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Abstract. Wind farm flow control has demonstrated significant potential to increase wind farm power and energy production.

Two commonly used methods are wake steering, which entails yaw misaligning individual turbines to deflect wakes laterally,

and induction control, which typically modifies the thrust coefficients of individual wind turbines to reduce wake deficits.

These two control approaches are often studied and utilized independently. This study investigates the combination of both

of these strategies, termed joint yaw-induction control. By synergistically controlling wind turbine yaw angles and thrust5

levels, increased wind power can be achieved compared to either induction or yaw control in isolation. This research leverages

the Unified Momentum Model to capitalize on the interplay between the yaw misalignment and the thrust coefficient of a

turbine rotor on the power and wake velocities generated by the wind turbine. The Unified Momentum Model is integrated

with blade element modeling to yield a blade element momentum model that both predicts the power and forces on wind

turbines with arbitrary input of yaw, pitch, and tip speed ratio, and also predicts the initial wake velocities needed for far-10

wake models. Forward-mode automatic differentiation is integrated into the rotor and wake model to efficiently optimize

control strategies using gradient-based optimization. Using the fast-running wind farm model, which is a coupling between

the Unified Momentum Model and a Gaussian far-wake model, we demonstrate that joint yaw-induction control outperforms

individual yaw or thrust control strategies, leading to significant increases in power production. First using a two-turbine test

case, we show that the Unified Momentum Model reliably predicts the dependence of the freestream turbine power on its15

yaw and thrust coefficient compared to 210 independent large eddy simulations of wind turbines in a conventionally neutral

atmospheric boundary layer. However, larger discrepancies result from the wake model, particularly in yawed conditions.

The leading turbine control strategy that maximizes the combined power of the two turbines entails yaw misalignment and a

thrust coefficient larger than Betz-optimal. Next, a 25-turbine wind farm case study highlights the benefits of integrated rotor

and wake modeling but indicates that improvements in fast-running, gradient-compatible wake models are required to realize20

the potential benefits of joint yaw-induction control. The findings underscore the importance of modeling interdependencies

between yaw and induction control to inform effective optimization strategies.

1 Introduction

Wind energy, recognized as one of the most scalable carbon-neutral energy technologies alongside solar power, is considered

a key player in the future of renewable energy systems (Shukla et al., 2022). Projections suggest that by 2050, wind power25

could account for up to a third of global electricity production (IEA, 2021; IRENA, 2022). However, with the anticipated rapid
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growth in wind energy, the electricity market may face self-cannibalization effects, where the increased availability of wind

energy leads to a decline in farm revenue (Prol et al., 2020; Peña et al., 2022). Consequently, periods of low wind speed, and

thus low wind energy availability, are particularly valuable for increasing wind energy production because prices are higher

during these times.30

Wind farm flow control, a technique involving the manipulation of wind turbines to mitigate or redirect the adverse impacts

of wakes within a wind farm, has attracted significant interest within the research community, particularly due to its added

value in low wind speed conditions (Howland et al., 2019; Kölle et al., 2022). To benefit the collective wind farm, wind

turbines can be controlled using different techniques to reduce the magnitude of wake deficits or to redirect the wakes away

from turbines downwind (Kheirabadi and Nagamune, 2019; Meyers et al., 2022). One wind farm flow control approach is axial35

induction control, also known as thrust control, curtailment, or derating control, which involves reducing the thrust force of an

upstream turbine, thereby decreasing the intensity of the wake it generates (Lio et al., 2018). Wake steering, also referred to as

yaw steering or wake deflection control, entails intentionally misaligning the wind turbine from the incoming wind direction,

causing the wake to deflect laterally as it propagates downstream (Jiménez et al., 2010; Gebraad et al., 2016). In both cases,

the upstream turbines experience a power loss to potentially benefit the downstream turbines by exposing them to faster, less40

turbulent wind.

Both wake steering and induction control have demonstrated promising outcomes in terms of controlling wind farm power

output (Kheirabadi and Nagamune, 2019; Houck, 2022) as well as potentially mitigating turbine structural loads (Croce et al.,

2024). While wake steering has become the dominantly studied strategy among the two due to its benefits on farm power

production increase (e.g. Meyers et al., 2022), several investigations advocate for the concurrent implementation of both yaw45

and induction control strategies (Munters and Meyers, 2018; Bossanyi, 2018; Debusscher et al., 2022). For example, Munters

and Meyers (2018) solved the PDE-constrained optimization problem using large eddy simulations as the wind farm model and

revealed the potential for combining overinductive axial induction control with yaw control to yield higher power gains than

applying each strategy independently. However, to inform optimization strategies that rely on joint yaw and induction control,

engineering wind farm models must reliably predict the coupled impacts of these control strategies on the upstream turbine50

and on the wake.

Existing studies and fast-running wind farm models often treat yaw control and induction control independently. However,

varying the yaw angle changes the rotor thrust, which implicitly impacts the axial induction (Heck et al., 2023). Consequently,

yaw control implicitly induces changes in axial induction control unless it is actively prevented. This change in induction has

implications for the strength of the resultant wake and for the power losses attributed to yaw misalignment of the upstream55

turbine. Beyond the yaw angle, the blade pitch angle and the generator torque are two additional degrees of freedom governing

the wind turbine control strategy. Standard approaches to modeling wind power in yaw misalignment assume that the power

will decrease with cosPp(γ), where γ is the yaw misalignment angle and Pp is a turbine-specific tunable parameter (e.g.,

Gebraad et al., 2016). However, the power production of a wind turbine in yaw misalignment also depends on the pitch and

torque control (Howland et al., 2020b; Tamaro et al., 2024). So even if a tuned exponent Pp was identified for a given turbine60

model, it would only be valid for a specific choice of how pitch and generator torque are modified when the yaw misalignment
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is applied to the rotor (Tamaro et al., 2024; Liew et al., 2024b). Note that similar tunable parameters have also been defined for

the dependence of the thrust force on the yaw misalignment angle (Bastankhah and Porté-Agel, 2017). The blade pitch and the

generator torque, in combination with the turbine yaw angle, are the quantities that can be readily controlled on the wind turbine.

Therefore, these three variables constrain the degree to which the induction can be controlled. Modeling the interdependencies65

between wake deflection, thrust force, power, yaw, blade pitch, and generator torque is crucial for maximizing wind farm

performance through coordinated flow control strategies.

Many studies exist on induction control in which the induction or rotor thrust is directly controlled in actuator disk simu-

lations (Vitulli et al., 2019; Pedersen and Larsen, 2020). For a yaw aligned horizontal axis wind turbine, rotor thrust cannot

be directly controlled but is instead a result of the rotor speed, which can be non-dimensionalized as the tip speed ratio, and70

the blade pitch. Additionally, when translating the results from actuator disk modeling to more realistic rotor modeling (e.g.

blade element modeling), different combinations of blade pitch and tip speed ratio may result in the same thrust coefficient.

Induction control therefore has numerous potential strategies to navigate the two degrees of freedom to achieve a target power

output. Two common derating strategies include maintaining a constant rotor speed (tip speed ratio) or blade pitch angle; an

alternative derating approach minimizes the thrust coefficient for a target power output (Lio et al., 2018; Juangarcia et al.,75

2018). In the context of maximizing wind farm power, the minimum thrust derating strategy has the additional co-benefit of

minimizing wake effects, and therefore has been shown to be a useful method for derating (Vitulli et al., 2019; Pedersen and

Larsen, 2020).

Existing research has primarily examined derating/induction control in isolation. When incorporating wake steering, the

determination of the minimum thrust trajectory becomes more intricate due to the introduction of a third interrelated variable:80

the yaw misalignment angle. This complexity and its implications were investigated by Liew et al. (2024b) in a study high-

lighting the coupled effects of performing a combination of yaw control and thrust control. In general, Liew et al. (2024b)

identified that the minimum thrust trajectory set points for the tip speed ratio and blade pitch angle vary with yaw angle. This

means that a yawed turbine operating at the minimum thrust set point as determined by a yaw-aligned turbine will be operating

sub-optimally in terms of both power maximization and thrust minimization objectives. Recent studies that have investigated85

co-benefits of yaw and thrust control have done so using empirical frameworks for the aerodynamic performance of the rotor

and/or characteristics of the wake (Zhang et al., 2024; Hosseini et al., 2025). Because empirical models of power and thrust

variations in yaw misalignment rely on calibrated parameters that depend on the rotor control strategy, extrapolating these

empirical models out-of-sample to arbitrary control strategies incurs error and uncertainty (Howland et al., 2020b).

We address the optimization of wind farm control through the utilization of both yaw and thrust (derating) control. This is90

made possible by leveraging the physics-based rotor aerodynamic modeling introduced by Heck et al. (2023) and later expanded

by Liew et al. (2024a) in the Unified Momentum Model, which captures the combined dynamics of turbine induction (blade

pitch and tip speed ratio) and yaw on turbine power and thrust. In tandem, the Unified Momentum Model also predicts the initial

streamwise and lateral wake velocities that are consistent with the thrust and power of the rotor. These velocities are naturally

coupled to turbulent far-wake models, such as the widely-used Jensen (Jensen, 1983) or Gaussian (Bastankhah and Porté-Agel,95

2014) wake models. The Unified Momentum Model facilitates computationally efficient rotor modeling, particularly in yaw-
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misaligned conditions and for both low and high thrust regimes without relying on empirically tuned cosine models, skewed

wake corrections, or high thrust corrections (Liew et al., 2024a). This generalization of classical one-dimensional momentum

theory is critical to enabling the accurate and efficient joint yaw-induction control of wind farms.

In this study, we develop a wind farm modeling and optimization framework that combines engineering rotor and wake100

modeling with efficient, analytical, gradient-based control optimization using automatic differentiation. The wind farm model

combines the Unified Momentum rotor model with a Gaussian engineering wake model to predict the turbulent far-wake. We

design and implement a forward-mode automatic differentiation algorithm using dual numbers to efficiently solve constrained

optimization problems aimed at maximizing collective wind farm power production. The analytical gradient calculations are

demonstrated with both actuator disk and blade element momentum (BEM) rotor modeling. To quantify the increase in energy105

production via joint yaw-induction control compared to thrust or yaw control in isolation, we first perform optimization case

studies using the engineering model and then we verify the engineering model findings using large eddy simulations (LES).

We consider two case studies: a two-turbine wind turbine array and a larger 25-turbine, grid-layout wind farm. In these case

studies, both the actuator disk and BEM models are used and compared within the engineering wind farm model. The actuator

disk model optimization allows us to understand the optimum control strategy for an idealized turbine that can achieve any110

combination of thrust and yaw and produces power according to its thrust force and rotor-normal wind speed. In contrast, the

BEM model, based on the Unified Momentum Model (Liew et al., 2024a), captures the limitations on thrust and yaw due to

blade aerodynamics, as well as the impact of computing power from rotor angular velocity and torque, which can account

for losses. By comparing thrust, yaw, and joint yaw-induction wind farm control strategies, we demonstrate the benefits of

joint yaw-induction control relative to each approach applied individually. Furthermore, we compare our findings from the115

engineering wind farm model with LES of actuator disk-modeled wind turbines in atmospheric boundary layer conditions for

both the two-turbine and 25-turbine cases. To conclude, we identify opportunities to enhance wind farm control optimization

in future work.

The remainder of this article is organized as follows. In Sect. 2, we introduce the rotor momentum model, blade element

model, turbulent far-wake model, automatic differentiation algorithm, and the LES numerical setup. Then, in Sect. 4.1, we120

highlight results from the wind farm model using a two-turbine wind farm. These results are compared with LES of the same

two-turbine wind farm simulated across a full range of control conditions at one wind direction. Next, in Sect. 4.2, we analyze

a larger 25-turbine wind farm. A discussion follows in Sect. 5, followed by conclusions in Sect. 6.

2 Wind farm modeling and optimization methodology

This section details the rotor modeling, wake modeling, wake superposition method, and analytical gradient computation125

method utilized in the study. The control strategy definitions, encompassing no control, yaw control, induction control (hereon

referred to as thrust control), and joint yaw-induction control (hereon referred to as joint control), are formally defined. The

optimization method employs dual number auto-differentiation for accurate and efficient optimization.
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2.1 Rotor modeling

In this section, we introduce the engineering rotor modeling used in this study. The rotor can be modeled in an idealized manner130

using momentum theory based on the actuator disk model. This actuator disk modeling is introduced in Sect. 2.1.1, leveraging

the Unified Momentum Model (Liew et al., 2024a) as the momentum model. Alternatively, the rotor can be modeled in a more

realistic manner, using blade element momentum modeling. By coupling a blade element model with the Unified Momentum

Model (Liew et al., 2024a), we achieve predictions for arbitrary thrust coefficients and yaw misalignment angles while also

accounting for losses, blade pitch control, and tip speed ratio (generator torque) control, as described in Sect. 2.1.2. Both of135

these rotor models are naturally coupled with far-wake models that are introduced in Sect. 2.2.

2.1.1 Actuator disk momentum model

The first type of rotor modeling used in this investigation is an actuator disk model based on the Unified Momentum Model

(Liew et al., 2024a), which extends the yawed actuator disk model developed by Heck et al. (2023). This model captures the

behavior of a uniformly loaded actuator disk across operating regimes, including under yaw misalignment and high thrust140

conditions. Derived from first principles, the Unified Momentum Model describes rotor behavior in high thrust conditions

without requiring empirical corrections like the Glauert correction (Glauert, 1926). This is achieved by relaxing the assumption

used in classical momentum theory that the pressure far downstream of the actuator disk returns to ambient pressure. The model

is represented by a system of five coupled equations with inputs for rotor yaw misalignment, γ, and modified thrust coefficient,

C ′T . The Unified Momentum Model solves for rotor-normal axial induction, an, streamwise outlet velocity, u4, lateral outlet145

velocity, v4, near wake length, x0, and the pressure difference between far upstream and downstream of the streamtube, p4−p1,

as given by

an = 1−
√

u2∞−u2
4− v2

4

C ′T cos2(γ)u2∞
− (p4− p1)

1
2ρC

′
T cos2(γ)u2∞

(1)

u4 =−1
4
C ′T (1− an)cos2(γ)u∞+

u∞
2

+
1
2

√(
1
2
C ′T (1− an)cos2(γ)u∞−u∞

)2

− 4(p4− p1)
ρ

(2)

v4 =−1
4
C ′T (1− an)2 sin(γ)cos2(γ)u∞ (3)150

x0

D
=

cos(γ)
2β

u∞+u4

|u∞−u4|

√
(1− an)cos(γ)u∞

u∞+u4
(4)

p4− p1 =− 1
2π
ρC ′T (1− an)2 cos2(γ)u2

∞ arctan
[
1
2
D

x0

]
+ pNL(C ′T ,γ,an,x0), (5)

where ρ is the air density, u∞ is the ambient wind speed, D is the actuator disk diameter, β = 0.1403 is the shear layer

growth rate parameter, and pNL is the nonlinear pressure contribution term. Further details to this model can be found in Liew

et al. (2024a). The shear layer growth parameter β is held fixed at the value described by Liew et al. (2024a) that agrees well155

with LES and is similar to the value used by Bastankhah and Porté-Agel (2016) and classical turbulent shear layer references

therein. Note that the thrust input, C ′T is defined as C ′T = 2∥F T ∥/(ρAdu
2
d), where F T is the thrust force vector exerted by
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the actuator disk, Ad = πD2/4 is the disk area, and ud is the wind velocity at the actuator disk which has been modified by

induction. This is different from the more commonly used CT , which is normalized using the freestream velocity, u∞. Using

C ′T is advantageous due to its independence from the yaw angle γ, unlike the standard thrust coefficient CT , which varies with160

yaw, as is discussed in more detail in Heck et al. (2023); Liew et al. (2024a). Importantly, an identically equivalent formulation

of Eqs.(1)–(5) can be written based on the standard thrust coefficient CT (Liew et al., 2024a). To make the Unified Momentum

Model more straightforwardly compatible with blade element momentum modeling, an additional sixth equation is added to

the system of equations to allow the more commonly used CT to be used as an input to the model:

C ′T =
CT

(1− an)2 cos2(γ)
, (6)165

where the thrust coefficient is defined CT ≡ 2∥F T ∥/(ρAdu
2
∞).

2.1.2 Blade element rotor model

The Unified Momentum Model presented above can be considered as the yawed analog to classical momentum theory com-

monly used in blade element momentum models. The Unified Momentum Model is also naturally extensible to high thrust

and induction values, thus eliminating the need for empirical high thrust corrections that are commonly used in BEM. We170

can therefore formulate a blade element momentum (BEM) approach using the Unified Momentum Model in place of classical

momentum theory, which accounts for the impact of yaw misalignment and high thrust coefficients on rotor induction from first

principles. For simplicity, we match the Unified Momentum Model with the BEM model for rotor-average quantities of axial

induction, ān, thrust coefficient, CT , initial streamwise wake velocity, u4, and initial lateral wake velocity, v4. The coupling

between the Unified Momentum Model and blade element modeling at the sector or annulus level, commonly employed with175

BEM based on classical momentum theory, is also straightforward but will not be the focus of the present study.

The presented BEM model is formulated in non-dimensional radial units, µ= r/R, where R=D/2 is the rotor radius and

r is the radial coordinate. The inputs to the BEM model are the control set points for the yaw angle γ, blade pitch angle θp,

and tip speed ratio, λ= ΩR/u∞, where Ω is the rotor angular velocity. The turbine model is parameterized by blade solidity

σr(µ), blade twist angle, θt(µ), and airfoil lift and drag curves Cl(µ,α), and Cd(µ,α), which are a function of radial position180

and angle of attack, α. The BEM method is solved on a polar grid of (µ,ψ), where ψ is the azimuthal position, and the local

freestream non-dimensional wind speed at each of these points isw(µ,ψ). The following algorithm is iterated until convergence

on the axial and tangential inductions, an and a′. First, an initial guess is made for the rotor-averaged induction:

an(µ,ψ) = ān. (7)

The wind speed vectors for axial and tangential velocity, assuming negligible tilt, are:185

vx(µ,ψ) = U(µ,ψ)(1− an)cos(γ) (8)

vt(µ,ψ) = (1 + a′)λµ−U(µ,ψ)(1− an)cos(ψ)sin(γ). (9)
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Note that this formulation can facilitate heterogeneous inflow (e.g. shear), however, in this study, uniform inflow (U(µ,ψ) =

U∞) is considered. The inflow speed and angle, w and ϕ, can be determined from vx and vt following

w(µ,ψ)2 = vx(µ,ψ)2 + vt(µ,ψ)2 (10)190

ϕ(µ,ψ) = tan−1

(
vx(µ,ψ)
vt(µ,ψ)

)
. (11)

The angle of attack for each position on the polar grid is computed from the inflow angle, blade twist, and blade pitch angle:

α(µ,ψ) = ϕ(µ,ψ)− θt(µ)− θp, (12)

and the rotor normal and tangential force coefficients are

Cn(µ,ψ) = cos(ϕ)Cl(µ,α(µ,ψ)) + sin(ϕ)Cd(µ,α(µ,ψ)) (13)195

Ctan(µ,ψ) = sin(ϕ)Cl(µ,α(µ,ψ))− cos(ϕ)Cd(µ,α(µ,ψ)). (14)

Finally, the thrust coefficient, CT , according to blade element modeling is calculated using:

CT (µ,ψ) = w(µ,ψ)2σ(µ)Cn(µ,ψ). (15)

CT (µ,ψ) can now be integrated over the polar grid to arrive at the rotor-averaged thrust coefficient C̄T based on blade element

modeling:200

C̄T =
1
π

1∫

0

2π∫

0

µCT (µ,ψ)dψdµ. (16)

We can now connect blade element modeling with momentum theory through the calculated thrust coefficient by using it as

an input into the Unified Momentum Model to retrieve the rotor-normal axial induction and initial wake velocities:

[ān, ū4, v̄4] = fUnified(C̄T ,γ), (17)

where fUnified(CT ,γ) is the solution to the Unified Momentum Model using CT as an input as described in Equations (1)–(6).205

The rotor-averaged rotor-normal axial induction, ān is retained to continue the fixed-point iteration loop for the BEM method

and the rotor-averaged outlet velocities ū4, v̄4 are retained for use as boundary conditions for the turbulent, far-wake deficit and

wake deflection model, which is described in §2.2.

Next, the new induction profile is calculated such that its integral equals ān:

an(µ,ψ) = ān
F (µ)

2
∫ 1

0
µF (µ)dµ

, (18)210

where F (µ) is the tip loss function (Branlard, 2017, chapter 10),

F (µ) =
2
π

arccos
(

exp
(
−N(1−µ)

2µsinϕ

))
. (19)
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Tangential induction is calculated similarly with

a′(µ)− σ(µ)
4µ2(1− an(µ))cosγ

1
2π

2π∫

0

w(µ,ψ)2Cmod
tan (µ,ψ)dψ, (20)

where Cmod
tan (µ,ψ) = Ctan/F (µ) is the tip loss corrected tangential force coefficient. Equations (8)–(17), are iterated using re-215

laxation until the rotor-averaged, rotor-normal induction converges. The rotor-averaged power coefficient can then be calculated

by integrating the local power coefficient over the rotor area

C̄p =
1
π

1∫

0

2π∫

0

λµ2σ(µ)w(µ,ψ)2Ctan(µ,ψ)dψdµ. (21)

Again, the streamwise and lateral outlet velocities, which are used as inputs to the wake model, are calculated using the rotor-

averaged thrust coefficient C̄T into the Unified Momentum Model Eqs. (2) and (3).220

2.1.3 Turbine control surface

With the BEM method formulated, the control surface of a single turbine in uniform inflow can be calculated. The control

surface describes how the coefficient of power, CP , and the coefficient of thrust, CT , vary with the blade pitch angle, θp, the

rotor tip speed ratio, λ, and for the purposes of this study, the yaw misalignment of the rotor, γ. These surfaces, shown in

Fig. 1 for the IEA 15 MW reference wind turbine (Gaertner et al., 2020), are helpful in visualizing the optimal set points. As225

described in Liew et al. (2024b), the control surface distorts in yaw-misaligned cases, causing the Cp-maximizing pitch angle

and tip speed ratio to vary as a function of yaw angle, usually shifting to lower pitch angles and tip speed ratios. Additionally,

the thrust-minimizing trajectory, which is indicated as a curve across this surface, also shifts. The thrust-minimizing derating

strategy has been shown to be the most effective derating strategy in terms of mitigating power losses due to wake interactions

(Vitulli et al., 2019; Pedersen and Larsen, 2020; Liew et al., 2024b). In the results to follow in Sect. 4.2.2, the thrust-minimizing230

trajectory will appear naturally as a result of the control optimization process.
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Figure 1. Contour plots of (a, b) power coefficient, CP , and (c, d) thrust coefficient, CT , as a function of blade pitch angle and rotor tip

speed ratio for (a, c) a yaw aligned rotor and (b, d) a rotor yaw-misaligned by γ = 45◦. Minimum thrust derating trajectories are overlaid.

2.2 Wind farm modeling

To assess the interactions of turbines in a wind farm through different control strategies, the rotor model introduced in Sect. 2.1

is used for each wind turbine in an N -turbine wind farm as initial conditions for N wakes. The rotor model can use either

the actuator disk model described in Sect. 2.1.1, or the blade element model described in Sect. 2.1.2. The steady-state wake235

model used in this study, described in detail in this section, is characterized by the following attributes: a wake deficit profile, a

wake-added turbulence profile, wake deflection, and wake superposition. The static wind farm model that is developed as part

of this investigation, known as MITWindfarm, is available open-source Liew et al. (2025).

The wakes are modeled using a steady-state Gaussian far-wake model (Bastankhah and Porté-Agel, 2014; Shapiro et al.,

2018). Instead of adopting a fixed wake-spreading wake parameter, kw, we instead use a variable formulation as a function of240

rotor effective turbulence intensity, TI . Specifically, we use the relation kw = a·TI+b (Stevens et al., 2015; Niayifar and Porté-

Agel, 2016), where a and b are set to 0.636 and 0, respectively, as explained in Sect. 4.2.3 by calibrating the wind farm model to

LES wind farm power data. Note that the specific value of the proportionality constant amultiplied against TI differs from that

used by Niayifar and Porté-Agel (2016), for example, because kw differs from k∗ (Howland et al., 2022a) and also because we
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calibrate to LES in this study. For all wakes, an initial wake width of σ0 =D/
√

8 is used (Bastankhah and Porté-Agel, 2016).245

The turbulence intensity considers both the wake-added turbulence intensity ∆TI , which is computed from the model proposed

by Crespo and Hernández (1996), and the freestream ambient turbulence TIamb such that TI2 = ∆TI2+TI2
amb. When wakes

are in superposition, only the largest value of ∆TI is used to compute the local TI . Other turbulence superposition methods

could be investigated in future work (Delvaux et al., 2024; Klemmer and Howland, 2024).

The wake velocity deficit function δu(x) is modeled as a smoothed step function in the vicinity of the rotor, and the lateral250

velocity is modeled similarly:

δu(x)
ur

=
1− (u4/ur)
d2

w(x)
1
2

[
1 + erf

(
x√

2D/2

)]
;

δv(x)
ur

=
−v4/ur

d2
w(x)

1
2

[
1 + erf

(
x√

2D/2

)]
, (22)

where u4 and v4 are initial wake velocities from the rotor model, based on the Unified Momentum Model (Liew et al., 2024a),

described in Sect. 2.1.1 and Sect. 2.1.2, and ur is the velocity incident to the wake-generating rotor considering upstream

turbine wakes. The normalized wake width, dw is modeled as dw = 1 + kw log(1 + exp(2(x−x0)/D)), where x0 = 1 is the255

near-wake length (Shapiro et al., 2018; Howland et al., 2022b). Finally, the wake deflection distance, yc, is computed by

numerically integrating δv(x) from Eq. (22) in the x-direction such that

yc(x) =

x∫

0

−δv(x′)
ur

dx′. (23)

In this work, we use the Gaussian wake model proposed by Shapiro et al. (2018). Beginning with the linearized Reynolds-

Averaged Navier–Stokes equations, they proposed a model for the wake deficit field of an individual turbine:260

∆u(x,y,z) = δu(x−xt)
D2

8σ2
0

exp
(
− (y− yt− yc(x))2 + (z− zt− zh)2

2σ2
0(x−xt)d2

w(x−xt)

)
. (24)

where the location (x, y, z) is defined in the global coordinate system, (xt, yt, zt) is the location of the turbine generating the

wake in the global coordinate system, and the freestream velocity is in the positive x-direction.

To model the effect of wakes from multiple upstream turbines, we use the wake superposition method proposed by Niayifar

and Porté-Agel (2016)265

u(x,y,z) = uB(x,y,z)−
∑

i∈xi<x

∆ui(x,y,z), (25)

where u is the streamwise velocity at location (x, y, z) in the global coordinate system, uB is the streamwise velocity excluding

all wake effects, ∆ui(x,y,z) is the wake deficit at the location of interest caused by turbine i given by Eq. (24), and the sum is

taken over all turbines upstream of the location of interest. This superposition method yields similar predictions in most settings

(Howland et al., 2020b) to the momentum conserving superposition method developed by Zong and Porté-Agel (2020).270

2.3 Controller methodologies and optimization problems

In this study, we define and compare four control methodologies. To define the control set points of an entire wind farm,

we define two vectors of control variables for the actuator disk (AD) model, C′
T = [C ′T,1, ...,C

′
T,N ]T and γ = [γ1, ...,γN ]T .
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Likewise, three vectors are defined for the BEM model: θp = [θp,1, ...,θp,N ]T , λ = [λ1, ...,λN ]T , and γ = [γ1, ...,γN ]T . The

following four control strategies can therefore be defined as different combinations of fixed and free control variables. For275

the control variables that are fixed for a given control strategy, the value of that set point is chosen as the single-turbine

optimal. We define the following single-turbine optimal set points as C ′T,opt = 2 and γopt = 0◦ for the actuator disk model,

corresponding to the classical Betz limit (CT,opt = 8/9). For the BEM model, the optimal set points are θp,opt =−1.132◦,

λopt = 9.138 and γopt = 0◦, where the values for θp,opt and λopt are determined using the BEM model described in Sect. 2.1.2

using the IEA 15 MW reference wind turbine model (Gaertner et al., 2020) for uniform, zero turbulence inflow.280

The first methodology, referred to as the no control case, involves standard greedy wind turbine control where all control

variables are set to their unwaked optimum values. The second methodology, thrust control, allows for changes in rotor thrust

while maintaining turbine yaw alignment. In the context of the actuator disk rotor model, thrust control is achieved by varying

C ′T while keeping γ = 0◦. Thrust control is implemented differently using the BEM rotor model as thrust cannot be directly

set. Rather, tip speed ratio λ and blade pitch angle θp are controlled while fixing γ = 0◦. The third methodology, yaw control,285

enables the optimization of the turbine’s yaw angle while keeping pitch angle and tip speed ratio (or C ′T in the case of the

actuator disk) fixed at their unwaked optimal values. The fourth methodology, joint control, involves the optimization of all

control variables. The optimization problem can be generalized as:

minimize −CP,farm(θp,λ,γ) (26)

with respect to free variables (27)290

subject to fixed variables (28)

where the free and fixed variables for each strategy are indicated in Table 1.

Table 1. The definition of the control methods and variables. The optimal values for the fixed variables are set to the single-turbine optimal

set points. For the AD rotor, C′T,opt = 2.0 (corresponding to CT,opt = 8/9), and for the BEM rotor, θp,opt =−1.132◦, and λopt = 9.138. Both

rotors use γopt = 0◦.

Control Method Free Variables Fixed Variables

AD BEM AD BEM

No Control - - C′
T , γ θp, λ, γ

Thrust Control C′
T θp, λ γ γ

Yaw Control γ γ C′
T θp, λ

Joint Control C′
T , γ θp, λ, γ - -
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2.4 Dual number approach to auto-differentiation

To perform efficient optimization, we leverage automatic differentiation to compute analytical derivatives. Forward mode

autodifferentiation using dual numbers is employed in this study to efficiently compute gradients during the optimization295

process (Bücker, 2006; Baydin et al., 2018). A dual number is defined as:

z = a+ bϵ, (29)

where a,b ∈ R are the primal and dual parts of z, respectively, and ϵ is the dual unit, where ϵ2 = 0. To see how dual numbers

are used in automatic differentiation, we evaluate a real-valued analytic function f with a dual number argument:

f(a+ bϵ) =
∞∑

n=0

f (n)(a)bnϵn

n!
= f(a) + bf ′(a)ϵ. (30)300

The dual part of the result is equal to the derivative of the function evaluated at the primal part a, scaled by the dual part b. In the

context of optimization, the availability of exact gradients concerning the optimization variables enables precise computation

of the Jacobian matrix. This, in turn, facilitates the utilization of gradient-based optimization algorithms. The above definition,

which is valid for scalar functions, can be extended to vector functions and to multiple dual units, which is equivalent to

assigning multiple variables for which we compute gradients. A further generalization of the dual part, which can be extended305

to an array of arbitrary dimensions, carries both the values of the vector function and the corresponding directional derivatives,

providing a convenient way to compute gradients in the context of array operations and optimization involving multivariate

functions.

We implement dual number-based automatic differentiation in Python using operation overloading and monkey patching.

This unobtrusively overrides all pertinent NumPy and SciPy operations within the wind farm model from Sect. 2. As a result,310

no modifications are necessary in the wind farm model code to enable efficient and straightforward analytical calculations of

gradients for wind farm flow control optimization. The primal and dual components for the input variables and all intermedi-

ate computations are organized into separate arrays, allowing for efficient, vectorized, machine-code operations in numerical

programming packages such as NumPy. The motivation for this formulation is threefold: exact gradients can be computed on

any variable of choice, vectorized operations are efficiently computed on arbitrary-sized input arrays through broadcasting, and315

finally, gradients can be computed without having to modify the underlying forward model code.

Automatic differentiation, largely popularized by machine learning software libraries, has been integrated into engineering

wind farm models such as PyWake (Pedersen et al., 2023), which utilizes the Autograd package (Maclaurin et al., 2015) for

efficient and flexible autodifferentiation. The majority of studies exploring automatic differentiation for wind farm design and

control have been in wind farm layout optimization (c.f. Guirguis et al., 2016; Quick et al., 2023; Valotta Rodrigues et al.,320

2024). In this study, the input variables for which gradients are computed correspond with wind farm control parameters, but

the same framework can be used for other optimization problems, for example, computing gradients with respect to the turbine

coordinates to study wind farm layout optimization.
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3 Large eddy simulation setup

Large eddy simulations (LES) of a wind farm in a conventionally neutral atmospheric boundary layer (ABL) are used to325

compare with the fast-running wind farm modeling presented in §2. We perform LES using the open-source, pseudo-spectral

code PadéOps (numerical details given in Howland et al. (2020b); Heck and Howland (2025)). A finite wind farm is simulated

using the concurrent-precursor method (Stevens et al., 2014), where a fringe region (Nordström et al., 1999) in the primary

domain is used to replenish the momentum deficit in the wake region. The precursor simulation, which uses synchronized

time-stepping with the primary simulation, does not contain turbines and uses periodic boundary conditions in the horizontal330

directions. The primary and precursor simulation use the same domain size, which is given in Table 2 along with other LES

parameters. Note that the 25-turbine wind farm domain is substantially larger than the 2-turbine layout to mitigate the effect of

the domain size on the results.

The wind farm is modeled using the actuator disk approach (Calaf et al., 2010). Turbines impart a force on the flow FT =
1
2ρπR

2u2
dC

′
T , where ud is the velocity at the disk and C ′T is the local thrust coefficient. We use the correction factor introduced335

by Shapiro et al. (2019a) to correct the disk velocity ud from the Gaussian filtering of the actuator disk. The wind farm is rotated

in the LES domain to achieve different incident wind angles. Control set points C ′T and γ for each wind turbine are prescribed

as an input and do not vary in time because the conventionally neutral boundary layer is quasi-stationary after the startup

transience (Allaerts and Meyers, 2015). The turbine diameter D is set to 100 m, and the turbine hub height is zh = 100 m.

The atmospheric boundary layer is initialized using the procedure from Liu et al. (2021). The surface is modeled with a340

Monin-Obukhov wall model using a surface roughness z0 = 1 mm in all simulations. Conventionally neutral conditions are

imposed using a zero heat flux condition at the surface. A frame angle controller (Sescu and Meneveau, 2014) is used after

the turbulent ABL reaches a quasi-steady state, which aligns the flow at hub height with the x-direction. The frame angle

controller is turned off before the concurrent-precursor simulations are initialized, and wind farm statistics are averaged until

power and wake statistics converge, given by Tavg in Table 2. Time-averaging begins after two flow-through times (2Lx/G)345

to allow transient effects to decay and the wind farm wake to fully develop. A comparison of the differences between the wind

farm LES parameters is given in Table 2.

Table 2. LES simulation parameters. Both simulations use a surface roughness z0 = 1 mm, turbine diameter D = 100 m, hub height zh =

100 m, reference potential temperature θ0 = 300 K, and Coriolis parameter fc = 10−4 s−1.

Variable 2-turbine layout 25-turbine layout

Grid resolution (m) (10,5,5) (24,12,6)

Domain size (km) (3.84,1.28,1.28) (18.4,9.2,1.5)

G (m s−1 ) 8 10

Uhub (m s−1) 7.2 8.7

TIhub (-) 5.5% 5.6%

Γ (K km−1) 1 3

Tavg (hr) 2 4
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4 Results

In this section, we present the results of the control-optimized wind farm model evaluations. Optimizations using actuator

disk and BEM rotor models are compared, and a selection of cases are compared to LES data. Four controller strategies are350

compared: no control, thrust control, yaw control, and joint control. We begin with the two-turbine results in Sect. 4.1. We

first highlight the optimal actuator disk and BEM set points in the modeling framework for a sweep of wind directions. Here,

we compare the optimal wind farm control between predictions from the gradient-based optimization of the fast-running wind

farm model and from a parametric sweep over different control set points in LES. Following the two-turbine results, the 5× 5

wind farm array is presented in Sect. 4.2. Again, we first focus on the wake model, exploring a full wind rose of wind directions355

and turbine spacing distances to investigate the impact of wind farm control on farm power and thrust. Then, we select one

wind direction to compare the wind farm modeling framework against LES of a 5× 5 wind farm layout to evaluate both the

model accuracy and the implications of the different control strategies in LES. Unless otherwise stated, the results presented

below are from the engineering wind farm model presented in Sect. 2.

4.1 Two-turbine system360

The two-turbine system, visualized in Fig. 2, serves as a representative example that highlights the key characteristics of wake

interactions between turbines, offering insights into how various wind farm control strategies perform in a larger wind farm

setting. The two-turbine case is modeled using the fast-running wind farm model over a range of wind directions using both

the AD and BEM rotor models. At each wind direction, the four different control strategies are optimized to maximize the

collective power output of the two-turbine system. Additionally, in §4.1.2, one wind direction (3.8◦) is simulated using LES365

with a brute force sweep over C ′T and γ to find the thrust and yaw set points that maximize the combined power of the two

wind turbines in LES, and to compare these values with the optimal values predicted by the engineering model.

Figure 2. Schematic of the two-turbine wind farm showing the wind farm layout, AD control variables, and rotor and wake model outputs in

full-wake conditions (αwd = 0◦). The leading turbine (1) is controlled while the downstream turbine (2) is kept at the Betz optimal control

set point (C′T,2 = 2,γ2 = 0).

14

https://doi.org/10.5194/wes-2025-90
Preprint. Discussion started: 7 July 2025
c© Author(s) 2025. CC BY 4.0 License.



4.1.1 Two-turbine engineering wind farm model optimal results

The two-turbine case investigated here is defined with a turbine separation distance S, shown in Fig. 2. We sweep over wind

directions αwd to change the layout of the wind farm, where αwd = 0◦ results in a full-wake scenario. A change in wind direction370

is applied by rotating the wind turbine coordinates such that the trailing turbine is located S cos(αwd) downstream with a lateral

offset distance of S sin(αwd) from the leading turbine. That is, positive wind directions favor positive yaw misalignment angles.

In the results below, we will also evaluate the dependence on the inter-turbine separation distance S. In all cases, the turbulence

intensity is set to TI = 5.5%.

Model-optimal results for a turbine spacing of S = 6D for the AD and BEM model are shown in Fig. 3. For wind directions375

where wake interactions decrease power production downwind (i.e., αwd± 15◦), the model predicts an increase in collective

power production through flow control, as shown in Fig. 3(a). Yaw control outperforms thrust control to increase collective

power production, except in a narrow window encompassing full-wake conditions around a wind direction of zero degrees.

In contrast, the optimal joint control strategy performs a combination of yaw control and thrust control for most wind direc-

tions, except around the full-wake scenario where a smooth transition to thrust control is observed. In particular, joint control380

surpasses yaw control in full-wake conditions and thrust control in partial-wake conditions. As a result, joint control requires

derating over a narrower range of wind directions compared to thrust control alone and exceeds or matches the performance

of yaw control for all wind directions. This finding underscores the efficacy of integrated yaw and thrust control strategies

in optimizing turbine performance. Additionally, both the AD and BEM models demonstrate that joint control necessitates

an increase in the thrust coefficient (C ′T ) for partial wake conditions, highlighting the coupled nature of yaw control with385

induction/thrust. We note that the thrust coefficient CT , which is normalized to the freestream wind speed u2
∞ instead of the

projected freestream wind speed u2
∞ cos2(γ), decreases under yaw and joint control because the momentum flux available

to the turbine decreases with cos2(γ) as the turbine is yaw misaligned (c.f. Bastankhah and Porté-Agel, 2016). Power losses

due to yaw-misalignment of the upstream turbine are mitigated through compensatory increases in turbine thrust (Heck et al.,

2023), and the increase in thrust also deflects the wake further away from the downwind turbine (Heck et al., 2024).390

Moving to the BEM optimal control (dashed lines in Fig. 3), the trends between control strategies in maximizing wind

farm power CP,farm echo the AD rotor model. Joint control outperforms yaw control and thrust control at all wind directions,

and transitions to purely thrust control in full-wake conditions for this wind farm layout. Comparing the BEM and AD rotor

models, there are several primary discrepancies. First, the overall farm power and leading turbine thrust CT are lower in the

BEM model than for the AD turbine model due to root and tip losses and other aerodynamic inefficiencies. Second, in the395

yaw control BEM optimizations, the blade pitch and TSR are fixed at their power-maximizing values for a freestanding, yaw-

aligned turbine (Table 1). However, the resulting thrust coefficient (CT or C ′T ) deviates from the Betz-optimal value when the

turbine is yaw-misaligned, as shown in Fig. 3(c-d). This highlights that for a turbine with realistic control parameters (γ, θp,

λ), prescribing yaw control also modifies the thrust in general, resulting in a combination of yaw and thrust control that is

fundamental to yaw misaligning the wind turbine while holding pitch and TSR fixed. Rather than suboptimally relying on the400

standard turbine control when yawing in the joint control strategy, we leverage the interconnected nature of turbine thrust and
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Figure 3. Control-optimized results for the two-turbine system (S = 6D turbine spacing) over a range of wind directions. Four control

methods (no control, thrust control, yaw control and joint control) and two rotor models (actuator disk, solid lines, and blade element

momentum, dashed lines) are compared.

yaw to intentionally manipulate the blade pitch and TSR concurrently with yaw angle. To achieve the necessary derating for

joint control, the BEM results indicated that pitch increases by approximately 2 degrees, while TSR decreases by about 1 based

on the specific turbine arrangement under consideration. Finally, the resulting modified thrust coefficient C ′T is lower for the

BEM rotor than the AD rotor under joint control. Although the BEM model can achieve the same modified thrust coefficient as405

the AD model, doing so requires a reduced pitch angle, as shown in Fig. 3(d-e), which significantly lowers the rotor torque and

therefore the rotor power. Therefore, under joint control, the BEM model optimal thrust coefficient is persistently lower than

the AD model for each wind direction, and the yaw set point is also reduced to mitigate power loss from the leading turbine.

A final added benefit of joint control is a smooth yaw set point, as shown in Fig. 3(c), which does not occur for yaw

control. A discontinuity in optimal yaw angle as a function of wind direction, which occurs because the wake impinging on410

the downstream turbine switches from one side to the other, is highlighted by the wind farm model at a turbine spacing of
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6D. The yaw angle discontinuity under yaw control is present in both AD and BEM control optimizations. In contrast, joint

control transitions seamlessly between yaw control and thrust control across a wind direction of zero, and the discontinuity in

the yaw set point when using yaw control alone vanishes. This denotes an additional potential benefit in using joint control as

it can remove the ambiguous optimal control set point in a full wake scenario, which is present in yaw control, and allows for a415

continuous gradient-based solution to the optimal control set point, which is often difficult when using yaw steering alone due

to this discontinuity. However, the smooth transition in yaw angle set point under joint control is not universal. Specifically,

the yaw set point is smooth as long as thrust control is the optimal control strategy in full-wake conditions. This occurs at

tighter turbine spacings and when ambient turbulence intensity is sufficiently large. By increasing the turbine spacing distance

to 10D of the two-turbine wind farm, the smooth transition in joint control for the leading turbine yaw set point vanishes, as420

shown in Fig. 4. We emphasize that although joint control is not guaranteed to produce a smooth and continuous yaw set point,

joint control nevertheless mitigates discontinuities in many relevant operating conditions. The primary benefit of joint control

predicted by the engineering wind farm model is the enhanced power extraction across all wind directions, compared to yaw,

thrust, and no control strategies.

Figure 4. Optimal yaw set points for the two-turbine wind farm, similar to Figure 3(c), except with 10D spacing and AD only for yaw control

and joint control strategies.

In summary, the two-turbine wind farm provides a valuable case study of the benefits of joint yaw-induction control for425

wind farm power optimization. At a turbine spacing distance of 6D, the joint control strategy smoothly transitions from

yaw control to thrust control in full-wake conditions to maximize collective power extraction. Additionally, the joint control

strategy combines yaw control with increases in thrust C ′T to enhance power extraction in partial-wake conditions. The optimal

set points are also presented using blade pitch angle, tip speed ratio, and yaw angle by coupling the momentum model with a

blade element model, indicating that derating is achieved through a combination of increasing the blade pitch angle as well as430
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decreasing the tip speed ratio. Using the joint control strategy, optimal BEM set points increase C ′T in partial wake conditions

primarily through a negative blade pitch angle. The mechanisms for increasing collective wind farm power in the two-turbine

wind farm are instructive for parsing the model predictions in the larger 5× 5 wind turbine array.

4.1.2 Two-turbine LES comparison

To evaluate different wind turbine control strategies using LES, we study a two-turbine wind turbine array with an inter-turbine435

spacing of S = 6D. An incident wind angle of 3.8◦ from being fully aligned with the wind turbine rows is selected for all

LES runs, creating a partial wake scenario with a lateral wind turbine spacing of 0.4D. For each independent two-turbine

simulation, the layout (i.e. wind direction and spacing) is fixed, and the leading turbine thrust coefficient C ′T and yaw γ

set points are prescribed to a value that does not vary in time. Positive yaw misalignments are favored in this partial wake

scenario (see Fig. 2), and as such, we only simulate γ ≥ 0◦. The waked turbine is set to the power-maximizing Betz limit of440

(C ′T,2,γ2) = (2.0,0◦) while the leading turbine yaw set point is varied such that γ1 ∈ [0◦,45◦]. The leading turbine thrust is

also swept over a parameter range of C ′T ∈ [0.4,4.4], totaling 210 independent large eddy simulation cases. Power statistics are

time-averaged for two hours after initial transients decay. We evaluate different control strategies by analyzing subsets of the

control parameter sweep in LES constrained to the fixed and free variables in Table 1; the no control baseline is the LES run

C ′T = 2.0, γ = 0◦.445

First, we examine the LES results before comparing them with model predictions. Contours of the total farm efficiency

CP,farm = 1
N

∑
CP,i, leading turbine power CP,1, and waked turbine power CP,2 are shown in Fig. 5. As efficiency is defined

as CP,i = Pi/( 1
2ρAdu

3
∞), which is normalized by the freestream velocity u∞, farm efficiency is simply a re-normalization

of wind farm power. Therefore, maximizing wind farm efficiency is analogous to maximizing wind farm power. In Fig. 5(a),

contours of wind farm efficiency from LES are shown, where each white point represents an individual LES case. The farm450

power-maximizing turbine set points for the leading turbine are (C ′T,1,γ1) = (4.0,25◦), as marked by the blue star on all

subfigures. The farm power-maximizing operation of the leading turbine does not maximize its own power, which occurs at

the Betz optimal C ′T = 2.0 and zero yaw misalignment. Importantly, the power-maximizing set point of the leading turbine is

realized at a combination of yaw misalignment and changes in rotor thrust. Specifically, the array power maximizing thrust

coefficient is overinductive when yaw misalignment is imposed on the leading turbine. That is, for this wind farm configuration,455

joint control enables additional power extraction by the wind farm in LES compared to yaw control or thrust control alone.

Power production using the optimal set points results in 21% increased power production relative to the no control case. In

comparison with joint control, the LES-optimal power gain under yaw control and thrust control is 18% and 1.5%, respectively.

Interestingly, the gain in CP,farm under joint control is larger than the individual gains from yaw control and thrust control

added together, demonstrating a nonlinear and synergistic interaction between thrust and yaw control that leads to further gains460

from flow control. We parse the mechanisms for power increase under joint control and explain the large leading turbine thrust

coefficient in three ways. First, the leading turbine mitigates its own power loss due to yaw misalignment with compensatory

increases in thrust (Heck et al., 2023; Liew et al., 2024a). This is because the turbine induction factor is a function of yaw

misalignment as well as thrust coefficient. As the turbine yaws, maintaining C ′T = C ′T,Betz/cos2(γ) maximizes CP,1 by in-
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creasing the induction to make up for the reduction of thrust due to yaw misalignment. Second, the wake of the leading turbine465

is altered by its control strategy (Cossu, 2021; Heck et al., 2024). Namely, as thrust increases, wake recovery and mixing

are enhanced by the increasing shear magnitude between the wake velocity, which decreases with increasing thrust, and the

surrounding flow. Therefore, wakes of high-thrust turbines recover faster than wakes at low thrust coefficients (Annoni et al.,

2016; Martínez-Tossas et al., 2022). Third, when the leading turbine is yaw-misaligned, increasing the thrust leads to increased

wake deflection and curling around the downwind turbine (Howland et al., 2016; Bastankhah and Porté-Agel, 2016), mitigating470

wake interactions and increasing downwind power output (Cossu, 2021). For these three reasons, the optimal control strategy

in LES is a combination of yaw misalignment and an increase in leading turbine thrust.

Figure 5. LES wind turbine power for a two-turbine wind farm at a wind angle of 3.8◦. White dots represent individual LES simulations.

The LES CP,farm-maximizing set point is shown in all subfigures with the blue star, while the wake model CP,farm-maximizing set point is

shown with the red square.
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Next, we use the wind farm model presented in §2 to model the same two-turbine configuration. In this section, to evaluate

the dependence of the engineering model results on different rotor submodels, the Gaussian wake model (Bastankhah and Porté-

Agel, 2014; Shapiro et al., 2018) is coupled with the initial conditions from different momentum models to predict the farm475

power-maximizing set points. The Gaussian wake model depends on a wake spreading rate kw = 0.636 ·TI , σ0 =D/
√

8, and

x0 = 1D, where TI is the rotor-equivalent turbulence intensity. These are the wake model parameters found in the calibration

as described in Sect. 4.2. In the Gaussian wake model, the initial streamwise and lateral velocities u4 and v4 are taken from

the momentum model, Eqs. 2 and 3, respectively. To compare the effectiveness of wind farm control with various modeling

decisions, we show two momentum closures to compute the axial induction factor and near-wake velocities. First, we use the480

Unified Momentum Model (Liew et al., 2024a) to compute the axial induction factor an from the rotor set points γ and C ′T .

Turbine power is computed P = 1
2ρAdu

3
dC

′
T , where the velocity at the disk ud is modified by induction, as well as by upstream

turbine wakes. Second, as a baseline method, we use a cosine power-yaw model which is based on an assumption that the axial

induction an does not change with yaw misalignment angle, and the relationship between thrust and induction is computed

using one-dimensional momentum theory (Burton et al., 2011). This means that P ∝ P (γ = 0)cos3(γ), where P (γ = 0) is the485

turbine power in yaw aligned operation.

Model-predicted set point predictions which maximizeCP,farm in the wake model are shown by the red squares in Fig. 5(d-i).

The power-maximizing set point for the upstream turbine predicted by the Unified model is γ = 28◦ andC ′T = 2.7. In this wind

farm configuration, the wake model predicts increasing thrust to increase the wake deflection from the downstream turbine,

and to mitigate the power lost due to yaw misalignment from the leading turbine (Heck et al., 2024). Interpolating the LES data490

at the wake model-predicted set point results in a 19.2% increase in power relative to the no control case. Recall that the global

optimum from the brute force sweep over different parameters in LES is 21% power gain. Therefore, the wind farm model

based on the Unified Momentum Model results in 1.8% less power gain than the true power-maximizing control set point.

By contrast, the cosine model predicts optimal set points at a more modest yaw misalignment in combination with turbine

derating. Coupled with the same Gaussian far wake model, the cosine model-predicted power-maximizing set point results in495

a yaw of γ = 11◦ combined with slight derating, C ′T = 1.5. Interpolating this model set point in LES results in a power gain

of only 9.5%. We note that if we empirically approximate P (γ)≈ P (γ = 0)cospP (γ) (Medici, 2005; Gebraad et al., 2016)

with pP = 1.9 calibrated from LES data at C ′T = 2, the qualitative results are unaffected, and the model-predicted power-

maximizing set point occurs at C ′T = 1.6, γ = 17.4◦. Because the cosine models ignore any dependence of yaw on turbine

induction, the benefits of operating at higher rotor thrust are not captured. Using the Unified Momentum Model that captures500

the physical relationship between induction, yaw, and power realizes more accurate model-optimal set points and leads to more

effective wind farm control.

The results in Fig. 5 indicate that although wind farm modeling based on the Unified Momentum Model improves predictions

for the combined power of the two-turbine array, there are still substantial discrepancies relative to the LES data. Examining

CP,1 in Fig. 5(b, e, h), we can see that the Unified Momentum Model is able to reliably predict the magnitude and the shape505

of the dependence of CP,1 on thrust and yaw, while the cosine model yields larger errors for CP,1 at larger values of both the

yaw angle and the thrust coefficient. On the other hand, both rotor models share a far-wake model, and larger discrepancies
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between the LES data and model predictions for CP,2 are present for both the Unified rotor model and the cosine-based rotor

model, particularly with increasing yaw angle magnitude γ1.

To summarize our findings for the two-turbine wind farm, we observe the critical importance of utilizing rotor models510

that capture the synergistic, nonlinear, and interactive relationship between yaw misalignment and rotor induction. The cosine

model, which cannot encode any dependence of yawed power loss on the thrust coefficient, predicts operating set points that

significantly underperform when compared with the physics-based Unified Momentum Model. Specifically, the realized power

gain from the cosine model is 9.5%, while the realized power gain from the Unified model is 19.2%. However, both rotor models

use an axisymmetric Gaussian wake, where the wake spreading rate and near-wake length do not depend on the turbine control515

set point. As a result, the benefits of the downstream power gain from the leading turbine operation are underestimated. Control

optimization using more advanced wake modeling methods that capture the three-dimensional wake structure (Martínez-Tossas

et al., 2021; Bastankhah et al., 2022; Narasimhan et al., 2022, 2024) and models that capture feedback between the wake-added

turbulence and the wake recovery (Pedersen et al., 2022; Risco et al., 2023; Klemmer and Howland, 2024) are important to

further improve wind farm flow model predictions.520

4.2 Wind farm flow control in a 25 turbine wind farm

In our investigation of the broader implications of joint yaw-induction control, we turn our attention to a larger wind farm

configuration, specifically a diamond layout comprising 25 turbines. The study of the four presented control strategies in this

layout provides a representative example of how such control strategies operate in more realistic multi-turbine wind farms. The

wind farm layout is depicted in Fig. 6.525

Figure 6. Layout of the large wind farm with a diamond arrangement operating under joint control, comparing the wind farm flow model

MITWindfarm and time-averaged large eddy simulation flow fields.
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The wind farm control set points are optimized using the four target control strategies outlined in Sect. 2.3 to maximize wind

farm power. Using the wind farm modeling framework, we evaluate a full revolution of wind directions in 0.05◦ intervals.

Leveraging the four-way rotational symmetry inherent in the wind farm layout, we only need to evaluate a quarter of the

wind rose to capture a full range of wind directions (Van Der Laan et al., 2022). Both the blade element momentum (BEM)

and actuator disk (AD) rotor models are employed in our wind farm model evaluations. We vary the turbine spacing distance530

between 2D and 10D using the AD rotor model to assess the impact of turbine spacing on the efficacy of wind farm flow control

using the wind farm model. Wind farm model evaluations utilizing the BEM turbine rotor model are conducted exclusively at a

6D turbine spacing. Alongside the wind farm model evaluations, LES are conducted using the actuator disk model for selected

wind directions to validate certain results, as elaborated in Sect. 3. As in the two-turbine results section, the presented results

are generated using the fast-running wind farm model, rather than LES, unless stated otherwise.535

4.2.1 Effect of turbine spacing on wind farm control performance

To investigate the dependence of wind farm control strategy on turbine spacing, we vary the spacing in the 5×5-turbine square

wind farm layout. For each wind direction, the optimization algorithm identifies the power-maximizing wind turbine set points

subject to the constraints of the control strategy (see Table 1). We compare the average farm power, aggregated uniformly over

all wind directions, to a baseline case that uses greedy individual turbine control (no control).540

As shown in Fig. 7, the wind farm model predicts increases in farm energy production for all control strategies, with the

greatest benefits from wind farm control at tighter turbine spacing distances and diminishing effectiveness at larger spacings.

Across all spacings, joint control consistently outperforms yaw control and thrust control, particularly in the range of 3D to

6D of inter-turbine spacing. Yaw control surpasses thrust control in terms of power output for turbine spacing greater than

∼ 3.3D. In subsequent analysis, we focus on a separation distance of 6D, noting that the qualitative trends between control545

strategies are not strongly dependent on the turbine spacing distance for spacings larger than ≈ 4D.
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Figure 7. Wind farm power increase versus turbine spacing for the 5× 5 wind farm configuration using optimal control setpoints for three

control strategies (thrust control, yaw control, and joint control). Wind rose-averaged power increase is aggregated uniformly over all wind

directions and normalized by the no control strategy. Varying spacing distances are evaluated and optimized using the AD rotor in the wind

farm model.

4.2.2 Individual turbine performance

Shifting focus from the farm-aggregated power, we now focus on the performance and BEM optimal set points for individual

turbine in the wind farm. The wind farm layout exhibits symmetry, resulting in six unique turbines after accounting for mirror

and rotational symmetries. These turbines are labeled from A to F as defined in Fig. 8, where A is the most exterior turbine550

group and F is the most interior turbine group.

The power rose in Fig. 8 shows CP,farm =
∑
Pi/( 1

2ρAdu
3
∞N), where N = 25 is the number of wind turbines in the farm

and Pi is the average power production of turbine i, as a function of wind direction for a given control strategy. The largest

power losses occur at wind directions αwd = 0◦ and αwd = 45◦, when the incident is aligned along the diagonals and the rows

of the wind farm, respectively. In these scenarios, wind farm control has the greatest potential to increase farm power relative555

to a baseline without wind farm control. Therefore, the largest deviations from individually optimal turbine set points generally

occur around 0◦ or 45◦, as well as 90◦ offsets of these angles following the symmetries of the wind farm.

Turbine set points as a function of incident wind direction for the joint control case are shown in Fig. 8 for the BEM rotor

model. Exterior turbines (e.g. turbine A) generally exhibit less pronounced control action compared to interior counterparts

(e.g. turbine F ). When the wind direction is fully aligned along the rows or diagonals, the thrust set point decreases below the560

individual optimum. This indicates that in full-wake conditions, the joint control strategy is performingthrust control to derate

leading turbines, similar to the two-turbine wind farm scenario. In partial wake conditions, the optimal yaw set point shows the

greatest degree of yaw misalignment. In these situations, the optimal modified thrust coefficient, C ′T , increases for the leading

row turbines. This mirrors the behavior in the two-turbine scenario, where C ′T is increased for the leading row turbines to

increase wake deflection from downwind turbines, as well as to mitigate power loss due to yaw misalignment. A major benefit565
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of the joint control is that it can smoothly transition between these strategies, performing both turbine derating when no yaw

misalignment is enforced and increasing the local thrust coefficient when yaw misalignment is present.

Figure 8. (a) Wind farm power roses for the four wind farm control strategies evaluated with the BEM rotor in the engineering wind farm

model. Rotational and mirror symmetry turbine groups are labeled. (right) optimal turbine control set point roses for joint control for the 6

symmetric turbine groups of the wind farm. Set point roses shown: (b) modified thrust coefficient C′T , (c) yaw angle γ, (d) blade pitch angle

θp, (e) and tip speed ratio λ.

For the BEM model turbine, derating during full wake conditions is accomplished with a combination of increasing the

blade pitch θp as well as decreasing the tip speed ratio λ. The optimal operating strategy tends to follow the minimum thrust

trajectory for a given yaw angle as shown in Fig. 9, although variations may arise, particularly for downstream turbines due to570

wind field heterogeneity. The minimum thrust trajectory is not enforced here. Instead, the efficient gradient-based optimization

of the BEM model, coupled with a wake model, generally tends to follow the expected minimum thrust trend. More generally,

it could be challenging to tabulate a heuristic minimum thrust trajectory because it depends on the yaw misalignment and on the

turbine model. Here, we rely on direct optimization of the physics-based model for each condition instead. When the turbine

is yaw misaligned, the optimal pitch angle and tip speed ratio tend to decrease. This is a result of the changing shape of the575

pitch-TSR contour in yaw-misaligned conditions, described in detail in Liew et al. (2024b). Different yaw misalignment angles

γ are shown with varying lightness in Fig. 9. When comparing the AD model to the BEM model turbine, the yaw set points are

similar; however, the thrust set points (C ′T ) in the BEM model are lower than those in the AD model (not shown). We observe

the same trends in yaw and thrust when comparing the BEM to AD model in the two-turbine scenario, as shown in Fig. 3.
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Figure 9. Optimal pitch angle and tip speed ratios from turbines in the 25-turbine wind farm (6D spacing, with set points evaluated from all

wind directions) presented on the control surface from Fig. 1 for a yaw-aligned freestream turbine. The lightness of the points indicates the

associated yaw angle of the turbine. The thrust-minimizing control trajectories calculated in Sect. 2.1.3 are indicated as solid lines.

To calculate the change in average power and thrust across all wind directions, we again assume equal weighting for each580

direction. The turbine-level and wind farm-level power gains and change in thrust, compared to the no control strategy, are

shown in Fig. 10. Interior turbines show the largest gain in wind rose-averaged power from performing collective wind farm

flow control of any strategy. Furthermore, in all cases, joint control provides a larger power increase than yaw control, particu-

larly for interior turbines. For example, group F turbines experience a 6.1% and 6.8% power increase over the no control case

for yaw control and joint control, respectively. Conversely, the exterior turbine group A experiences a more marginal 0.2%585

power decrease and 0.1% power decrease over the no control case for yaw and joint control, respectively.

The wind rose-averaged turbine thrust level tends to increase for interior turbines when applying flow control. Here, the

turbine thrust is again averaged over an equal distribution of all wind directions and normalized by the freestream wind speed

(CT = T/( 1
2ρAdu

2
∞)). Both joint and yaw control increase the average turbine thrust CT over individual control due to de-

creased wake interactions and increased wind speeds in the interior of the farm. Similar to the farm-wide power coefficient,590

the farm-wide thrust coefficient is given by CT,farm =
∑
Ti/( 1

2ρAdu
2
∞N), where Ti is the average thrust of turbine i across

all wind directions. Yaw control presents the highest level of thrust with a farm-wide average thrust level increase of 3.0%,

compared to 0.8% for joint control. By contrast, thrust control has a net 4.2% decrease in farm-wide average thrust, which is

approximately uniformly distributed across individual turbines in the wind farm. Thrust level is highly correlated with fatigue
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loading in turbines (Galinos et al., 2018), therefore it is possible that thrust control could reduce loads for all turbines in the595

farm. Joint control, while having an increase in thrust compared to the reference case, has a notably lower thrust level than

yaw control due to the lower optimal thrust coefficients in the BEM joint control set points around full-wake conditions, which

are also shown in the two-turbine wind farm. While the aggregated change in farm-wide thrust will depend on the wind farm

layout and site conditions, this case study indicates that joint control has potential benefits in power gains and with minimal

thrust load increase. Future work can more formally express a multi-objective wind plant optimization considering power and600

loads (Van Dijk et al., 2017; Croce et al., 2024) or profit/lifetime aware control (Braunbehrens et al., 2024).

Figure 10. Optimal performance per symmetric turbine groups as well as the entire wind farm for thrust control, yaw control and joint

control for the 5× 5 wind farm configuration. Turbine symmetry groups are presented from most exterior (A) to most interior (F ) positions

in the wind farm. Power and thrust are aggregated uniformly over all wind directions and normalized by the no control strategy.

4.2.3 LES comparison

To evaluate the efficacy of the engineering wind farm model in its ability to increase wind farm power extraction through

flow control, we conduct a comparative study of four control strategies on the 25-turbine wind farm layout using large eddy

simulations (LES). A single wind direction of 2.5◦ is selected to be simulated in LES indicated in Fig. 11, which allows for605

near-maximal benefit from wind farm control as predicted by the wind farm flow model presented in Sect. 2.

The wind farm model is calibrated initially to a no control baseline simulation with all turbines operating at the Betz optimal

thrust C ′T = 2 and zero yaw-misalignment. A simple model for the wake spreading rate kw = a·TI+b is fit to the turbine-level

power from the no control LES data. Although there is an anticipated dependence of kw on thrust C ′T (Annoni et al., 2016;

Heck et al., 2024), we do not include it in our calibration because all no control turbines operate at the same C ′T . Actuator disk-610

modeled turbines in LES tend to overpredict power production relative to momentum theory due to the regularization method
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of the disk forcing (Shapiro et al., 2019a). Even with the correction factor from Shapiro et al. (2019b) applied, the power

from the AD-modeled turbines in LES overshoots the Betz limit by approximately 4% at C ′T = 2.0. To avoid bias in the wake

spreading calibration parameters from this persistent over-prediction in power, all LES power data is normalized to the power

produced by the upstream-most turbine operating at the Betz limit in the no control case (CP1,Betz = 0.619). Likewise, the615

wake model power output is normalized by the Betz limit (CP,Betz = 16/27). The optimal fit minimizes the root-mean-square

error of normalized turbine power between the LES and the wake model output from MITWindfarm, resulting in calibration

parameters a= 0.636 and b= 0. Subsequently, we use the calibrated wind farm model in low-fidelity evaluations using the

model presented in Sect. 2 (MITWindfarm) to determine the optimal set points for each control strategy. The model-optimal set

points (C ′T ,γ), which are provided in Appendix A, are then assigned to turbines in LES, and we use the high-fidelity simulation620

to evaluate the efficacy of different control strategies, as well as the accuracy of the farm wake model. Turbine set points do

not change in time, and separate LES simulations are run for each control strategy. Each separate simulation receives identical

initial conditions and boundary conditions, as well as the same concurrent precursor, to ensure the only differences arising in

the LES cases result from the wind farm flow control method used.

Figure 11. Gain in wind farm power CP,farm due to wind farm control, relative to a no control baseline and evaluated by the engineering

wind farm model, for the 5× 5 diamond wind farm across a range of wind directions using AD turbines. The gray vertical dotted line shows

the selected wind direction (αwd = 2.5◦) for the LES cases.

We start by comparing time- and farm-averaged power CP,farm between LES and the wind farm model presented in §2. In625

Fig. 12, the change in LES farm-wide average power coefficientCP,farm is shown relative to a no control baseline. Two standard

deviations of 10-minute-averaged CP,farm about the mean value are shown in the LES data to compare the change in power

from wind farm control with variations in power due to atmospheric boundary layer turbulence (internal variability). Both
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joint control and yaw control produce significantly more power than the no control baseline in both rotor models. In contrast,

thrust control fails to statistically enhance power production, even leading to a slight drop (1.3%) in mean farm power that is630

not statistically significant. The primary cause of the net power loss under thrust control in LES is due to the dependence of

the wake spreading rate kw on the turbine thrust C ′T (or induction a), which is not considered here. Specifically, higher thrust

coefficients lead to faster wake break down which partially mitigates the potential benefits of the lower initial wake deficit

associated with lower thrust coefficients. The discrepancy in farm power prediction between the wind farm model and LES

is similar to Annoni et al. (2016). This effect was also noted in the two-turbine wind farm in Sect. 4.1.2. As thrust decreases,635

the maximum wake velocity deficit (i.e., u∞−u4) is reduced, which also reduces turbulent mixing, leading to slower wake

recovery (Annoni et al., 2016; Heck et al., 2024).

Figure 12. Wind farm power gain, relative to no control, in LES and the analytical model MITWindfarm for three flow control strategies.

Error bars in the LES data represent two standard deviations of wind farm power over 10-minute averages.

When the turbine is permitted to yaw, as in yaw control and joint control, power gain from flow control is significant com-

pared to no control or thrust control. In both yaw and joint control scenarios, increases in wind farm power exceed variations

due to ABL turbulence on 10-minute time windows, resulting in 18.8% and 18.7% increases in CP,farm, respectively. The dif-640

ference in wind farm power output between yaw control and joint control is not statistically significant on a 95% confidence

interval for the 4 hours of time averaging simulated (not shown). We highlight that the benefit of yaw control and joint control

is approximately three times higher in the LES than in the wind farm model, which predicts power gains of only 6.3% and

7.0%, respectively. To understand this discrepancy, we examine the performance of the wake model at the turbine level.

Figure 13 shows the row-averaged turbine power simulated in LES and the engineering wind farm model for all control645

strategies. The row-averaged turbine power is normalized by most upstream turbine in the wind farm in the no control case,

which operates at the Betz limit, to normalize any LES dependence on the turbine regularization methodology. Dashed error

bars represent the minimum and maximum turbine power for that turbine row. In the no control set points, differences in power
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production for the leading-row chevron of turbines are primarily due to local wind farm blockage effects (Nishino and Draper,

2015; Bleeg et al., 2018; Nygaard et al., 2020), which is also shown as turbine-level power data in Appendix A. In addition650

to blockage effects, columns of turbines operate differently as a function of the number of downstream turbines for the thrust,

yaw, and joint control strategies.

The wind farm model is calibrated to the no control LES data. Therefore, the agreement in Fig. 13(a) is closer than the

out-of-sample wind farm model power predictions under different control strategies. Power predictions from the engineering

wind farm model for thrust control also yield relatively low error, shown in Fig. 13(b). The main discrepancy in the thrust655

control power predictions is an overestimation in the engineering model for the second row/chevron of turbines. Power is

overestimated in the second-row thrust control turbines because the wake modeling framework does not consider the decreased

wake spreading rate as thrust decreases, which is also observed in the two-turbine wind farm data. As a result, the second-row

turbines produce less power in LES than predicted by the model, resulting in power loss under thrust control in LES compared

with a no control baseline.660

Power discrepancies between the wind farm model and LES are larger downwind of yawed turbines under yaw control and

joint control strategies, shown in Fig. 13(c) and (d), respectively. For the leading row of wind turbines, power predictions of

yaw-misaligned rotors are in good agreement with LES, with model errors less than the uncertainty. Similar to the two-turbine

case, this further establishes confidence in the Unified Momentum Model for yaw misaligned rotors. However, the wind farm

model persistently underpredicts the power produced by rotors downstream of yawed turbines because of the non-Gaussian,665

three-dimensional structure of the wind turbine wakes, which also causes underpredictions in the power of waked turbine in

the two-turbine wind farm (see Fig. 5(c,f,i)). Because more waked turbines exist in the large wind farm than in the two-turbine

wind farm, the error in farm power is compounded. Additional factors such as secondary steering and wake superposition likely

further exacerbate errors in the wind farm modeled power.

In summary, the 5×5 turbine wind farm LES cases provide an encouraging outlook for wind farm flow control strategies to670

increase collective power production. Relative to a no control baseline, where all turbines operate at the Betz optimal C ′T = 2,

γ = 0, turbine set points under yaw and joint control increase wind farm power by 18%. In contrast, farm power under thrust

control decreased by 1.3%. Primary discrepancies in turbine-level power between LES and the wind farm model under the

thrust control strategy are due to the dependence of wake spreading on the turbine thrust (induction factor). In yaw control

and joint control, primary discrepancies in turbine-level power between LES and the wind farm model are due to the three-675

dimensional structure of the curled wake. As a result, the model-predicted power gain from yaw control or joint control is

underestimated by roughly a factor of three. For all control strategies, model power predictions of the leading-row freestream

turbines are in excellent agreement with LES, validating the Unified Momentum Model against the LES. However, joint control

based on optimal set points from the engineering model presented in Sect. 2 fails to achieve larger gains than wake steering

alone. This differs from the two-turbine case and is likely driven by the low accuracy of the engineering model used to model680

wakes of yaw-misaligned turbines for control applications. In other words, it may be possible that there is a global optimum

control strategy for the 25 turbine wind farm that is a combination of yaw misalignment and thrust control, but the present

fast-running model used in this study is not able to reliably identify this control strategy.
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Figure 13. Column-averaged wind power P of individual turbines as a function of the number of upstream turbines for all control strategies.

Power values are normalized by a freestream turbine operating at the Betz limit P1,Betz in each simulator (LES and MITWindfarm). Ranges

indicate the maximum and minimum wind turbine power values in each column. Note that under wind farm flow control, turbines operate

differently in each column due to the changing number of downstream turbines.

Integrating fast-running models that capture the three-dimensional curled structure of yawed wind turbine wakes (Howland

et al., 2016; Bastankhah and Porté-Agel, 2016; Martínez-Tossas et al., 2021; Bastankhah et al., 2022; Narasimhan et al.,685

2022, 2024) into the gradient-based optimization methodology for wind farm control should be pursued in future work to

reduce error in the wake modeling and ideally to improve the power production when employing model-based wind farm

flow control. These wake models can be coupled to the Unified Momentum Model which provides generalized wake initial

conditions across yaw angles and thrust coefficients.

5 Discussion690

Model-based wind farm flow control requires accurate and computationally efficient predictions of the rotor and wake aero-

dynamics in the atmospheric boundary layer. The findings of this study are enabled by the physics-based Unified Momentum

Model (Liew et al., 2024a) for rotor predictions relating turbine induction and power to thrust and yaw. In both the two-turbine

wind farm (Fig. 5(b, e)) and in the 25-turbine wind farm (Fig. 13), predictions of power produced by the leading-row turbines

show significantly better agreement with LES than power predictions of waked turbines. While there are deficiencies in the Uni-695

fied approach, which neglects wind shear and turbulence in the aerodynamic modeling, the key relationships between thrust,

yaw, and power exhibit good agreement across a wide range of thrust coefficients (up to C ′T = 4.4) and yaw misalignment

angles (up to 45◦). The Unified Momentum Model is compatible with autodifferentiation, enabling gradient-based optimiza-
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tion for flow control. On the contrary, a primary deficiency in the wind farm flow modeling lies within the wake modeling

framework. In the two-turbine and 25-turbine wind farms, power predictions downstream of yawed turbines are consistently700

underpredicted due to the limitations of the axisymmetric Gaussian wake model used here. However, it remains a technical

challenge for future work to utilize more advanced wake models (e.g. Martínez-Tossas et al., 2021; Bastankhah et al., 2022;

Narasimhan et al., 2022, 2024), which capture the structure and deflection of the curled wake, in gradient-based optimization.

An axisymmetric Gaussian wake model also degrades in accuracy in the near-wake, which affects flow control optimization

under tight turbine spacing distances (Schreiber et al., 2020; Blondel and Cathelain, 2020; Ali et al., 2024). Innovative solutions705

to efficient and accurate wake modeling for yawed wind turbine wakes and small inter-turbine spacings in the context of wind

farm control optimization are needed to fully realize the benefits of wind farm flow control.

While joint yaw-thrust control offers significant advantages to yaw or thrust control alone, implementing a joint control

strategy in real-world scenarios presents several challenges. A primary obstacle is the need for highly accurate wind direction

estimates across the entire wind farm. This precision is crucial for assigning appropriate control setpoints to each turbine, as710

these setpoints vary depending on whether a turbine experiences partial-wake, full-wake, or freestream conditions. In the 25-

turbine wind farm, large jumps in the blade pitch angle, TSR, and yaw set points occur due to small wind direction changes of

approximately 2◦−3◦. Additionally, the behavior in deep turbine arrays is difficult to predict using common wake superposition

methods, particularly when including the effects of wake steering combined with ABL shear and turbulence. These factors

combined may make it challenging to achieve the precision necessary for optimal implementation of joint yaw-induction715

control strategies, requiring further research in optimization under uncertainty of wind farm flow control.

This study does not account for changes in structural loads caused by applying wind farm control strategies. Structural

loading can increase for certain turbines when wind farm control is in use, and therefore the expected power gain must be

balanced with any potential reduction in turbine lifetime, especially when dealing with large yaw misalignment angles or

increased thrust (Van Dijk et al., 2017; Braunbehrens et al., 2024). It is an open question as to what additional benefits joint yaw-720

induction control may offer, relative to wake steering alone, in settings of multi-objective optimization accounting for energy

production and loads. To incorporate fatigue damage into control optimization, gradient-compatible fatigue load surrogate

models can be utilized (Riva et al., 2020; Liew et al., 2023a).

It is important to note that the models and conclusions presented in this study are largely applicable to below-rated turbine

operation. Although the study can be extended to above-rated conditions, existing literature indicates that the greatest value725

of wind farm control is found in low wind speed regions. In these conditions, the value of energy production is highest, and

turbines have the capability to increase their collective power output.

6 Conclusions

In this study, we investigate the opportunities and potential benefits of joint yaw-induction wind farm control (termed joint

control) compared with yaw control (wake steering) and thrust control (derating or induction control) in isolation. In joint730

control, the yaw-misalignment angle of a turbine rotor is varied in conjunction with its thrust coefficient. The opportunity for
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joint control is revealed through the Unified Momentum Model (Liew et al., 2024a) for wind turbine rotors, which extends

classical theory to predict induction, thrust, power, and initial wake velocities under both misalignment and arbitrary thrust

coefficients without corrections. The initial wake velocities predicted by the Unified Momentum Model are naturally coupled

with widely-used engineering wake models such as the Jensen (Jensen, 1983) or Gaussian (Bastankhah and Porté-Agel, 2014)735

wake models to ensure consistency between the thrust-yaw relationship, power-yaw relationship, and the wakes, which we

use to build a new engineering wind farm model. While the local thrust coefficient C ′T can be prescribed directly when using

an actuator disk (AD) rotor model, this approach is not applicable to realistic turbines. Therefore, a blade element momentum

(BEM) rotor representation, again based on the Unified Momentum Model, is also explored, where a tip speed ratio λ and blade

pitch angle θp are prescribed instead. This method aligns more closely with realistic wind turbine control inputs. Automatic740

differentiation is used to enable computationally efficient and robust solutions to the wind farm control optimization problem.

Turbine set points evaluated by the engineering wind farm model under thrust, yaw, and joint control strategies are compared

against a no control baseline, where all turbines operate at their individual power-maximizing set point (C ′T = 2, γ = 0).

The key findings of this study are documented for each subsection:

Two-Turbine Case Study: For a separation distance of 6D, the two-turbine case study shows that optimal joint control set745

points smoothly transition between thrust control in fully waked conditions and yaw control in partially waked conditions. As

a result, the optimal yaw setpoints are continuous with respect to wind direction, which is not the case with yaw control alone,

which is discontinuous in full-wake scenarios. The model-predicted power gain from joint control is always greater than or

equal to thrust control and yaw control strategies. Large eddy simulation (LES) runs at a wind direction of 3.8◦ confirm that

the global optimal wind farm control strategy requires a combination of yaw and thrust control. While the Unified Momentum750

Model predictions of leading turbine power match well with LES, the waked turbine power is underpredicted due to the

Gaussian wake model’s limitations in capturing the three-dimensional curled wake shape.

25-Turbine Case Study: Similar conclusions are drawn from a 25-turbine wind farm case study. Joint optimization of yaw

and thrust leads to the greatest increase in wind farm power production predicted by the wind farm model, increasing wind farm

energy production by 4.0% above the no control baseline when averaged uniformly over all wind directions with 6D spacing.755

Although the power gains diminish as the inter-turbine spacing increases, joint control consistently outperforms yaw and thrust

control in isolation, with the most significant benefit observed at approximately 3.3D spacing. A single wind direction of

2.5◦ was simulated in LES, for which the difference between wind farm power production under joint and yaw control is

statistically indistinguishable, with both achieving power increases over standard greedy individual control of approximately

18% for the wind farm configuration investigated here. As with the two-turbine case, the predictions of the freestream wind760

turbine power are reliable for the different thrust coefficients and yaw misalignments used in the LES. However, the wind

farm model underpredicts the benefit of wind farm control realized in LES at the simulated wind direction due to compounding

underestimation in the power produced by downstream turbines waked by yawed upstream turbines. Therefore, the engineering

wind farm model is not able to reliably predict the power gain in LES, and is also likely not predicting the true globally optimum

control strategy for the 25-turbine wind farm.765
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Optimal Control Strategy: We show that the optimal choice of tip speed ratio and blade pitch to achieve a particular amount

of power derating approximately follows a thrust-minimizing trajectory. The thrust-minimizing trajectory changes with turbine

yaw misalignment and is turbine-specific. This conclusion was enabled by the Unified Momentum Model, which can accurately

model the relationship between power, thrust, and yaw misalignment of a rotor in both AD and BEM modeling approaches.

Future Work: Future work should target the development and implementation of computationally efficient, gradient-enabled770

wind farm flow models that can capture the three-dimensional structure of yawed wind turbines, secondary wake steering,

and wake superposition, building on initial research in the literature (Martínez-Tossas et al., 2021; Bastankhah et al., 2022;

Narasimhan et al., 2022, 2024). These more advanced wake models can be coupled to the wake initial conditions from the

Unified Momentum Model (Liew et al., 2024a). The wake models can also be extended to account for blockage and farm-

level entrainment (Stevens et al., 2015; Howland et al., 2020a; Devesse et al., 2024; Ndindayino et al., 2025; Kirby et al.,775

2025), as there is likely to be an interaction between wind farm flow control and wind plant blockage (Bossanyi and Bleeg,

2024). These improved wake models are necessary to motivate new field campaigns and harness the untapped potential of joint

yaw-induction control in flow control of wind farms.

Appendix A: Optimized wind farm set points

This appendix contains individual turbine thrust and yaw set points (C ′T , γ) for the four wind farm control strategies: no control,780

thrust control, yaw control, and joint control. The optimal parameters are constrained by each control strategy through the fixed

and free variables outlined in Table 1.
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Figure A1. AD set points for the 5× 5 turbine array and comparison between farm power in the wind farm flow model and LES.
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Code and data availability. Code for the open-source engineering wind farm model, MITWindfarm, is available at https://doi.org/10.5281/

zenodo.15367720 (Liew et al., 2025). The Unified Momentum Model is available as an open-source Python library at https://doi.org/10.5281/

zenodo.10524066 (Liew et al., 2023b), with the rotor modeling package MITRotor at https://github.com/Howland-Lab/MITRotor. Model785

and large eddy simulation data and analysis for the figures in this paper can be found at https://github.com/jaimeliew1/WES2024_Joint_Yaw_

Induction. Automatic differentiation was performed using the Dualitic package (https://github.com/jaimeliew1/Dualitic). The open-source

large eddy simulation code PadéOps is available at https://github.com/Howland-Lab/PadeOps.
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