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Abstract. Low-level jets (LLJs) are wind maxima typically observed within a few hundred meters of the surface. They are often

associated with high vertical wind shear, which significantly impacts the performance and loading of modern wind turbines.

In this study, we characterize LLJs over the North Sea using one year of LiDAR observations from FINO1 (2015–2016) and

compare them with reanalysis (ERA5) and hindcast (NORA3) data. We introduce a log–jet fitting method to represent each

observed or modeled wind profile with five parameters, enabling a direct comparison between LiDAR and model data. Results5

show that strong LLJs are generally underestimated by reanalysis and hindcast products. A bias-correction procedure based

on quantile mapping is then applied to a 50-year ERA5 dataset to improve the long-term representation of LLJs. K-means

clustering further reveals distinct directional and stability-dependent LLJ patterns. The findings highlight the need for detailed

modeling of near-surface wind structures and motivate future numerical simulations to clarify the underlying mechanisms that

govern LLJ development and variability.10

1 Introduction

Low-Level Jets (LLJs) are significant atmospheric phenomena characterized by strong wind speed maxima occurring within the

lower part of the atmospheric boundary layer. They play a crucial role in various meteorological and climatological processes,

including the transport of moisture, heat, and momentum, and are of particular interest for offshore wind energy applications

due to their influence on wind power generation and structural loading (Gutierrez et al., 2016, 2017; Gadde and Stevens, 2021;15

Pichugina et al., 2017; Aird et al., 2022). Their high wind speeds and large shear gradients can have substantial implications

for modern wind turbines, which sweep rotor areas extending up to and beyond 200 m in height. Consequently, understanding

the occurrence, intensity, and variability of LLJs is essential for accurate resource assessment, turbine design, and operational

forecasting.

Reanalysis datasets, such as ERA5 (Hersbach et al., 2020) and hindcast datasets like NORA3 (Haakenstad et al., 2021),20

offer valuable resources for studying LLJs by offering comprehensive spatial and temporal coverage. These datasets have been

used in several studies to investigate LLJ characteristics both globally and regionally (e.g., Kalverla et al., 2019; Lima et al.,

2022; Hallgren et al., 2020; Luiz and Fiedler, 2024). Despite their strengths, biases in reanalysis and hindcast data often limit

their accuracy in reproducing specific LLJ features, including their intensity, frequency, and vertical placement. The relatively

high spatial resolution of NORA3 (3 km) is beneficial for boundary-layer wind fields (Solbrekke et al., 2021), yet each model25
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run spans only 9 hours, which may not fully capture the entire inertial oscillation period of roughly 17 hours at mid-latitudes

(Blackadar, 1957). Furthermore, parameterization schemes for boundary-layer processes can introduce additional errors in LLJ

representations (Smith et al., 2018; Nunalee and Basu, 2014; Paskyabi et al., 2020).

Observations that measure vertical wind profiles, such as radiosondes and LiDAR, are crucial for validating and improving

model-based LLJ analyses and simulations (Wagner et al., 2019; Kalverla et al., 2019; Rubio et al., 2022; Bakhoday-Paskyabi30

and Flügge, 2021). Radiosondes typically have limited temporal resolution (often just two launches per day), which constrains

their utility for studying transient LLJ events. By contrast, LiDAR systems provide high-resolution data both temporally and

vertically, making them particularly useful for detecting and characterizing LLJs. However, continuous, long-term LiDAR

datasets spanning multiple years remain relatively rare, especially in offshore environments.

In this study, we focus on two widely used reanalysis/hindcast datasets, ERA5 (Hersbach et al., 2020) and NORA3 (Haak-35

enstad et al., 2021), and compare their LLJ representations with high-resolution LiDAR observations from the FINO1 offshore

platform. Both datasets provide extensive spatial coverage and generally show good agreement with offshore measurements

(Cheynet et al., 2024). However, previous comparisons against LiDAR data have revealed a systematic underestimation of

strong LLJs in these reanalyses (Kalverla et al., 2019; Lima et al., 2022). To leverage their long temporal spans while correcting

for bias, the observations can be used to adjust the datasets accordingly. In a first step we introduce a novel log–jet decom-40

position method, with the aim to systematically assess LLJ characteristics and their representation in models. This approach

partitions the wind profile into two components: a near-surface logarithmic portion, where wind speed increases monotonically

with height, and a jet component capturing the local wind maximum that defines the LLJ. By focusing on these LLJ-specific

parameters, the method provides a straightforward way to isolate and quantify biases in ERA5 and NORA3. To improve the

LLJ representation in ERA5 over a multi-decade period, we apply in a second step a quantile-mapping bias correction to the45

log–jet parameters. This decomposition produces five parameters that characterize the wind profile, each of which is corrected

via quantile mapping to align ERA5 distributions with LiDAR observations (Costoya et al., 2020; Benetazzo et al., 2022). The

resulting bias-corrected ERA5 dataset more accurately captures both the intensity and frequency of LLJs at FINO1. Finally,

we apply a clustering algorithm to categorize the corrected LLJs into distinct groups based on wind profiles and stability prop-

erties, assessing their frequency and associated synoptic conditions. This offers deeper insights into the variability of these jets50

and their links to different atmospheric drivers.

Overall, this paper aims to bridge the gap between model-based and observation-based LLJ analyses in offshore envi-

ronments, with implications for wind energy resource assessment, turbine load estimation, and operational forecasting. The

findings underscore the need for both high-quality observational data and targeted numerical modeling efforts to capture the

complex dynamics of marine boundary layers. Furthermore, our results motivate additional numerical simulations to clarify55

the physical mechanisms driving LLJ formation and variability, ultimately contributing to improved forecasting and modeling

capabilities for offshore wind energy applications.

This paper is organized as follows: Section 2 describes the datasets and the methodologies employed, including the log–jet

decomposition, bias correction, and clustering techniques. Section 3 presents the evaluation of model data against LiDAR ob-
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servations, the climatology of bias-corrected LLJs, and the characteristics of distinct LLJ clusters. Finally, Section 4 discusses60

the implications of these findings and offers concluding remarks.

2 Data and Methods

2.1 LiDAR Observations and Model Datasets

In this study, we use LiDAR observations collected the OBLEX-F1 campaign at the FINO1 offshore platform, conducted

between May 2015 and September 2016 (Cherukuru et al., 2017; Krishnamurthy et al., 2017). These profiles extend from 7265

m up to 3126 m above mean sea level, with a vertical resolution of 23.5 m. For our analysis, we concentrate on the lower

portion of the wind profile, specifically up to around 1 km, where data coverage is more reliable and pertinent to boundary

layer dynamics.

For comparison, we utilize data from ERA5, the fifth-generation European Reanalysis from the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). ERA5 is a widely used global climate reanalysis dataset, known70

for its improved modelling and data assimilation techniques compared to its predecessor, ERA-Interim. It provides hourly

estimates of a vast number of weather and climate related variables. The 3D data is available on 137 vertical levels and with a

horizontal grid spacing of 0.28125◦ (approximately 31 km) (Hersbach et al., 2020). In this study, we extract wind profiles, in-

cluding zonal and meridional wind components, alongside potential temperature, from the ERA5 grid cell closest to the FINO1

location. Given our focus on the lower atmospheric boundary layer and LLJ structures, we limit our data retrieval to the 1875

lowest model levels, extending up to approximately 800 m. This selection offers a balance between computational efficiency

and sufficient vertical resolution for our objectives.

Additionally, we use NORA3, which is a nonhydrostatic 3-km hindcast dataset for the North Sea, the Norwegian Sea,

and the Barents Sea (Haakenstad et al., 2021). The dataset was generated using the non-hydrostatic convection-permitting

numerical weather prediction HARMONIE-AROME (Bengtsson et al., 2017), forced at the lateral boundaries by ERA5 data.80

It is initialized four times daily, each run producing 9-hour forecasts. NORA3 data is available at 3-hour intervals on all 65

model levels, or at hourly intervals on a reduced set of seven height levels below 750 m. For this research, we opt for the

hourly subset at the grid point nearest to FINO1. This choice prioritizes higher temporal resolution within the marine boundary

layer, which is crucial for capturing the dynamics of transient events such as LLJs. All wind profiles from LiDAR, NORA3,

and ERA5 are vertically interpolated to a common grid to ensure comparability across the datasets. This grid spans from 80 m85

to 740 m in 20-m increments, covering the primary region of interest for boundary layer and LLJ analysis. Furthermore, the

LiDAR data are temporally aggregated to an hourly resolution to match the temporal resolution of the NORA3 hourly subset

and to facilitate direct comparisons.

Figure 1 presents an example of processed wind speed profiles in form of time-height cross-sections derived from the

three datasets, spanning 12-14 August 2015. This period was specifically chosen to illustrate a prominent LLJ event, which is90

distinctly observed in the LiDAR data, exhibiting a peak wind speed at approximately 300 m near midnight on 13 August. While

both ERA5 and NORA3 capture the overall wind speed trend, including the LLJ structure, they exhibit a slight underestimation
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Figure 1. Time-height cross-section of wind speed at FINO1 from different data sources from 12 to 14 August 2015. (a) LiDAR observations,

(b) ERA5 reanalysis, and (c) NORA3 hindcast.

of the maximum LLJ wind speeds compared to the LiDAR observations. Furthermore, the LiDAR data reveals a low wind speed

anomaly below 200 m, commencing in the evening of 13 August, which is attributed to the wake effect from the Alpha Ventus

wind farm in the vicinity of the FINO1 platform, as documented by (Bui et al., 2024).95

To investigate the climatological characteristics of LLJs, we analyze a continuous 50-year dataset of 1-hourly ERA5 wind

profiles, spanning from 1971 to 2020. For composite analyses focused on larger-scale atmospheric patterns, we additionally

extract two-dimensional fields of geopotential height and horizontal wind components at the 975 hPa and 500 hPa pressure

levels from ERA5. These synoptic-scale variables are used to examine the broader atmospheric environment associated with

each detected LLJ event, helping to elucidate the synoptic drivers and their effect on the characteristics and variability of100

offshore LLJs.

2.2 Low-level jet detection and characterization

The general definition of an LLJ remains loosely defined, typically referring to a wind speed maximum within the lowest

few kilometers of the atmosphere (Stensrud, 1996), and there is no universal established method or set of criteria for LLJ
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Figure 2. (a) Idealized log-jet profiles illustrating the effect of varying jet parameters. (b) Fitted profiles for LiDAR observations at 18:00 on

2015-07-04, with the logarithmic and jet components displayed separately.

detection (Hallgren et al., 2023). One widely used metric in previous studies is the wind speed fall-off, defined as the difference105

between the wind speed maximum and the minimum above it where different studies apply either an absolute or relative fall-off

threshold. The absolute fall-off threshold typically ranges from 2 to 5 m s−1 (Nunalee and Basu, 2014; Kalverla et al., 2019;

Hallgren et al., 2020; Carroll et al., 2019), while the relative fall-off threshold varies between 10% and 25% (Wagner et al.,

2019; Baas et al., 2009; Kalverla et al., 2019; McCabe and Freedman, 2023; Aird et al., 2021). Some studies combine both

absolute and relative thresholds (Wagner et al., 2019; McCabe and Freedman, 2023). The rationale for using a relative threshold110

is that it helps identify the characteristic nose shape of LLJs, while a weak absolute threshold (e.g., 2 m s−1) helps filter out

spurious LLJ detections caused by small errors when wind speeds are low. The detection height, which can range from a few

hundred meters to 2 km, also influences LLJ identification (Kalverla et al., 2019). If the wind speed minimum above the jet

maximum is higher than the predefined detection height, the wind speed at the top level is used instead, generally resulting in

a lower fall-off ratio for higher-altitude LLJs.115

In this study, we adopt a relative fall-off threshold of 20%, following (Wagner et al., 2019; Baas et al., 2009; Aird et al.,

2021). However, before applying this threshold, we fit the wind profile U(z) using the sum of a logarithmic profile and a jet

component:

Ufitted(z) = Ulog(z) +Ujet(z) (1)
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where120

Ulog(z) =
u∗
κ

log
(

z

z0

)
, (2)

is a logarithmic profile. Here, κ = 0.41 is the von Kármán constant. The friction velocity u∗ (m s−1) and the roughness length

z0 are the fitting parameters to be estimated.

The second term represents a jet profile, defined by three parameters characterizing the LLJs:

Ujet(z) = Um
z

zm
exp

{
1
S

[
1−

(
z

zm

)S
]}

. (3)125

Um represents the maximum wind speed, zm, the height at which this maximum occurs, and S a shape parameter, defining the

vertical structure and extension of the jet component (see Fig. 2a). This formulation is adapted from the tangential wind profile

model for tropical cyclones proposed by DeMaria (1987).

The five log-jet parameters are determined by minimizing the mean squared error between the approximated profile and

the original data. This decomposition method offers several advantages for LLJ analysis. First, it effectively filters out minor130

wind speed variations, isolating the primary jet structure (see Fig. 2b). Second, it facilitates gap-filling by addressing common

LiDAR data gaps (e.g., Fig. 1), thereby enabling wind profile extrapolation across the full range. Third, it permits direct

comparison of LLJ characteristics across datasets via the three key jet component parameters. Finally, a bias correction can

be applied directly to the five parameters to align model data with observations. This bias correction can then be extended to

longer reanalysis datasets to quantify LLJ characteristics over extended periods.135

2.3 Bias Correction via Quantile Mapping

The log-jet decomposition was carried out for all three datasets, resulting in five time series of log-jet fitted parameters for each

dataset. We then developed a quantile mapping procedure to bias-correct a 50-year ERA5 dataset (1971–2020). As shown in

a later section, ERA5 data is comparable to or better than NORA3 for this specific location, making it a suitable choice due

to its long historical record and ease of access. For each parameter, 100 percentiles were calculated and stored for use in the140

quantile mapping process (see Fig. 3a). However, due to the limited number of ERA5-LiDAR data pairs, using the raw data

directly could lead to overfitting, resulting in an adjusted distribution with unrealistically small variability (see Fig. 3b). To

address this issue, we applied a kernel density estimation (KDE) smoothing step to mitigate sampling limitations in the LiDAR

dataset. Specifically, we used an ad hoc KDE bandwidth of 0.2 for parameters Um, zm, and S, and 0.5 for parameters u∗ and

z0. These bandwidths are smaller than the default KDE values, ensuring that small variations in the final probability density145

function (PDF) are smoothed while preserving the overall shape of the distribution. Although the quantile-quantile plots in Fig.

3a appear visually similar for both the original and KDE-smoothed data, applying a relatively small bandwidth in the KDE

step leads to noticeable differences in the final PDF (see Fig. 3b). This highlights the sensitivity of the histogram shape to the

smoothing procedure, even when the corresponding quantile values differ only slightly.
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Figure 3. (a) Q–Q plot for parameter u∗ comparing the original quantiles (orange circles) and the KDE-based quantiles (blue squares), with

the dashed line indicating the 1:1 reference. The arrows illustrate how an ERA5 quantile (horizontal axis) maps to its corresponding a LiDAR

quantile (vertical axis). (b) Histogram comparison of the ERA5 dataset (1971–2020), the quantile-mapped dataset with and without applying

the KDE.

2.4 K-Means Clustering and Composite Analysis150

After bias-correcting the 50-year ERA5 log-jet parameters using the quantile mapping method, wind profiles are reconstructed

to facilitate LLJ detection. LLJs are identified using a 20% threshold for the fall-off rate.

The detected LLJs are then classified using the K-means method (MacQueen, 1967), a clustering algorithm that minimizes

within-cluster variance. Clustering is performed on the horizontal wind components (U and V ) across all vertical levels, thereby

capturing the shape, magnitude, and direction of the entire wind profile for each cluster. To determine the optimal number of155

clusters, we apply the elbow method, which evaluates the total within-cluster sum of squares as a function of cluster count. A

clear inflection point at three clusters suggests this number balances complexity and explanatory power.

To further account for the role of atmospheric stability, each of the three clusters is subdivided into two subclusters using the

K-means method based on the vertical gradient of potential temperature in the lowest 300 m. This gradient serves as a proxy

for stratification, which influences LLJ formation and persistence.160

To investigate the large-scale weather patterns associated with each LLJ cluster, composite maps of wind speed and geopo-

tential height at 925 hPa and 500 hPa are generated. Wind vectors are overlaid to visualize prevailing synoptic flow regimes.
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Figure 4. (a-c) Q–Q plots of model quantiles vs. LiDAR quantiles for Um, zm and S, respectively. (d-f) Normalized histograms (bars) with

KDE overlays (solid lines) for the data from LiDAR, NORA3, and ERA5. The dashed black line in (a–c) indicates the 1:1 reference.

3 Results

3.1 Model Evaluation against LiDAR Observations

The log-jet decomposition enables a direct comparison of LLJ properties independent of the threshold used for LLJ detection.165

The quantile-quantile (Q–Q) plot and histogram of Um (Fig. 4a, d) show that the distribution of Um is surprisingly similar

for NORA3 and ERA5. However, both datasets exhibit a systematic bias, as evidenced by their deviations from the 1:1 line.

Specifically, these deviations increase at higher quantile levels. From the 0.6 quantile level (corresponding to a quantile value

of 2 m/s) onward, both models consistently underestimate the LiDAR observations across all larger quantiles by approximately

30%.170

A similar conclusion can be drawn for the shape parameter S, where both reanalysis datasets tend to underestimate the

LiDAR values. A larger S corresponds to a broader jet profile (see Fig. 2a), which results in a smaller fall-off rate. For both

Um and S, NORA3 quantiles are slightly closer to the LiDAR data compared to ERA5 (Fig. 4a, c) at larger values. However, at
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lower values, ERA5 exhibits a marginally better agreement with the LiDAR, as indicated by the KDE plots (Fig. 4d, f). Overall,

both reanalysis datasets display a similar underestimation of the two parameters in the fitted LLJ representation compared to175

the LiDAR observations, despite NORA3 being a high-resolution downscaling of ERA5.

For zm, which represents the LLJ height, all three datasets show a peak in the distribution (Fig. 4e) at approximately 200

m. However, the two reanalysis datasets overestimate the frequency around this level while underestimating the frequency at

higher altitudes. This discrepancy is less pronounced in ERA5 than in NORA3, as also indicated by the Q–Q plots (Fig. 4b),

where the ERA5-LiDAR quantiles align more closely with the 1:1 reference line compared to NORA3-LiDAR.180

Overall, ERA5 and NORA3 exhibit similar characteristics when compared to the LiDAR data: the frequency of strong jet

magnitudes is underestimated, leading to lower LLJ frequencies and intensities. Additionally, ERA5 provides a closer match

to the observed jet height distribution than NORA3. Thus, for the next sections, we apply quantile mapping to bias-correct the

50-year-long ERA5 dataset for characterizing the LLJs. This approach uses the observed distributions from the LiDAR data to

adjust ERA5’s LLJ properties, ensuring a more reliable long-term analysis of LLJ behavior.185

3.2 LLJ Climatology and Clustering for biased-corrected ERA5 data
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Figure 5. (a) Wind rose of the original ERA5 dataset at 200 m above ground, showing the distribution of wind directions (azimuth) and wind

speeds (color bins). (b) Wind rose of the LLJ cases extracted from the same dataset, illustrating a subset of conditions where wind speeds

and directions differ notably from the overall climatology.

After bias-correcting the log-jet parameters in the 50-year ERA5 dataset, the wind profiles were reconstructed and LLJs were

identified using a 20% fall-off rate threshold. To illustrate the differences between the overall climatological wind conditions

9

https://doi.org/10.5194/wes-2025-91
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



and the conditions under LLJs, we present wind roses at 200 m above sea level—near the peak height of the LLJ distribution

(Fig. 4e)—for the full dataset (Fig. 5a) and for the LLJ subset (Fig. 5b). In Fig. 5a, the prevailing winds are predominantly190

west-southwesterly, with mainly moderate speeds in the range of 5–15 m/s. The occurrence of higher wind speeds (15–20 m/s)

is notable, though not dominant, and only a small fraction of winds exceed 20 m/s. By contrast, the LLJ subset (Fig. 5b) also

features speeds primarily between 5–15 m/s but shows fewer occurrences of 15–20 m/s winds, and no LLJs exceed 20 m/s.

Additionally, while the full dataset is characterized by a prevailing west-southwesterly direction, the LLJs are nearly reversed,

predominantly blowing from the east-southeast. This directional shift highlights the distinct synoptic or local conditions under195

which LLJs form at a given site and underscores the importance of separately analyzing LLJ behavior for applications such as

wind resource assessment or boundary-layer studies.
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Figure 6. Three-dimensional hodographs of the average wind profiles for the three LLJ clusters. The orange lines represent the mean wind

vector, while the thin gray lines on the bottom plane illustrate the horizontal wind projection.

Figure 6 presents three distinct wind-profile clusters identified using the K-means clustering method for the indendified

LLJs. Each cluster corresponds to a different prevalent wind regime, potentially associated with specific synoptic or mesoscale

conditions. Cluster 1 (Fig. 6a) is characterized by a north-northeast wind direction and has the highest frequency of occurrence200

(43.8%). Cluster 2 (Fig. 6b) accounts for 32.1% of cases and exhibits an east-southeast wind direction. Cluster 3 (Fig. 6c)

covers 24.2% of cases and is associated with a southwest wind direction. Cluster 1 is the weakest in strength, with an average

wind profile peak of approximately 4 m/s, and at the lowest height of 174 m. In contrast, Clusters 2 and 3 display similar wind

strengths, with average wind profile peaks around 10 m/s ( 10.5 m/s for Cluster 2 and 9.4 m/s for Cluster 3). Cluster 3 has a

higher average LLJ height of 260 m compared to Cluster 2 of 210 m. Additionally, Clusters 2 and 3 exhibit notable wind veer,205

where the wind vector rotates clockwise with increasing height. In contrast, Cluster 1 shows minimal change in wind direction

with height, maintaining a nearly uniform north-northeast orientation throughout its profile.

The inertial oscillation (Blackadar, 1957) is a key process in forming LLJs over flat surfaces. It is initiated when a stable

inversion layer decouples the atmosphere from the surface. Once decoupling occurs, for example due to radiative cooling, the

wind vectors rotate clockwise in the Northern Hemisphere, transitioning from sub-geostrophic to super-geostrophic states. This210
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Figure 7. Average wind speed and vertical gradient of potential temperature (dθ/dz) profiles for atmospheric clusters and sub-clusters.

transition can produce a wind speed maximum (i.e., the LLJ) above the inversion layer. To further understand LLJ formation,

each group is subdivided using the K-means method applied to the vertical gradient of potential temperature, dθ/dz, an

indicator of atmospheric stability.

Figure 7 displays the vertical profiles of average wind speed and dθ/dz for the three clusters and their sub-clusters. Each

primary cluster (Figs. 7a–c) is divided into two sub-clusters: a (middle row, Figs. 7d–f) and b (bottom row, Figs. 7g–i). Sub-215

cluster a represents a weakly stable condition, with dθ/dz near zero at the surface and increasing with height, while sub-

cluster b is characterized by a stronger stable layer near the surface beneath the jet core. Overall, sub-cluster a comprises

approximately 77% of the cases, whereas sub-cluster b accounts for the remaining 23%. In most instances (i.e. sub-cluster a),

a strong inversion layer is absent below the LLJ core. In these cases, the trigger for inertial oscillation is not local; it is likely

that the offshore location of FINO1 means the LLJ originates onshore and is subsequently advected offshore. Conversely, the220

pronounced inversion layer in sub-cluster b may be linked to radiative cooling of the sea surface or the advection of warmer air

over the colder ocean.
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Figure 8. Temporal patterns of LLJ clusters and subclusters. The top row (a–c) shows the normalized frequency for the three main clusters,

while the second (d–f) and third (g–i) rows display the normalized frequency for sub-clusters a and b respectively.
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Figure 8 reveals distinct temporal signatures for each cluster and its sub-clusters. Cluster 1 (Fig. 8a) exhibits a strong annual

cycle, with most LLJs occurring from February to August and peaking in May. A diurnal signal appears around 17:00 UTC,

although LLJs can occur throughout the day. Notably, this diurnal peak is driven mainly by sub-cluster 1b (Fig. 8g), which225

shows a clear peak in the early evening (18:00–19:00 UTC). By contrast, sub-cluster 1a (Fig. 8d) lacks a strong diurnal pattern.

Cluster 2 (Fig. 8b) also displays a clear annual cycle, with most LLJ activity from April to September. Its diurnal signal

is stronger than that of Cluster 1, showing that most LLJs occur during the nighttime (18:00–08:00 UTC). Sub-cluster 2a

(Fig. 8e) features a notable lack of LLJ events from May to September between 10:00 and 20:00 UTC, but otherwise LLJs

can appear year-round. In contrast, sub-cluster 2b(Fig. 8h) has a pronounced annual cycle from March to August, similar to230

sub-cluster 1b, and exhibits a clear diurnal pattern peaking around 21:00–22:00 UTC, which is about three hours later than

sub-cluster 2a. Cluster 3 (Fig. 8c) differs from Clusters 1 and 2 by occurring most frequently in winter, with a peak in January,

and also shows a clear diurnal structure. Interestingly, there are two favored time windows: early morning (04:00–06:00 UTC)

and early night (20:00–22:00 UTC). Sub-cluster 3a (Fig. 8f) largely mirrors the overall temporal pattern of Cluster 3. However,

sub-cluster 3b (Fig. 8i) peaks in March, about two months earlier than sub-clusters 1b and 2b. Another notable difference is235

that while sub-clusters 1b and 2b peak before midnight, sub-cluster 3b reaches its maximum in the early morning (04:00–

06:00 UTC). Overall, the b-type sub-clusters show stronger annual and diurnal signals than the a-type sub-clusters, typically

featuring a well-defined nighttime peak characteristic of nocturnal LLJs. However, the differences in exact peak hours (e.g.

early evening, near midnight, or early morning) hint at distinct underlying forcing mechanisms or meteorological conditions

for each b-type sub-clusters.240

3.3 Large-Scale Weather Patterns

To highlight the spatial patterns of each sub-cluster, Figure 9 shows the composite wind speed at 975 hPa (overlaid with wind

vectors) for the six sub-clusters. sub-cluster 1a and 1b (Fig. 9a,d) features notably weaker wind speeds over most of the North

Sea, with a modest southwesterly flow near the Dutch coast. By contrast, sub-clusters 2a and 2b (Fig. 9b,e) exhibits stronger

southeasterly winds originating from the continent and blowing over the North Sea. Cluster 3a and 3b (Fig. 9c,f) is dominated245

by a pronounced southwesterly flow, which is essentially the opposite direction of cluster 1 but with higher wind speeds (often

exceeding 10–12 m/s) and covering a broader area than the other clusters.

Figure 10 illustrates the composite geopotential height at 975 hPa, overlaid with wind vectors, for each sub-cluster. Cluster 1

(Fig.10 a, d) is associated with weak pressure gradients near the FINO1 location. Sub-cluster 1a exhibits a southwest-northeast-

oriented ridge, while in sub-cluster 1b, the FINO1 station lies within a high-pressure system. In both cases, the slope of the250

geopotential height surface (i.e., the density of the contours) is small, which corresponds to the weak wind speeds observed in

Cluster 1. For Cluster 2 (Fig.10b, e), the FINO1 station is positioned between a high-pressure system centered over the Baltic

Sea and a low-pressure system to the east. Similarly, in Cluster 3 (Fig.10panels c, f), FINO1 is located between a high-pressure

system to the southeast and a low-pressure system to the northeast. In all these cases, the geopotential height gradients are

steeper than in Cluster 1, which explains the stronger wind speeds observed in Clusters 2 and 3.255
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Figure 9. Composite wind speed (shading, in m/s) and wind vectors on the 975 hPa isobaric surface for six sub-clusters derived from ERA5

reanalysis. The red star marking the FINO1 offshore station.
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Figure 10. Composite geopotential height (shading, in meters) on 975 hPa isobaric surface for the same six subclusters as in Figure 7, derived

from ERA5 reanalysis. The red star marks the location of the FINO1 offshore station.
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Figure 11. Similar to Fig. 10, but for 500-hPa isobaric surface.

The composite analysis of ERA5 geopotential height at the 500 hPa isobaric surface and wind vectors (Fig. 11) reveals

distinct atmospheric regimes across the six subclusters, providing insight into the synoptic-scale flow patterns. In general,

geopotential height increases toward the south, leading to a predominantly westerly flow. A ridge feature is evident over

the FINO1 location in all cases, though its strength and structure differ between the subclusters. For subclusters 1a, 2a, and

3a (Fig. 11a–c), the ridge is less pronounced, and the height contours are more zonally oriented, indicating a relatively weak260

meridional pressure gradient. This results in lower wind speeds at this level. In contrast, for subclusters 1b, 2b, and 3b (Fig. 11d–

f), the ridge is more sharply defined, with a stronger geopotential height gradient to the north, leading to enhanced westerly

winds. A notable feature is the consistency in the 500-hPa geopotential patterns for the “b” sub-clusters. Despite the differences

in surface-level structures observed in Fig. 10d–f, the geopotential height fields at 500 hPa remain relatively similar, with

FINO1 consistently positioned on the western flank of a well-defined ridge centered near 10◦E. This suggests that while265

surface-level variations exist, the upper-level forcing remains coherent.

4 Discussion and conclusion

This study presents a novel log–jet decomposition method for analyzing LLJs and applies it to compare reanalysis/hindcast

datasets (ERA5 and NORA3) with LiDAR observations at the FINO1 offshore platform. The log–jet decomposition effec-

tively separates the wind profile into a near-surface logarithmic component and a jet component, allowing for a more precise270

characterization of LLJ features. This method offers several advantages, including filtering out minor wind speed variations,
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gap-filling in LiDAR data, direct comparison of LLJ characteristics across datasets, and facilitating bias correction of model

data.

The comparison of ERA5 and NORA3 with LiDAR data reveals that both datasets tend to underestimate LLJ intensity and

frequency. Surprisingly, ERA5 performs comparably to, or even slightly better than, NORA3 in representing LLJ characteristics275

at the FINO1 station, despite NORA3’s higher spatial resolution (approximately 3 km) compared to ERA5. Several factors may

contribute to this finding. First, NORA3, while having higher spatial resolution, may have fewer vertical layers than ERA5 in

the boundary layer, potentially limiting its ability to resolve the vertical structure of LLJs. Second, NORA3 employs 9-hour

integration runs, which may not fully capture the inertial oscillation period (approximately 17 hours at mid-latitudes), a crucial

process in LLJ formation. Third, LLJs, while influenced by local factors, often have a relatively large spatial scale (e.g. see280

Fig. 9), suggesting that they may not be highly sensitive to the increased spatial resolution offered by NORA3, particularly in

the offshore environment. It is important to note that this finding may be specific to offshore regions like FINO1. In onshore

regions, where topography plays a more significant role, the higher resolution of NORA3 could potentially provide a greater

advantage (Cheynet et al., 2024). Future studies should explore the performance of ERA5 and NORA3 in representing LLJs in

coastal and onshore locations to assess the influence of topography and surface heterogeneity.285

The temporal occurrence of LLJs, particularly the nocturnal LLJs associated with sub-cluster b, provides valuable insights

into LLJ formation mechanisms. The presence of a low-level stable layer in these sub-clusters suggests a local mechanism for

the initiation of inertial oscillation, driven by processes such as radiative cooling or the advection of warm air over a colder sea

surface. However, the distinct peak times observed for different sub-clusters during the night (early evening, near midnight,

and early morning) remain unclear. These differences may be related to the complex interplay between land-sea distribution,290

prevailing wind direction, and the timing of the development of the stable boundary layer. For instance, the orientation of the

coastline relative to the wind direction could influence the advection of stable air and the subsequent development of nocturnal

LLJs. To better understand these relationships and the reasons for model underestimation of observed LLJ characteristics,

further numerical simulations, including idealized experiments and high-resolution simulations focused on specific LLJ events,

are needed. These simulations should aim to resolve the relevant physical processes, such as boundary-layer dynamics, inertial295

oscillations, and the influence of land-sea contrasts, with greater accuracy.

This study demonstrates the value of combining high-resolution LiDAR observations with model-based datasets for under-

standing LLJs in offshore environments. The novel log–jet decomposition method provides a robust framework for analyzing

LLJ characteristics and quantifying biases in reanalysis/hindcast data. The findings highlight the limitations of ERA5 and

NORA3 in accurately representing LLJ intensity and frequency, underscoring the need for bias correction using observational300

data. The bias-corrected ERA5 dataset, combined with the LLJ clustering analysis, provides new insights into the variability

of offshore LLJs and their associated synoptic conditions. The identification of distinct LLJ clusters with different temporal

patterns and large-scale drivers contributes to a more comprehensive understanding of LLJ dynamics. The results have sig-

nificant implications for offshore wind energy applications. Accurate characterization of LLJs is crucial for improving wind

resource assessment, turbine design, and operational forecasting. The findings underscore the need for both high-quality ob-305

servational data and targeted numerical modeling efforts to capture the complex dynamics of marine boundary layers. Future
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research should focus on further refining numerical models to better represent LLJ formation and evolution, ultimately leading

to improved forecasting and modeling capabilities for offshore wind energy applications.
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