracy would likely degrade as a result. GPR delivers

a moderate average runtime, likely on partial account of using only seven predictor variables and conducting dimensionality
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Figure 10. Site-specific error metrics of the ML methods’ and the S-C log law’s predictions of 100-meter AMSL wind speed. The ML

prediction data shown are only from runs using different train-test locations.
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reduction on these variables with PCA. Training and testing of LSTM over the six datasets takes the shortest amount of time,

averaging to just over two minutes in the case of this study.335

Inferences made about RF performance from Figures 7, 8, and 9 are substantiated by the calculated error metrics. cRMSE,

which represents unbiased model variation around the mean, is highest for RF in both locations and decreases in the order

of GPR, LSTM, and S-C log law. The previously discussed samples of testing performance demonstrate the considerable

prediction insufficiencies of RF for capturing stochastic wind speed variations. The R2 values from RF indicate the poorest

relative fit to the observed data, and values for EMD are the highest, evidencing a large difference between the predicted and340

actual probability distributions of 100-meter AMSL wind speed. Moreover, most of these RF error metrics do not substantially

improve even when training and testing are conducted in the same location. Based on its many aspects of large prediction

error, RF is deduced to be the least effective method for extrapolating Pacific OCS offshore hub-height wind speeds out of the

techniques considered.

Relative to the four methods included in the study, GPR demonstrates average performance across the board, though its error345

metrics are much more similar in magnitude to those of LSTM and S-C log law than RF. Though the MSE of GPR is larger

than that of LSTM and S-C log law, this aspect is countered by relatively lower overall prediction bias. GPR also demonstrates

improvement in almost all performance metrics when trained on its same testing location and obtains an RMSE within ±0.1

m/s of the S-C log law predictions. GPR is considered a promising method for Pacific OCS wind prediction for offshore energy

purposes, especially notable for providing a confidence interval at every prediction timestep.350

Wind speed predictions from LSTM are the most similar in cRMSE to the S-C log law and demonstrate smaller magnitudes

of bias than the S-C log law. LSTM attains very similar performance metrics to the S-C log law in terms of cRMSE, R2, and

EMD. When trained and tested in the same location, LSTM produces more accurate wind speed results than the S-C log law

for most of the error metrics considered. The LSTM results illuminate the importance of accounting for chronological wind

sequence patterns and stochastic wind events within intelligent learning approaches to wind prediction. The performance of355

LSTM also highlights that additional training data or input variables are not necessarily imperative for attaining ML wind speed

predictions similar or improved upon those calculated using the S-C log law. Considering the suboptimal spatial and temporal

training data constraints, LSTM demonstrates very promising performance for Pacific OCS hub-height wind speed prediction

and is recommended from the considered ML techniques for offshore wind speed extrapolation for wind energy purposes.

3.1.4 ML Train-Test Data Considerations360

Training and testing in the same location generally improves ML prediction accuracy (see Table 5.3 in Chang (2022)). A sample

of this ML performance improvement is shown in Figure 11, which displays a subset of hub-height wind speed predictions

from December 2020. ML model training and testing in the same location (i.e. no spatial extrapolation) improves model RMSE

in all cases except for the RF application to Humboldt data. Average RMSE decreases by 0.34 m/s for LSTM and by 0.49 m/s

for GPR when the train-test location is the same. Without validation data available between the Humboldt and Morro Bay sites,365

it is uncertain how each ML model’s prediction accuracy degrades as a function of distance from its training data location.
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Figure 11. Differences in ML prediction performance of 100-meter AMSL wind speeds when using different train-test locations versus same

train-test locations. “Avg RMSE" refers to the RMSE over all six testing datasets, not just the RMSE of the prediction subset shown.

In parallel to predictions made using different train-test locations, LSTM produces the most accurate wind speed predictions

of the three ML algorithms in the same train-test site case. These conditions produce RMSE of 1.19 m/s and 0.89 m/s for the

Humboldt and Morro Bay WEA locations respectively, which are the lowest RMSE values obtained from any prediction method

used in this study, including the S-C log law. It is worth noting that these RMSE values are nontrivial; RMSE of 1 m/s still370

represents moderate error by wind energy industry standards. With this consideration in mind, the LSTM results still indicate

high promise for using ML to generate accurate and site-specific wind speed predictions for future Pacific OCS offshore wind

energy development. Even with the critical data constraints of this study, the LSTM performance metrics demonstrate that

this technique is capable of producing turbine-height offshore wind speed predictions of similar or improved quality to those

provided by the common and industry-standard S-C log law method, and additionally show that only readily-obtainable surface375

variables are needed as input data.

At the time of writing, a constraint presented by the DOE buoy data is the lack of continuous and complete lidar and surface

variable data. The irregular data availability, caused by severe weather events and instrument failures, inhibits an in-depth

analysis of each ML method’s ability to account for interseasonal and interannual trends. With the buoy data available, the
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Figure 12. Differences in ML prediction performance of 100-meter AMSL wind speeds when using approximately one month of preceding

training data versus approximately three months of preceding training data. The ML prediction data shown are only from runs using different

train-test locations.

longest piece of continuous data in both locations runs from the beginning of October 2020 to near the end of December380

2020. These three months of data provide an opportunity to test the effect of longer training data length. Figure 12 shows

comparisons of approximately one month of training data (as is the case for all train-test datasets configured for this study)

versus the approximate three months of training data, where both are tested on the same dates at the end of December.

In all cases except for the GPR-Humboldt predictions, using a longer training time effectuates moderate improvements

in predictive accuracy. Though it was previously noted that additional training data is not imperative to obtain wind speed385

predictions similar to those of the S-C log law, this result further indicates the potential of the LSTM ML method to improve

upon the predictive performance of the S-C log law given longer sequences of continuous training data.

3.1.5 Prediction Dependence on Atmospheric Stability

In Figure 13, model error metrics are categorized by the atmospheric stability condition during which each prediction was

made. Across all prediction methods, stable conditions tend to produce the greatest prediction cRMSE and induce more model390
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Figure 13. Error metrics of the ML methods’ and the S-C log law’s predictions of 100-meter AMSL wind speed, distinguished by the

background atmospheric stability condition. The ML prediction data shown are only from runs using different train-test locations.
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bias, especially evident in the Morro Bay test data. A strong negative bias for stable conditions in Humboldt and positive

biases across all ML algorithms for stable Morro Bay conditions suggests that shear profiles between the two locations may

diverge under a stable regime. This inference is corroborated by the significant reduction of bias across all methods in unstable

conditions.

The error magnitudes in RF and GPR lead to similar conclusions as above about the fidelity of each ML model’s wind395

speed predictions. RF demonstrates the lowest R2 and highest cRMSE and EMD across all regimes and remains the least

accurate prediction method tested. GPR again performs between RF and LSTM across most error metrics, with exceptions of

similar or lower bias compared to LSTM under unstable and near-neutral conditions. GPR is considered especially useful for

its confidence estimates but is not currently recommended as a stand-alone method for Pacific OCS hub-height wind speed

prediction.400

The differences between Humboldt and Morro Bay metrics in Figure 13 present ambiguity in determining which method

proves most robust to atmospheric stability conditions. LSTM and S-C log law both exhibit their lowest respective cRMSE

under near-neutral conditions, in which both achieve values of less than 1 m/s in Humboldt and less than 0.5 m/s in Morro Bay.

The cRMSE increases more for LSTM compared to S-C log law in unstable conditions. Comparative performance in terms

of bias is inconclusive, as values do not show clear trends across the testing sites. S-C log law produces lower EMD values405

than LSTM (i.e. more similar probability distribution to the actual wind speeds) except for stable cases in Humboldt. In gross

terms of performance metrics, S-C log law demonstrates a slight advantage over LSTM, but differences are not significant or

consistent enough to substantiate a clear recommendation between the two methods based on atmospheric stability conditions.

3.1.6 Turbulence Intensity

Intelligent learning methods for wind speed prediction provide two inherent advantages over conventional physical law extrap-410

olation techniques. Many of these intelligent methods are able to provide short-term forecasts; once trained, learned patterns

can be extrapolated forward in time without additional inputs of training data Vassallo et al. (2020b). Though forecasting is

outside the current scope of this study, it is a pertinent future research topic for Pacific OCS wind energy purposes. Addition-

ally, these ML methods are not restricted to predicting vertically-extrapolated wind speeds, as are the S-C log law and power

law estimates. Any environmental feature of interest can be predicted, with accuracy largely dependent on the skill of the ML415

model, the selection of predictor variables, and the natural correlation or stochasticity of the feature compared to the selected

predictors.

For example, another important aspect of the wind resource to wind energy developers is turbulence intensity (TI), which

represents the strength of wind velocity fluctuations. TI is important for assessing potential mechanical fatigue on wind tur-

bines. TI calculations are influenced by ocean wave motion Gaudet et al. (2024), so algorithms that compensate for this could420

benefit from additional assistance from ML models. Due to lack of reference non-motion-impacted lidar TI observations, TI of

100-meter winds is gathered from the lidar buoy data by calculating the ratio of standard deviation of fluctuating wind velocity

to the mean horizontal wind speed.
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Figure 14. Comparison of observed and predicted diurnal averages of normalized 100-meter AMSL turbulence intensity (TI). All averages

are drawn from the times corresponding to the six sets of testing data, as detailed in Table 4.3 of Chang (2022). Red and blue background

coloration indicates approximate daytime and nighttime conditions.
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TI at 100 meters AMSL is predicted using the ML models following the same standard procedures as for 100-meter wind

speed prediction. Results for normalized TI are displayed in Figure 14, and performance metrics are listed in Table 5.4 of425

Chang (2022). These procedures were tuned for prediction of wind speed and were not tested for relevance to patterns in TI;

thus, results are not expected to be nearly as substantial as those for 100-meter wind speeds. Additionally, TI is quantified as a

percentage, so the range of values is therefore more limited than for wind speed.

Patterns in TI are predicted to varying degrees of success between the ML algorithms and test locations. However, based

on the generally low R2 values, none of the prediction methods attain a significant degree of accuracy. This result is expected430

because of the lack of feature correlation analysis to TI and demonstrates the importance of surface variable examination and

selection.

Despite the absence of model tuning and generally low prediction accuracy, similar trends to the 100-meter AMSL wind

speed predictions emerge. LSTM predictions achieve the lowest RMSE and cRMSE for both the cases of same train-test

location and for different train-test locations. Using the same train-test location again improves the majority of prediction error435

metrics across all models. The smallest RMSE value attained is from employing LSTM on the same train-test location data,

for which it produces an RMSE of 6% across both sites. Overall prediction accuracy of the three ML algorithms, akin to the

wind speed predictions, can be ranked as LSTM, GPR, and RF from highest to lowest proficiency. With further tuning of the

ML models and input features, it is possible that one or more of these models could be capable of achieving accurate real-time

TI estimates at turbine hub heights. This exploration of TI prediction emphasizes a primary advantage of employing machine440

learning methods for wind energy purposes, which is their adaptability for estimating parameters not otherwise obtainable by

conventional physical law-based approaches.
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4 Conclusions

The three machine learning (ML) methods of random forest (RF), Gaussian process regression (GPR), and long short-term

memory (LSTM) neural network were compared against the conventional stability-corrected logarithmic law (S-C log law)445

approach to assess predictive accuracy of hub-height wind speeds at two potential offshore wind sites. “Hub height" was gen-

eralized as 100 meters above mean sea level (AMSL) for this comparison and can be easily modified for similar future studies.

The input predictor variables for ML model training were constrained to sea surface-elevation measurements in each offshore

location, and opposite training and testing locations were used to prevent overfitting bias. The 631-km distance between the two

locations in this study is likely relatively large compared to the practical future applications in the Pacific Outer Continential450

Shelf (OCS) wind energy industry; ML wind speed prediction performance can thus be considered as a general “lower limit"

in this context.

Training and testing was conducted using six sets of data, each containing approximately one month of meteorological

and oceanic data with hourly resolution averaged from 10-minute data. The predictor variables included in these datasets

were initially analyzed for relevance to hub-height wind speed patterns and selected to be 4-meter AMSL wind speed, air455

temperature, sea surface temperature, air-sea temperature difference, atmospheric pressure, and time of day. Performance

metrics for each method’s 100-meter AMSL wind speed predictions were obtained from average performance across the six

train-test datasets. The best performance, generally evaluated from assessing the error metrics of bias, cRMSE, R2, and EMD,

were exhibited by LSTM and the S-C log law. RF produced the least accurate results and demonstrated notable insufficiencies

in predicting stochastic or extreme wind speed events, likely due to its inherent prediction smoothing from regression tree460

averaging. GPR demonstrated slightly lower accuracy than LSTM and the S-C log law across most of the error metrics,

though predictions were much more similar to these two methods than those from RF. Across all methods, stable atmospheric

conditions tended to induce greater magnitudes of cRMSE and bias compared to neutral and unstable conditions. This result

may be due to atypical shifts in the vertical wind shear profile influenced by stable stratification in the surface ABL.

It is important to note GPR’s advantage of providing empirical confidence intervals calculated inherently through its predic-465

tion method. The wind energy industry often requires uncertainty estimates to forecast different energy production scenarios.

GPR is thus recommended as a promising method for offshore wind prediction but requires further study and model tuning.

The ML performance metrics were derived from predictions made over a 631 km train-test extrapolation distance. When

trained and tested in the same location, LSTM surpassed the predictive performance of the S-C log law, while GPR was

relatively similar to the S-C log law in terms of general predictive accuracy. Implementing a three month-long training time470

instead of one month similarly augmented prediction accuracy for almost all ML method test cases.

LSTM is demonstrated to be the most accurate and adaptable ML method for offshore wind speed prediction out of the

techniques considered. Overall, the ML methods of LSTM and GPR present similar or improved offshore wind speed prediction

performance compared to the conventional S-C log law technique in use by wind researchers and energy developers. In this

study, these methods still present moderate prediction error by wind energy standards, and thus should not be used as validation475

data for other methods.
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ML methods offer greater flexibility for wind characterization than conventional physical law methods, as they can be used

for predicting other wind parameters and can be used to make short-term forecasts. To demonstrate the former advantage, the

100-meter AMSL wind speed target variable was replaced with turbulence intensity (TI) at the same elevation. LSTM again

demonstrated the highest prediction accuracy and RF the lowest, though general prediction accuracy of TI was significantly480

reduced compared to that of wind speed. TI prediction results could likely see significant improvements in future studies where

predictor variables and model hyperparameters are specifically tuned with relevance to TI patterns.

Many possibilities exist for optimization of ML offshore wind speed prediction performance beyond this study. To amend

the disparities in prediction performance across different atmospheric stability regimes, relevant predictor variables such as the

Obukhov length L and surface TI could be included and compared against the original model runs. Other potentially relevant485

surface variables, including wind direction and relative humidity, were excluded from this study due to data irregularities or

infidelity. Given continued data availability, more surface variables should be included in the train-test datasets and assessed

for importance to model predictions. Additionally, though many ML hyperparameters were optimized through grid search

tuning, some other hyperparameter values and functions were default selections and not tested for best suitability to wind

speed prediction. A more thorough study of optimal ML hyperparameters in the context of offshore wind characterization490

would likely enhance the quality of the wind speed predictions.

The novel meteorological data being gathered in the Pacific OCS offshore environment offer plentiful opportunities for

studying and modeling the Pacific offshore wind energy resource, but observational data are still extremely limited compared

to most other wind energy development sites. Continued deployment of these scientific buoys on the Pacific OCS will help

to amend the spatial and temporal constraints of the currently available data. With longer spans of continuous wind data,495

the discussed ML techniques could be trained across longer timescales and tested on their ability to capture interseasonal

wind patterns. More spatial availability of observed vertical wind profiles between the Humboldt and Morro Bay WEAs would

provide vital information for assessing the degradation of ML performance over shorter train-test extrapolation distances. Many

more opportunities for wind energy ML method research are available through the possibilities for short-term forecasting and

prediction of other wind parameters, such as wind power density and turbulence properties. Other important continuations500

of this research include drawing comparisons with wind prediction estimates from established numerical weather prediction

models, and potentially combining individual ML techniques’ predictive advantages through use of hybrid modeling.

The research presented determines that intelligent learning methods, namely LSTM and GPR, demonstrate new capabilities

for providing accurate and adaptable predictions of offshore wind characteristics in comparison to conventional approaches.

These state-of-the-art ML techniques can help inform the development of Pacific OCS offshore wind energy and potentially505

supplement the future research needed for other offshore wind energy projects.

Data availability. Humboldt Buoy surface data, https://doi.org/10.21947/1783807, Morro Bay Buoy surface data, https://doi.org/10.21947/

1959715, Humboldt Buoy lidar data, https://doi.org/10.21947/1783809, Morro Bay Buoy lidar data, https://doi.org/10.21947/1959721.
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