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A wind turbine digital shadow for complex inflow conditions
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Abstract.

We present a digital shadow Kalman filtering approach-framework based on the direct linearization of a multibody-aereservoelastie

model-of-a-wind-turbine-trusted multibody aeroservoelastic wind turbine model. In contrast to appreaches-shadowing based

on ad hoc medels;-the-reuse-of-existing-trusted-modeling approaches, reusing validated industrial or research-grade models
reduces development time-and-duplication—of-effort, leverages resources invested in tuning and validation, and eventually

increases confidence in the results.

formulation—Toextend-the-applicability-te-Building on earlier work, the filter-internal model is extended to improve applicabilit
under non-symmetric, waked, and yaw-misaligned eenditions;the-filter-internalmedel—in-addition-to-the-inflow conditions. In

addition to tower fore-aft and reterrotational-dynamiecs—now-alse-ineludes-therotor-speed dynamics, the model incorporates
tower side-side and-the-motion as well as blade flapwise and edgewise degrees of freedomef-the-rotor-blades—To-make-the

Real-time inflow observers estimate rotor-equivalent values-of-the-wind speed, vertical shear-horizontal-shear(on-account-of
wakeéeeﬂdmeiﬂrsémhgg and yaw mlsahgnmenteﬁ—s&ppe%efwv&ke-ﬁeemagem%&eﬁ—ﬂwseﬁﬂﬂewpafmﬁefef@

Furthermeore;the-filter-internal-, enabling operating-point-dependent scheduling of the linearized model. To further enhance
predictive accuracy, the white-box model is augmented with data-driven correctlonst&tmpfeveﬂ%&pfedieﬁve—deeufaey—Twe
i, considering.
both a bias-correction approach that acts on states and outputs, and a neural-based-one-that-onty-corrects-the-outptts-butnot

the-statesneural-network-based output correction.
The proposed digital-s 5 S

simulation under freestream, waked, and wake-steering

yielding-errors-in-the-damage-equivalentload-estimates-of-scenarios and subsequently on field data from an instrumented wind
turbine. Additional field cases with extreme shear and waked operation are used to assess robustness. Even without data-driven
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correction, damage-equivalent loads estimated from field data exhibit accuracy comparable to simulation-based results. When
correction strategies are applied, accuracy improves substantially, with damage-equivalent load errors reduced to only a few
percent.

1 Introduction

Digital twins for wind turbine applications have recently reeeived-a-significant-attentionfrom-the research-community,on-their
w&y%e%eeem& arnered significant attention, emerging as key components of modern wind systems. Dtg&fa%%wm&e&wp%ay

mwmmmﬁm&@wwmwmmwmmﬁ%mwumm etal,

2020b; Song et al., 2023), and the-monitoring-of-the-condition-of-assets—(Olatunji-et-al5202H—In—faet—asset monitoring
(Olatunji et al., 2021). Because wind turbines operate autonomously in complex -dynamie;-and-often-harsh-ambientconditions:
%&WM& ability to mirror the behavior of each asset W&%&g&fﬂ%ﬁk&%{—h{ﬁ—&ﬂ%ﬁ
o8 substgntal potentil, Combined with mashine
:

learning and artificial intelligence,
representations can continually improve, thereby enhancing productivity and profitability.

Digital twins previde-services—by-building-build on the predictive abilities of digital shadows—In—faet—a-digital-shadew
Hﬂﬁeﬁﬁfﬂﬂﬂ%e%ﬁbﬂﬂﬁm}gh%dmwne way data flow (fremfrom the phys1ca1 asset to ehgﬁa}

the model, unlike twins, where the loop is closed (Sepasgozar, 2021). As this work focuses solely on accurate mirroring, we
adopt the term digital shadow (Hoghooghi et al., 2024).

ef-Among the many possible formulations, we follow and extend an approach that integrates an aeroservoelastic model of
the-machine-with a Kalman filter (Grewal and Andrews, 2014; Branlard, 2019; Branlard et al., 2024a; Hoghooghl et al.,

for the development of digital shadows. Using these models eliminates the need to rebuild ad hoc representations and provides
immediate predictive capabilities, even without extensive field datasets —On-the-other-hand;—an advantage over purely data-
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roaches, which require lengthy and expensive

measurement campaigns. Moreover, a white-box model can later be turned-augmented with data-driven corrections, evolvin
into an adaptive grey modelw i

e-Following

Branlard (2019); Branlard et al. (2024a), an aeroservoelastic model is linearized around a-number-of-operatingconditionste
define-multiple operating conditions, yielding a linear state-space filter-internal-medel—-internal model updated at each time

This-existing-approach-is-improved-here-via SCADA measurements. Here, we improve this framework in four main ways.
First, inadditionto-the-the internal model is expanded beyond tower fore-aft and reterrotational-dynamies(Branlard; 2049 Branlard-et-al
sthefilter-internal-modelnow-ineludes-also-therotor-speed dynamics to include tower side-side and-the-motion and blade flap-

wise and edgewise degfee&ef—ffeedem—éBQF&}ef—fhe—retWB}adesDOFs This richer deseﬂp&efref—%he%ysfeﬁbfespeﬁseﬁs

representation extends applicability to strongly sheared, waked
and yaw-misaligned conditions relevant to wake- steerlng wind-farm-control.

WM%MWWWWWW&%M&
advanced scheduling. Accordingly, the model is scheduled h
alse-with-respeet-to-not only by wind speed but also by vertical shear, horizontal shear (eﬂﬂeeeuﬂf—ef—pessrb}egggtvuvrygg/\wake

impingement), and yaw misalignment. These

inflow parameters are estimated in real time

during-operationby-dedicated-observers-(kim-—et-al;2023:+-2using dedicated observers (Kim et al., 2023; Bertele et al., 2024).
Third, a bias-correction WQMQMWW the accuracy of thefilter-internal-medel—The

at-State biases are compensated through

additive error terms in the dynamic equilibrium, calibrated as a function of the current operating state. Output biases are pro-
moted to state variables
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gegoverned by process noise. Although more general
nonlinear corrections (Bottasso et al., 2006) are possible, the adopted approach already delivers substantial improvements in

fatigue-damage estimation.
Fourth, for condition monitoring applications the model is &ugmeﬂ{eekbybweglvlgm a data-driven learning element to

speeifie—outputs—ofinterest-for-which-measurements—are—avatlablethat corrects selected outputs using measurements from
onboard sensors. A neural-based eorreetion—term-s—term is trained on the observed discrepancies and added to the refevant

digital shadow is demonstrated in simulation under
clean freestream, waked, and wake-steering conditionsand-thenvalidated-in-the-field-using-, and validated with field data from

an instrumented multi-MW Mﬁd%ufbme—eﬂeempa%ﬁﬂgmm both clean and complex infloweenditions. The imple-
mentation is-based-on-the-widely-used-open mutation-environmen en
and its associated tools (OpenFAST, 2024; Jonkman and Shaler, 2021; TurbSim, 2023), while-the-filteris-based-on- MATLEAB
M%M%WWWMMMMW method-
ology is eregeneral and
software-independent.

structuralfatigue-Fatigue-related applications of digital twins are extensively documented (Bernhammer et al., 2016; Hoghooghl
et al., 2019a, b)—k}%&ﬁ,—, ,_as fatigue loads affect vari

&néﬁefegkfefﬂﬂduwal major components (IEC 2005; Hoghooghi, 2021) and directly influence lifetime, performance
and cost (Bottasso et al., 2013; Loew and Bottasso, 2022; Dimitrov et al., 2018) CM-faeilitates-the real-time-assessment-of

Condition monitoring (CM) supports proactive maintenance and improved operatlonal efﬁ01ency (Chen etal., 2016; Wu et al.,

2021; Liu et al., 2023)-

performanee-and-redueing-eosts, with several methods leveraging machine learning (Bangalore et al., 2017; Hoghooghi et al.,
2020a, b, 2021; Surucu et al., 2023).
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ading-Numerous load-estimation techniques also exist, ranging
W%MMMMookup tables (Mendez Reyes et al., 2019) modal expansion (Il-
iopoulos et al., 2016), ensess it
aggregation (Abdallah et al., 2017), machine learning (Evans et al., 2018), neural networks {NNs)-(Schroder et al., 2018), poly-

nomial chaos expansten-(Dimitrov et al., 2018), deconvolution (Jacquelin et al., 2003), load extrapolation (Ziegler et al., 2017),
virtual sensing base via ROM-FE couplin
(Vettori et al., 2020), and NN-based load-surrogates (Guilloré et al., 2024).

This gut

the-modeling-aceuracy-of-itsunderlying-digital shadew(s)—brief overview illustrates the broad relevance of digital shadows
for turbine health monitoring and fatigue estimation. The present work contributes te-this—impertant-tepie-by formulating a

efficieneyand-thenaugmented-with-lew-general procedure for digital shadow development that leverages trusted multibod
models, linearization for computational efficiency, and adaptive corrections informed by inflow estimators and learning ele-

eoenditiensfor improved accuracy.

The paper is organized as follows:—, Sect. 2 outlines-describes the methodology, defaﬁmgfheﬁkef-ﬂﬁem&k 391‘&@151&@&

internal model, its schedulingby—inf]

ean-and-complexinflow-conditions—Finally-, and correction strategies.
Sect. 3 evaluates performance in simulation and field conditions. Sect. 4 summarizes the-key-findings and outlines the-next
steps-in-thisresearchfuture work.



2 Methods

165 Figure 1 illustrates the key-main components of the proposed digital shadow workflow. A Kalman filter uses-SCADA-measurements
to-tmpreve-combines SCADA measurements with the predictions of a turbine ROM rin-erder-to-estimate-the-to estimate sys-

tem states and other-outputsofinterestadditional outputs. The filter-internal model is obtained by linearization-of-linearizing
a higher-fidelity multibody model of the turbine. Mea:s

%m%wmmmﬁmm

170 characteristics in real timeduring-operation—tnturn—these-. These inflow parameters are used-for-the-scheduling-of-the-then
used to schedule the coefficients of the filter-internal model, thereby-adjusting-the-filter-behavier-to-enabling the filter to adapt
to the full range of operating and inflow conditions to-which-the-turbineis-expesed-toexperienced by the turbine.
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Figure 1. Schematic representation of the proposed digital shadowing approach.

The proposed digital shadow combines a physics-based reduced-order model with real-time measurements to continuousl

estimate the turbine dynamic state and selected unmeasured loads. The Kalman filter serves as the core data-fusion mechanism

175 propagating the turbine response using the linearized aeroelastic model and correcting these predictions whenever new measurements

become available. Model scheduling ensures that the filter remains valid across varying inflow and operating conditions b

adjusting the model coefficients in real time.
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2.1 Filter-internal model

We consider a non-linearnonlinear multibody model of a wind turbine-Fhe-medelis-, expressed in terms of the-generalized dis-

placements q, generalized-velocities v, and inputs u. Measurements-affected-by-noise++are-availableforNoisy measurements v
affect the outputs y s-which-are-used by the filter to impreve-the-prediction-of-the-model-states—Finally,-update the model states,
while z are-addittonat-output-guantities-denotes additional outputs of interest that do not participate in the fitter-innovation step.

The filter ROM is obtained by directly linearizing the non-linear-muktibody-nonlinear model around multiple equilibrium

conditionswhere-stateinput—and-output-vectors-are-noted—, with equilibrium vectors qg, vo, Ug, Yo, and zg. The resulting

filter-internal linear model is weittenformulated in terms of increments () as

5q=dv, (1a)
ov =—M"1(Cév + Kdq+ Udu +w), (1b)
8y =D,év+Dydq +Edu+v, (Ic)
0z =F,0v+F,0q+Gou. (1d)

The Kalman filter integrates these-equations-over-time-the linearized model by first predicting the system state-variables-states

and their uncertainties, and then correcting (innevating)-these-estimates-these predictions using the available measurements
reonsidering-their-associated-uneertainties—Sinee-and their associated noise characteristics. Because the underlying model is
linearized, the nen-tinear-nonlinear values of all quantltles are obtained-recovered by adding the perturbations to the reference

as-corresponding equilibrium values, e.g.
q = qp + Jq, and the-same-helds-analogously for all other vectors appearing-in Eqgs. (1).

Equations (1a) are-the-represent the (noise-free) kinematic relations, which-are-assumed-to-be-exact-and-not-affected-by
noise-Equationswhile Egs. (1b) express the dynamic equilibrium of-the-systen-affected-by-the-processnoisew-where-affected
by process noise w, with M, C, K, and U are;respeetively,—denoting the mass, damping, stiffness, and control matrices.
FinatlyHgs:Equations (1c) and (1d) representgive the linearized output egwationsrelations for y and z, respectively. Fhe-All

noise terms are assumed to-be-zero-mean-zero-mean and uncorrelated (Grewal and Andrews, 2014).

e-Although a standard
linear Kalman filter would be sufficient for the present linearized state—space model, we adopt the unscented Kalman filter
(UKE) implementation of MATLAB (Wan and Van Der Merwe, 2000; The MathWorks, Inc., 2022). This choice is motivated
by anticipated future extensions to nonlinear filter-internal models. While the use of the UKF is therefore not strictly necessary.
in_the present linear case, it remains fully applicable to linear systems, albeit with somewhat higher computational cost

compared to a standard linear Kalman filter.
Because the equilibrium conditions are generally periodic, the matrices associated with rotatlng quantities —as—wel-as

the-asseetated—and the corresponding states, inputs, and eutpt

pesmeﬁ»ef—%hefe%e%out uts— depend on the rotor azimuth. To avoid working-dealing with periodic systems, this dependeney
dependence is removed by averaging over one full revolution.




In the present implementation, the filter-internal
dynamies—Aecordingly;model includes 9 DOFs, and the generalized displacement vector is defined as

q:{d§A7d awvch B27dB37 B1> B2a 3} (2)

where dE4 and d3° are the tower FA and SS deflections, respectively, 1/ is the rotor azimuthal position, while d5; and d5, are
215 respectively the flapwise and edgewise DOFs of the ith blade. The associated velocities are v = q.

The input vector u contains 8 entries and it is defined as
T
u= {‘/7047770170279&ocollanen} ) (3)

where V is the wind speed, « is-the vertical power-law shear exponent, ~y is-the-the yaw misalignment angle, 6; is-the-total

blade—piteh-angle—of-the total pitch of blade ith-blade, 0.0y fyfhe—eeﬂeeﬂw—bhd&pﬁel%mgiethe collective pitch, and Qgen
220 indieates-the generator torque. Individual pitch control

eoHeetive-valueintroduces a blade-specific pitch component 6; — 6., whereas 8; = 6., when only collective pitch is used-

-active. The input vector
thus includes not only control commands from the on-board eentrel-system)-but-also-includes-exogenous—terms—due-to-the
ambient-conditionscontroller but also exogenous terms associated with the ambient inflow. The present inputs-are relevant-to

225 mﬂm@m&mm OpenFAST (Jonkman et al., 2018; NREL

the-horizental-ene; other simulation tools may use different inflow descriptors (e.g., including horizontal shear).
Ttis-assumed-We assume that a biaxial accelerometer measures-aceelerationsat-the-tower-topprovides tower-top accelerations,
an encoder measures the-rotor speed, and toad-measurements-are-avaitable for-each-blade-in-the form-of-blade root loads are

230 available in flapwise and edgewise bending-momentcomponents—Aecordingly-the-directions for each blade. The output vector
yeontains O-entries-and-it, therefore, contains nine components and is defined as

T
FA F F F E E E
y= {dT dT ) 7mBlva27mBS7mB17mBZ,mBS} . )

The FA and SS tewer-top-aceelerations-are-tower-top accelerations are denoted b c'l'rfﬁA and d5°, respectively;-the-. The rotor
angular speed is eﬁ%QgQ\A:NQ, while the flapwise and edgewise bending eomponents—for-the-ith-bladearenoted-moments of

235 blade i are indicated by m5,. and mE respeetively.
The model is completed by the-definition-of-defining additional to-be-estimated quantities collected in the vector z, which 5

hewever-do not participate in the filter innovation step. This is-because-of-two-possible-exclusion may occur for two reasons:

— the digital shadow operates as a virtual sensor

sensors-(beeause-of-for quantities that are not physically measured due to technical or economic reasensjconstraints;

240 — the digital shadow supports a
system, where predicted and measured values are compared to detect anomalies and-or faults.

condition-monitorin
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Both efthese-scenarios are illustrated later in this work. Here-the-In the present implementation, the z outputs arerepresented

by-the-include the tower-base bending moment components m4 and m73,

eompenentsris—r=—, as well as the flapwise and edgewise bending moments m%, and mmef—fhe%eﬂdmg—memeﬂf
blade span. Other

TG, g, 2L the 15%
uantities could be selected depending on the specific application.

2.2 Model scheduling

To be usable in practice, the filter-internal model is scheduled as a function of a small set of parameters s, chosen-to-capture
selected to characterize the equilibrium operating condition about which the linearization is performed. As-a+resultConsequently,
all matrices appearing-in the state-space model-expressed-by-representation of Eqs. (1) depend on s. For example, censidering
the mass matrix ~becomes M = M(s), and the-same-helds-similarly for all other matrices—Similartyalt-system matrices. The
equilibrium values of the states, inputs, and outputs at-the-equilibrivm-condition-depend-on-also vary with s—Ferexample;
considering-; for instance, the generalized displacements s-satisfy qo = qo(s), and-the-same-holds-for-all-other-with analogous

relations holding for the remaining vectors.
The vector of scheduling parameters is defined as

s={V,a,kn,7}". Q)

The first two entries express-capture the dependency of the model eoefficients-and-equilibrivmreference-vatues-on the ambient
conditions through the wind speed V' and the vertical power-law shear exponent a.. The third entry is the linearherizontal-shear

ky,, accounting for wakes, and the fourth is the yaw misalignment angleineladed-here-to-support-wake-steering-conditionsfor
, relevant for wake steerin

vector enables the model and filter to remain aware of operating conditions that affeet-the-turbineresponse;-these-effeets-would
otherwise be lost when-movingfrom-the full-non-linearmedel-to-itslinearization—

after linearization. The non-linear model is linearized at a preselected-set of discrete values-of-s ;chosen-to-cover-the-entire
‘ i i iti ~values spanning the full operational and ambient range, and the
correspondlng matrices and equlhbrlum %&te%—mpu%%&ﬂéetﬁpm%g/mare stored in look—up tables (LUTs). Fo-express

During operation,
s is estimated a%eaehﬂm&msmﬂ%bydedtea{eéebsewefmexplaﬂwéwmA@u@g@ect 2. 31 and the model matrices are

transformation-of-the-filter-predicted-ineremental-values-into-their-and equilibrium values are interpolated accordingly, allowin,
the incremental filter predictions to be mapped back to the non-linear eorresponding-physical quantities.
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2.3 Observers

As previously explainednoted, the filter-internal model eoefficients-are-is scheduled with respect to the parameters sthateapture
the-current-operating-conditions—These-parameters-are-chosen-here-, here chosen as the wind speed, the vertical and horizontal

shears, and the misalignment angle.

These quantities are estimated at-each-instant-of-in real time during operation and used to inform-update the filter-internal
model of-the-eurrent-conditionsaccordingly. The present sequential tmp}emeﬂ%&&eﬁ—wv{meebsefvef&feedrmfefmam%tv\g

—where observers supply s to the Kalman fi

legaey-implementations-of-the-filter— is adopted for simplicity, as legacy observers were already available (Hoghooghi et al.,
2024). However, an augmented Kalman filter could alternatively estimate s directly.

Wrom the commanded one—'Fhefefefe%aefe—we—pfefeHere%mqaa{eL ~y through-is estimated via an observer rather
than using-the-valuesrequested-by-the-on-board-eontroHer-taken from the controller demand.

2.3.1 Simple wind speed observer

A rotor-equivalent wind speed is obtained by inverting the expression of the power coefficient:

QHCIOQ

_aero” 6
0.5pAV3’ (6)

Cp (ecolla >‘) =

where A=QR/A)\ = QR/V is the tip-speed ratio, R is the rotor radius, A-=-1%A = 1 R? is the rotor swept area, Quero is the
aerodynamic torque, and p indieates-is the air density. The power coefficient C), is eomputed-by-exeeuting-dynamiesimulations
with-obtained from dynamic simulations of the full aeroservoelastic %ﬂ&ffm&eh&e%%ﬁ&ﬁ%ﬁ*tﬂé—%p%d%@m
wind conditions for a reference density prer.
After transient effects decay, the response is averaged over a—few-several rotor revolutions to compute-therelevant-extract
the steady-state quantities—The-results-are-stored-in-values. These results populate a LUT, yielding-an-expression-providing a

mapping for the rotor-equivalent wind speed as a function of pitch, rotor speed, acrodynamic torque, and density:

V= LUTC’,D (ecolla Qv Qaerm p/pref)~ (7)

At run time, the LUT is-used-to-obtain-provides an estimate Vg of the rotor-equivalent wind speed. The current pitch setting
Ocon and rotor speed (2 are measured-by-the-correspondingread from on-board sensors. The acrodynamic torque is computed

as Quero = Qgen 2Quero X Quen + J, Where Qgen is the measured generator torque ;-and-the-angular-aceeleration-and () is
obtained by numerically differentiating the-rotor-speed;€), with J being-the rotor inertia. Finatty;-Air density p is computed
using-via the gas law frem-using the measured temperature.

10



2.3.2 Shear and misalignment observers

The estimation—of—the-horizontal and vertical shearsand-of—, as well as the wind misalignmentis—obtained-by—the—, are

estimated using the "rotor as a sensor’technology(see-Kimet-al(2023);-2-and-references-therein)—This-method-" approach
305 (Kim et al., 2023; Bertele et al., 2024), which exp101ts the fact that each-of-these inflow characteristics }eave%speaﬁe%mee

uantities-imprint distinctive signatures in the blade load response. By inverting these signatures, the corresponding inflow
uantities can be inferred.

310 nutshel+the-estimatorisformulated-Here, we adopt the harmonic-amplitude-based formulation of the rotor-as-a-sensor method
Kim et al., 2023; Bertele et al., 2024). The estimator is written as

e =NN(p,in), ®)

(either cv, the-horizontalHlinearshearecoeffieientky,, or the-yaw-misalighmentangley), NN(-,) is a single-output NN with free
315 parameters p, and iy is a-the vector of measured NN-inputs. A different-separate NN is used for each ene-of the three inflow
parametersef-interest. The input vector is defined as inr={mT V. p}liy = {m”,V,p}?, where m is-a-veetor-of harmonie
amplitudes-of-the-bladeJoads—For-collects the relevant blade-load harmonics. Since the estimation of shears and misalignment

ritis-enough-to-limitthe-harmonies-to-the-oneperrevonly requires 1P yeomponents-tKim-et-al;-2023;-2)-Accordingly;veetor
m-is-defined-ascontent (Kim et al., 2023; Bertele et al., 2024), we define

where cg is ane

OP _IP _ IP\T
320 m= {mlc ,My, ,Mie M}, )

where the-subscripts (+)1. and ()15 respeetively-indieate-denote 1P cosine and sine terms, shite-the-and superscripts (-)9F
and ()17 indieate-outrefer to out- and in-plane load components;—respectively—The-out-and-in-planeload-components—are
referred-to-therotor-disk;-and-they-are-. These components are obtained by transforming the measured flapwise and edgewise
components-measured-by-the-blade-attached-sensors-loads to the rotor disk frame based on the current blade pitchsetting.

325 The presentimplementation-is-based-on-aNNs are simple single-hidden-layer feed-forward neural-network-models with sig-

moid act1vat1onfuﬁeﬁeﬁ&:Phe—ffee—ﬁefweﬂepafametef&Nnggg§Lg§\p are trained by-via | backpropagatlon with Bayes1an regu-

larization

Matlab, 2023; Burden and Winkler, 2009)
using simulations from the full OpenFAST aeroelastic model (OpenFAST, 2024) At each time-simulation step, the inflow quan-

330 tities {shears-and-misalignment)-are extracted from the TurbSim %Stm%@%}ﬂfbtﬂeﬂ&ﬁewﬁe}ekﬁeld TurbSim, 2023)
by best-fitting over the rotor diskare

and load harmonics are computed via the Coleman—Feingold transformation (Coleman and Feingold, 1958) and then+filteredte

11
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Atran-timesubsequently filtered. During operation, Eq. (8) is
rovides real-time estimates of «, £y, and v using the measured load harmonics, en-the-eurrent-the rotor-equivalent wind speed

from Eq. (7), and en-air density p.
2.4 Model error correction

In generalpractice, some mismatch between the plant and the filter-internal model is to-be-expeetedunavoidable, and this wilt
invariably-affect-affects the performance of the digital shadow. The-effects-of-model-mismatehes-Such discrepancies can be

mitigated ta-vari he @&WMWIW dynamic data-
es-model adaptation
(Anand and Bottasso, 2023; Bottasso et al., 2006), bias-correction strategies (Chui and Chen, 1999; Drécourt et al., 2006; Gre-
wal and Andrews, 2008), or by adapting the process noise term-to-capture-the-effeets-of-unmeodelled-physiesamong-others
we focus on two approaches: a bias-correction appreach-method and a data-driven correction timited-applied only to the output

driven adaption

equations.
2.4.1 Bias correction

First, we consider-the-correction-of-biasesintended-address bias correction (BC), interpreted as additive errors in the model.
To this end, the filter-internal model expressed-by-of Eqs. (1) is modified as

5q ov, (10a)
ov = —M"1(Cév +Kiq+ Udu+fy +w), (10b)
b =wyp, (10c)
0y =D,év+D,éq+Eéu+b+v, (10d)
0z =F,0v+F,dq+ Gdou. (10e)

With respect to Egs. (1), the model is modified to include two corrections.

The first is-represented-by-correction term is the static force fy, which induces a steady extra deflection in the generalized
displacements -meant-to-correet-possible-to compensate model biases. As for-all-otherterms-in-the-medels-alse-with all model
terms, fj, is-assumed-to-depend-depends on the operating condition through the veetor-of-scheduling-parameters-scheduling

vector s.

A second W%WFWMGWM term b in the output equation (Eq. {10d)

ach-which accounts for sensor biases.

Following standard practice (Chui and Chen, 1999; Drécourt et al., 2006; Grewal and Andrews, 2008), the-extra—term-b is
promoted to a new-state-vartable-state undergoing a random walk exetted-by-the-driven by process noise wy, as expressed-by-in
Eq. (10c).
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disentangle-the-effeets-of-onefrom-the-effects-of the-other—In—faet- Because fj, and b can be collinear, their effects may not
be uniquely separable: a correction on the generalized displacements performed by fy will in turn correct the outputs through

the dq term in Eq. (10d), eventually affecting b. To eope-with-the-possible-collinearity-of-these-two-correetionsmitigate this,
fy is first calibrated by-negleeting-with b frem-the-medel-Onee-disabled; once suitable values for f;; for varying s have been
obtained, then fj is frozen and the bias b is activated in the filter. This two-step process is demonstrated lateren—tn-the-interest

of-. For s1mpl1c1ty, one eaﬂﬂﬂ%eadﬂeg}ee&wn&fo &ﬂé@ﬂlﬂ%«fhee*fﬁrentlrel and rely only on b%fafes—fmphetﬂy

eefreeﬁeﬁﬁeﬂemeve%e&eﬁeeuﬁey accepting possible displacement errors. Iterative tuning of both terms is also possible.
Finally, tuning is based solely on the measured outputs y, as

since neither states nor sensor biases are directly measurable.

2.4.2 A posteriori error correction for condition monitoring applications

Next, we consider a ease-relevant-to-CM-applications—tn-thisseenario-CM-oriented scenario in which the digital shadow is
tasked-with-predicting-the-behavior-of some-predicts selected quantities of interest —Hewever-measurements-are-available-for
these-same-quantities-while measurements of the same quantities are also available at run time. A CM system can then exploit
thisredundaney-by-comparing-compare predictions and measurements -erder-to detect faults or anomalies. Clearlyforsuch
a—syﬁem%&wefkmﬂﬁeﬁeeﬂvem&nﬂeﬂ:&wi&g@ggg@w%m the digital shadow predietions—must-be-in—very

ing-must closely match the measured behavior under nominal
-practice, the baseline model of

improve agreement, the linearized output equations

for z (Eq. 1d) are augmented with a correction term ¢e:
0z=F,0v+F,0q+Gdu+e. (11)

For complete generality, the error correction term is assumed to depend on the states dq and v, inputs du and scheduling

parameters s, and it is approximated using a neural network:
€ = NN.(pe,s,0q,0v,0u), (12)

where p. are the free network parameters.

Note that this approach does not
WNEq (lb) This-means-that-Consequently, the filtered states will —}fkgeﬂefal—ﬂe%pfeetselﬁaa{ekﬁh&&ueﬂm
generally not coincide with the true

and typically unknown) plant states. However, accurate estimates of the outputs of interest z when-—can still be achieved b
training the correction term is-trained-to learn the measured outputs zx7z .
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inAs before, a simple single-hidden-layer feed-forward NN provides
p g y “ININ provides

sufficient accuracy. Training is

in-performed by backpropagation (Matlab, 2023), with Weibull weighting applied to emphasize the most probable operating
conditions (Bangalore et al., 2017; Surucu et al., 2023; Anand and Bottasso, 2023).

3 Results

3.1 Simulation-based results

the digital shadow in simulation using the IEA-3.4-136-RW¥T—130 reference wind turbine (HEA3-37MW;-2023)-as-(RWT)
(IEA3.37MW, 2023) implemented in OpenFAST (OpenFAST, 2024). The eefﬂp}eteaeroelastic model was linearized for wind
speeds rangingfrom—{rom 5 to -25 with-inerements-of +-powertaw-m s~ 1, vertical shear exponents spanningfrom—{rom 0 to
-0.48with-inerements-of 012 horizontal-shearsranging-, horizontal shear from —0.1 to -0.1with-inerements-of-O-and-at, and
yaw misalignments of 0° and —30°. The filterwas-, implemented in MATLAB(The-MathWorks; Tne--2022)-and-its-execution
on-a-standard-single-CPU-laptop-took-of-the-order-of- (The MathWorks, Inc., 2022), required about 6 minutes for-a-1+0-mintte
physieal-time-simulation-at-a-step-frequeney-of-to simulate 10 minutes of physical time at 100 Hz on a standard single-CPU

Turbulent flow—inflow fields were generated with TurbSim(TFurbSim;2023);spanning-wind-speeds—varying-in-therange
_(TurbSim, 2023) for wind speeds of 5-11 —wﬁhﬂemealrpewer-lwms !, a vertical shear exponent of 6-20.2, and turbu-
lence intensities (TIs) of 6% and 18%. 5 3 P i i

fevelsetat, equal to 10% of the standard deviation of each signal&amag&eqaiva%enﬁ . was added to emulate SCADA sensor
uncertainties (Branlard et al., 2020b, a). Damage-equivalent loads (DELs) were computed by-rainflow-counting(Natarajan;2022)
~via rainflow counting (Natarajan, 2022). Unless stated otherwise, all results presented in this section refer to the representative

he-Estimation accuracy depends

strongly on the choice of process and measurement covariance matrlces‘&s—we}l—a%&e—ﬁheﬂﬂgef—mea%memeaﬁ%&eﬂgly

speed- (Branlard et al., 2020a). Measurement covariance reflected expected sensor noise, while process covariance was tuned

empirically. The resulting values showed little dependence on the operating condition and delivered consistent performance
across all cases.
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3.1.1 Representative example and input data

To illustrate the digital shadow workflow and clarify the associated input data, we provide a brief summary of a representative
simulation case that is used repeatedly throughout Sect. 3.1. The reference example corresponds to a single IEA 3.4-130 RWT
(IEA3.37TMW, 2023) operating in Region Il at a mean wind speed of 7 m s~ ", with a vertical power-law shear exponent of 0.2
fveringa-eonsi aneea i itions:18%. Turbulent
inflow fields are generated with TurbSim (TurbSim, 2023) using standard 10-minute realizations and six random seeds.
The digital shadow receives as inputs the measured rotor speed, generator torque, selected blade-root and tower load
measurements, and air_density (assumed known). Gaussian noise with a standard deviation equal to 10% of each signal
standard deviation is superimposed to emulate SCADA sensor uncertainty. These measurements are processed by the filter
to estimate rotor-equivalent wind speed, vertical and horizontal shears, structural states, and fatigue-relevant load quantities.
This representative case is used in Figs. 25 to demonstrate observer performance, bias-correction behavior, as well as state
and load estimation accuracy before extending the analysis to waked and yaw-misaligned turbines in Sect. 3.1.5.

3.1.2 Estimation of wind speed and shears

We startby-verifyingfirst assess the accuracy of the esﬂmates—efewsvtlvrr\l,w wind speed and shear -which-are-used to schedule the

model coefficients.

directly from the TurbSim longitudinal eemponents-of-the-wind field: speed-was-obtained-by-averaging-over-therotor-disk;
while-shears by-interpolating-over the same rotor-disk-area-the rotor-average wind speed was computed by disk-averaging,
while vertical and horizontal shears were obtained by fitting a power law in-the-vertical-direetion-and a linear funetionin-the
herizontal-oneprofile over the rotor disk, respectively.

Figure 2 compares the reference rotor-average wind-speed (dashed blueline) with the estimated rotor-equivalent wind speed

VE from Eq. (7) (solid redline

for a representative region II simulation at 7 ms~! and TIs of 6% (Fig. Za) and 18% (Fig. 2b). For-thecaleulation-of-the
estimated-rotor-equivalent-wind-speed;-the-To compute Vg, rotor speed and torque signals-were low-pass filtered using-with
a fifth-order Butterworth filter with a —3-dB--3 dB cutoff frequency of 8 rpm (Schreiber et al., 2020b), in-orderto-eliminate

higher-frequeney-removing high-frequency turbine dynamics and measurement noise.
For the same operating condition, Fig. 2¢ shews-time-histories-of-compares the reference power-law vertical shear (dashed

bluehﬁe}ﬁ%dﬂ%&e%ﬁmaf&eb%mfmmmww%nNEq (8) (sohd redhine). Figure 2d di%p%&y&&%ﬁﬁewef

shows the reference linear horizontal shear fdashe

turbine-in-ful-waked-conditions{as-deseribedJater+n-and its estimate for a fully waked turbine (Sect. 3.1.5)—We-demenstrate
the-behavior-of-the-horizontal-observerin-this-condition—, a case selected because wake meandering ereates-visible-changes

are-induces clear horizontal shear

e-Ground-truth values were extracted

fluctuations, unlike the modest variations typically observed in FurbSim-ambient-ambient TurbSim flow fields.
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Figure 2. Time histories of the rotor-average wind speed from TurbSim and from Eq. (7) at a wind speed of 7 ms ™" and at TIs of 6% (a)
and 18% (b), respectively. (c): time histories of the power-law vertical shear from TurbSim and from Eq. (8), a wind speed of 7 m st ..and
TI equal to 6%. (d): time histories of the linear horizontal shear from TurbSim and from Eq. (8) for the downstream turbine in full-waked

conditions (see Sect. 3.1.5). Reference results from TurbSim: dashed blue line; estimates: solid red line.

]

R}

from-the-correspondingmeasured-signalsShear estimation relies on load harmonics obtained via the Coleman-Feingold transformation (Colc
, followed by low-pass filtering (Bertele et al., 2021). The shear-ebserving-network-is-alse-fed-with-the-estimated-network also
receives the estimated rotor-equivalent wind speed Vg obtained-from Eq. (7) and with-the air density (here-assumed-to-be

known;-and-therefore-not-estimatedassumed known).

Tn-Across all cases, the ¢

of the rotor-and-the presenee of the controbsystem-Simtlarly;loss is expected, as Vg is inferred from turbine response —filtered
by rotor inertia and control action— while the shear observers are-driven-by-load-harmenies——which-here-again-entail-some
fittering-of-the-higherfrequeney-content-of-the-rely on load harmonics that similarly smooth the blade response. €onsidering
that-Because these quantities are used forseheduling-(i-einterpolating)-the-system-matrices-and-referenee-solely to schedule

16



475

480

485

490

495

500

505

(interpolate) the model matrices and equilibrium conditions, the-absence-of-some-of-the-highest-frequency-components—is
probably-an-advantage more than-a-deficiencyomitting high-frequency components is arguably beneficial.

Over the entire range of simulations, the average absolute error-was-found-to-be-errors were 2.4% for wind speed, 14.5%
for the vertical power—law shear exponent and 11.1% for the linear horizontal shear. Furthermere-the-averageerrorfor-the
in-In wake-steering scenarios (Sect. 3.1.5), the mean

aw-misalignment estimation error was 14.5%.

3.1.3 Performance of the bias correction approach

Fo-evatuate-To assess the BC approach deseribed-in-of Sect. 2.4.1 and to-analyze-the-behavior-examine the roles of the two

correction terms, we employed-the-same-individual-turbine-operating-used the same turbine in a clean low-TI inflow that-was
used-as in Sect. 3.1.2. Initiatly;-the BC terms were %{ehed—ef—ﬁ—}ﬂe}dmgﬂ&ebasehﬁe—peffefmaﬂee m%mmg
the baseline of the uncorrected appreachmodel. Figure 3a pre f
on-the-OpenFAST-medel-shows tower-top FA deflection from OpenFAST (dashed blueline)uncorrected-estimatesfrom-the-),
the uncorrected digital shadow (solid redline), and eorrected-estimates-using-the BC-approach-the BC-corrected estimate (solid
yellowhiner - Fhese restlts correspond-toawindspeedrof) at 7 ms™! and aturbulence intensity ¢ P T of 6%.

Introducing the static corrective force for-the-tower FA-defleetion; 7 4 —reduces the average absolute error from 16.4%
to 2.5%. Figure 3b shows-the—variation-illustrates the dependence of this static force with-respeet-to-the-wind-speed;—the
foree-is-normalized-to-one-at-ratedwind-speedon wind speed, normalized to unity at rated. Similar analyses were conducted
performed for other DOFs ;-but are omitted here-for brevity. tis-worth-noting-that-the small-deviations-observed-The remaining
discrepancies between the linear and nonlinear models m%mmmﬁmgm

as shaft tilt, structural deflections, gravity loads, an

small azimuth differences due to slight

rotor-speed deviations (NREL Forum), and errors in estimating the scheduling vector scontribute-to-the-observed-differences
between-the Hnear-and-nonlnear-models.

Tt-is-eommon-to-observe-bias-in-one-or-more-bladesensers-Bias in blade sensors is common (Pacheco et al., 2024). To
demonstrate-assess the effect of the termr-b Wmmmm&a 2.4.1,
Eq. 10c), we artificially in

added Gaussian noise to the blade 1 strain

gauge, with a standard deviation of 0.01% and a mean equal to 10% of the mean value-ef the-flapwise bending moment. Results

are-tHustrated-in-Fig-Figure 4a
the unbiased OpenFAST measurements (dashed blue) and the biased ene-as-a-dashed-teallineones (dashed teal). Figure 4b
shows-how-the-term-illustrates how b (dashed tealline) converges to the mean-of-the-artificially-added-bias—in-the-senser
injected bias (solid yellowtine), effectively correcting the sensor-outputmeasurement. Figure 4c shows-the-estimated-compares
the blade 1 deflection measured-on-the-OpenFAST-modelwithout-biasfrom the unbiased OpenFAST model (dashed blueline);

with-artifietally-introdueed-bias-), the biased case (dashed tealline), and the deflection-estimated-by-the-digital- shadow—uasing
the- BE-appreach-BC-corrected digital shadow (solid yellowkine). The average absolute defleetion-error is 3.61% without the

e-shows
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Figure 3. Time histories of tower top FA deflection as measured on the OpenFAST model (dashed blue line), uncorrected estimates from
the digital shadow (solid red line), and corrected estimates using the BC approach (solid yellow line) at a wind speed of 7 ms~" and a TI
of 6% (a). Variation of the static corrective force fZ A for the tower top FA deflection with respect to wind speed (b). The static force is

normalized to one at the rated wind speed to highlight relative variations.

artificial bias and 3.67% with the-compensated-artifieial-bias—demonstrating-compensation, indicating that the correction is

seenarios-where-removes the bias without degrading accuracy. Similar performance was obtained when different biases were
applied to each blade sensorwas i tas-achievi H Hey-

3.1.4 Application to an individual turbine

For the same individual turbine in a clean low-TI inflow shewn-in-of Sect. 3.1.2, Fig. Sathrough-Sd-report-the-time-histories
of-the-tower—top—d_show the tower-top FA and SS displacements ;-and the blade tip flapwise and edgewise deflections 5
respectively;-as-measured-on-the-OpenFAST-model-measured in OpenFAST (dashed blueline) and estimated by the digital
shadow usirg-with BC (solid yellowne)—Stmitarty, Fig:). Figures 5e and 5f report the time-histories-of the-tower-base resultant
bending moment and ef-the blade resultant bending moment at 15% blade-span;respectively—Figure Sreportsatypicalresult;

ieh-was-obtai ' ingle seed-in-regi i span. The figure shows a representative case at 7ms ™"

summarizes the performance across all simulations by listing the average absolute errorsfor-all-condueted-simulations.

Results indieate-show that the average absolute errors of the estimated turbine states eensistently-remain below 10% aeross
al-eendueted-for all simulations. DELs were computed for the resultant-mement-at-tower-base;noted-tower-base resultant
moment Mrp and-and the blade resultant moment at 15% blade-span—noted-span Mp_159. The-Their average absolute
errors for-these-two-quantities-are-in-therange-offall in the 5%—-15% range, with standard deviations averaging-approximately
of about 2.7% for Mpp and 4.5% for Mp_15% across all simuatation—scenarios. As expected, errors aretarger—forhigher
increase with TI. The ran et is-ir-Hine-wi i
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Figure 4. Time histories of blade 1 flapwise bending moment (m%') as measured on the OpenFAST model without bias (dashed blue line)
and with artificially introduced non-zero Gaussian noise (dashed teal line) (a). Convergence of the term b (dashed teal line) to the mean of
the artificially added bias (solid yellow line) (b). Time histories of the estimated blade 1 deflection as measured on the OpenFAST model
without bias (dashed blue line), with artificially introduced non-zero Gaussian noise (dashed teal line), and as estimated by the digital shadow

using the BC approach (solid yellow line) (c). Results correspond to a wind speed of 7 ms ™" and a TI of 6%.

Table 1. Average absolute errors for all conducted simulations for clean inflow conditions.

Avg. estimation error [%]

Situation
dbt  d3% df  d¥  Mpp DELs  Mp_1594 DELs
No wake, TI=6% 3.1 1.7 38 44 5.1 12.2
No wake, TI=18% 6.9 35 56 6.0 6.9 13.0
Average 5.0 26 47 52 6.0 12.6
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Figure 5. Time histories of tower top FA deflection (a), tower top SS deflection (b), and blade tip flapwise (¢) and edgewise (d) deflections,
tower-base bending moment (e), and blade bending moment at 15% blade span (f), as measured on the OpenFAST model (dashed blue line)

and estimated by the digital shadow using BC (solid yellow line). A wind speed of 7 ms~* and TI equal to 6% is considered.
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with previous studies (Abdallah et al., 2017; Branlard et al., 2020a, b, 2024a), which;-hewever—used-a-smaller number-of
although those works relied on fewer DOFs and did not eensider-include blade dynamics.

3.1.5 Application to waked turbines in a small cluster

To assess-the-performanee-of-the-proposed-method-in-evaluate the method under more complex inflow conditions, simutations
530 were-conducted-for-a-small-cluster-of-wind-turbines-we simulated a small turbine cluster using FAST.Farm (OpenFAST, 2024).

The cluster consists of three IEA 3.4-130 RWiturbines RWTs (IEA3.37MW, 2023) arranged in a row ;-as-shown-in-(Fig. 6;
and-named-), denoted WT1, WT2, and WT3 frem-the-upstream-to-the-mest-downstreamenefrom upstream to downstream.

WT3

.

6D

WT2

RN

Wind direction

Figure 6. Layout of a small cluster of three IEA 3.4-130 RW¥-turbinesRWTs. For all considered cases, the wind direction (indicated by the

blue arrow) is parallel to the row of turbines.

Two different-seenarios-were-consideredscenarios were investigated:

— In the firstease;—the—front—turbine—, WT1 is aligned with the wind direetion—The-incoming—wind—is—at rated speed

535 (9.8 ms™!) with-a-turbulenee-intensity-of 6% —As-aresat—turbine-and TI = 6%, WT2 is-entirely-within-lies fully in
the wake of WT1, and WT3 is-entirely-within-the-wake-in the consecutive wakes of WT1 and WT2. The digital shadow
is applied to the-two-dewnstream-wake-affected-turbines-WT2 and WT3.

— In the secondease;-the-, ambient conditions are the sameas-in-the-first-ease;but-the-front-turbine-, but WT1 is misaligned

yawed by —30°f-epeinting-to-theright-whenlooking-upstreanm)relative-to-the-wind-direction—Consequentlyturbine-_
540 WT?2 is then partially waked by WT1, while WT3 is fully svithin-the-wake-of-waked by WT2 and partially in-the-one-of
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by WT1. The digital shadow is applied to the-misaligned-front-turbine-WT1, as-well-as-to-the-twe-waked-ones-WT2, and
WTS3.

Table 2 presents-an-overview-of-summarizes the average absolute errors and %h&esﬁma&eekeu%pﬁt—DEL%fer—%heﬂ%DEL

estimates for both scenarios. For the-waked and yawed turbines,

blade DELs-is-in-tine—-with-the-errors-observed-blade DEL errors remain comparable to those obtained in Sect. 3.1.4 for the

are higher. This is consistent with the ¢
BEEs-added wake turbulence impinging on downstream machines. While tower DEL errors are similar for WT1 in-misatigned

errors are larger for the-Jatter—Thisis-WT2, hkely due to the complexaﬂdﬁeymme%ﬁeakmﬂwgeﬁefa%edr , asymmetric inflow
induced by the deflected wakeen i

Ne%wﬁhsf&ﬂdiﬂgp\g&gg\the low ambient turbulenee;—the-errors-in-the-towerDELs-TI, tower DEL errors are somewhat
larger for the i
waked-turbines. This i

awed WT1 than for the downstream

v-may reflect
the complex rotor aerodynamics in yaw, which are not full captured by the filter-internal model. In-addition;even-the-blade

Moreover, even

BEM-based aerodynamics in OpenFAST can be inaccurate in strong yawed-flow conditions (Branlard et al., 2024b), whereas
where CED.

or free-vortex methods can provide more reliable physics (Boorsma et al., 2018).

Table 2. Average absolute errors of the estimated outputs for all considered situations with complex inflow conditions, encompassing fully,

partially, and overlapping waked conditions.

Avg. estimation error [%]

Scenario Turbine Condition
MTB DELs MB*15% DELs

WT2 Fully waked 13.0 14.2

No wake steering
WT3 Fully waked 10.1 13.4
WT1 Misaligned 16.1 13.4
Wake steering WT2 Partially waked 15.5 16.7
WT3 Overlapping wakes 10.5 15.7
Average estimation error over all complex inflow conditions 13.0 14.7

Fer-a-deeper-insightinto-To further interpret these results, Fig. 7aand-7e-show-the-amplitude-of-the Fast Pourier Transform
FHF-)—d show the normalized FFT amplitudes of the tower-base bending and-moment and the blade bending moment at
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15% blade-span—respeetively;span for a single turbine in clean inflow conditionat-a-wind-speed-of 9-ms—1and Flequal-to
6%—whﬂe—ﬁg—¥b—wad4d~shwﬂ%e&am&and for WT2 in partlally waked eené&%—mﬂ%ﬁ%sewedfwef&gewaekﬁaeeekef

conditions. OpenFAST measurements (dashed blue) are compared with digital shadow estimates (solid yellow). The dlgltal

shadow i

harmonics, and captures the increase in load amplitudes from aligned to waked inflow. Under waked conditions, OpenFAST

eak amplitudes rise by factors of about 5 (tower) and 3

blade). The digital shadow errors in peak

amplitude are 14% under-cleaninflow-conditions—(clean) and 46% under-wakedeonditions—Similarly-the-errors-in-the-peak

amplitade-of-the-blade-bending-mementare-(waked) for the tower-base moment, and 18% fer-the-eleaninflow-ease-(clean) and
34% for-the-waked-eondition(waked) for the blade moment.

Although the proposed digital shadow is clearly not providing an exact representation of the turbine behavior, the accuracy

of the blade response in complex partially-waked and misaligned conditions is only slightly worse than the tower response
provided by recent simpler digital shadows (Branlard et al., 2020b, 2024b), which would not be applicable in such non-

symmetric conditions.

3.2 Validation against field measurements

Next, the digital shadow is testedin-evaluated under real-world conditions ;-using-measurements-obtained-on-using measurements
from a 3.5 MW eno wind turbine (eno energy GmbH) The-available-measurements-Available signals include generator torque,

rotor retatienal-speed, pitch angle, tower-top a
FA/SS accelerations, and blade-root flapwise and edgewise WWMMMWW
well as strain-gauge measurements of two components of the tower-base bending-moment and of the blade bending-moment at
25% blade-span. All measurements-data are sampled at arate-of-10 Hz. We-leverage-these-measurementsfor-a-dual-purpese:
in-a-first-step;they-are-tised-These measurements serve two purposes: (i) to assess the prediction quality of the predictions-of
the-digital-shadow—-as-diseussed-in-digital shadow (Sect. 3.2.2:-in-a-second-step;-they-are-used-); and (ii) to train a data-driven
correction of the eerresponding-output model using Eq. (11) s-as-diseussed-aterin(Sect. 3.2.4—
Felewing-the-same-approach-deseribed-in-). Following the procedure of Sect. 2.1, the filter-internal model is obtained-built

by linearizing an existing OpenFAST model of the wind-turbine-across—apredetermined-turbine over a range of operating
eonditions-points from cut-in to cut-out.
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Figure 7. Spectra of the tower base bending moment (a, b) and the blade bending moment at 15% blade span (¢, d) under clean inflow and
partially waked conditions, respectively. The results are shown as measured on the OpenFAST model (dashed blue line) and as estimated by
the digital shadow using BC (solid yellow line). The frequencies are normalized by the mean rotor speed, and all FFT amplitudes are scaled

relative to the peak amplitude recorded by OpenFAST.

3.2.1 Test site

The dataset used in the-eurrentthis study was collected at a test site frem+5-te-30-during two periods (15-30 October 2020 s-and
M@M February 202 1withi i

) as part of an unrelated project. The
measurements were used as recorded, without calibration or post-processing, and filtered only to remove gaps, stops, faults,
eand other non-power-production

conditions.

The test site, illustrated in Fig. 8, is located in northeast Germany, near the village of Kirch Mulsow, in the Rostock district
of Mecklenburg-Vorpommern, a few kilometers from the Baltic Sea. The terrain comprises gentle hills, open fields, and forests.
Four turbines, manufactured by eno energy GmbH (eno energy GmbH), are installed at the site. The digital shadow was applied
to replicate the response of WT3. The main technical specifications of WT3 and WT4 are summarized in Table 4; WT1 and

WT?2 are not described further, as they played no role in the present experiment.
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Figure 8. Layout of the test site, showing the turbine locations. The digital shadow is tested for the response of WT3. The sectors highlighted
in red and yellow indicate the wind direction range during the testing period, which are characterized by clean freestream and waked

conditions, respectively.

The testing period is-elassified-was categorized into different inflow conditions, as presented-summarized in Table 3. After

filtering te-remeve-gaps—and-non-power-production-conditions;—approximately49-h-of data—wereseleetedfrom-the-availab
measurement streams during thetesting period-under-out gaps and non—power-production periods, approximately 49 h of clean
free-stream eonditions—Theresulting-dataset-was-divided-data were retained. This dataset was split into two subsets: the first 5
ist i -38 11 (about 77%ef the-total)-—was-) were used to train the correction approaches described in
Sect. 2.4- " i e Ny . . . .

as-shewn-, while the remaining 11h were kept for validation and correspond to one representative day of clean inflow.
Furthermore, as indicated in Table 3, data from selected days with complex inflow eenditions-were used to further-assess

AAAANAAANAARANRAR SR AN

the-performanee-of-the-evaluate the digital shadow under eomplex-inflow-seenarios—tt-should-be-noted-that-more challenging
conditions. Importantly, no data from complex inflow eonditions-were-used-for-scenarios were used in tuning the correction

terms diseussed-presented in Sect. 2.4.1.
Wind speed and shear estimators for these turbines were developed and validated in previous studies (Schreiber et al., 2020a;

Bertele et al., 2021).
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Table 3. Inflow conditions during the testing period.

Inflow conditions Specific conditions Wind direction [°] Time period Total hours Data split [hrs]
Clean freestream Normal 145-335 17-31 Oct. 2020 49 38 (training) / 11 (testing)
Extreme vertical shear 145-335 26 Oct. 2020 3 3 (testing)
Complex inflow  Wake steering via yaw control 200-230 23 Feb. 2021 25 2.5 (testing)
Waked 40-70 15 Oct. 2020 2 2 (testing)

Table 4. Technical specifications of the WT3 and WT4 turbines at the test site.

) ) Turbine specifications
Wind turbine

Turbine model ~ Rotor diameter [m]  Hub height [m] ~ Rated power [MW]  Cut-in, rated, cut-out speeds [ms™]

WT3 enol26 126 117 35 3.0,12.5,25.0
WT4 enol26 126 137 35 3.0,12.5,25.0

3.2.2 Digital shadow performance without correction

First, we assess the ability of the digital shadow in-estimating—to estimate quantities of interest in-this-case;toads)y,~where
when no physical sensors are available. To this purpeseend, the digital shadow is fed with SCADA data, blade root load

measurements, and the inflow quantities produced by the wind observers, but not with the tower-base and 25%-span blade
measurements. Rather-these-measurements-are-used-to-assess-These withheld measurements are instead used to evaluate the
quality of the e weorresponding estimates.

Figure 9a and 9b repert-the-time-histories-of-the-show the normalized measured (dashed blue line) and estimated (solid red
line) tower-base bending moment resultant and blade bending moment resultant at 25% blade span, respectively, fer-+1+-h-over
11h on a sample day (20 October 2020) in-the-available-dataset-under clean freestream conditions—On-this-day,-the-turbine
expeﬂeﬂeed—e}eafhﬂﬂeweeﬂdiﬂeﬂs—wﬁ}r N%%Wmlan average TI of 13.5% ras-measured-by-the-met-mast—

‘ @fmmmmwmmthat the digital

e%&ma{ed—re%peme—akee*hibﬁ%—ca tures both low- and high-frequency variations well, although a clear offset —This-is-the-effeet

is present due to the plant/internal-model mismatch

in-between the real turbine and the approximate aeroelastic model
—an effect not observed in the simulated study of Sect. 3.1.4, where an-identical-OpenFAST-modelwasused-for-definingthe

the same OpenFAST model served as both plant and filter-internal model-but-atse-served-as-plantmodel.
The-For this sample day, the average absolute errors are 5.9% for the tower-base and-bending moment resultant and 21.3%

for the 25%-span blade bending moment res
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in-Fig—9-Additionallyconsidering-the-resultant. Over the full training dataset, the average-absolute-errorfor-the-tower-base
bending-momentresultant-is-error averages 12.4% (wﬁh—&mﬂ%mm%#mm 9.7%and-a-maximum-of-, max: 19.7%), while
640 for-the 25%-span blade error averages 18.7% (range: 13.7%and

-23.7%).
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Figure 9. Time histories of tower-base bending moment (a) and blade bending moment at 25% blade span (b), as measured (dashed blue

line) and estimated by the digital shadow (solid red line) for 11 h on a sample day (20 October 2020) in the available dataset under clean

freestream conditions. All values have been normalized using the same factor to preserve the confidentiality of the turbine data.
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3.2.3 Virtual sensing (bias correction)

Second, in-erder-to remove the observed offset, the correction of both outputs and states is obtained-with-performed using the
BC approach described in Sect. 2.4.1 and based on Eqs. (10)

The-empirical-The tuning of the correction terms w
blade root;-utitizing the-datastreams-avaitable-followed the procedure of Sect. 3.1.3, relying on tower-top and blade-root
measurements collected during the testing period;-as-deseribed-in-Seet—3-+3—.

First, the static force term f; was modified-by-trial-and-errer-adjusted through an iterative tuning process until no further
improvement was possible—tt-wasfound-that-this-term-depends—primarity-obtained. This term was found to depend mainly

on wind speed, while-the-otherterms-of-the-scheduling-set-whereas the other scheduling variables s had enly-anegligible
effectfor-the-data-streamsnegligible influence under clean freestream conditions. While a manual tuning strategy was adopted

in this work, more systematic or automated optimization approaches (e.g., gradient-based, Bayesian, or heuristic methods
(Nocedal and Wright, 2006)) could be employed and represent a promising direction for future development. Next, the bias
term b was activated, and its driving process noise was ealibrated-tuned to further reduce the-error-in-the-measurements—As
for-measurement errors. As with the process noise affecting the dynamic equilibrium equations, this-calibration-term-again-did
notexhibit-ano significant dependency on wind speed or turbulence intensity —ttshould-be-noted-that;-considering-the-training
datasetafter-was observed. After tuning, the average absolute errererrors over the training dataset were 3.1% for the tower-top
acceleration resultant ts%&%«whﬂeﬁt—t&w 3.5% for the bladereot-blade-root bending moment resultant.

Table 5 presents-an-overview-of-summarizes the average absolute errors and the-estimated-output DELs for the eemplete

dataset-categorized-full dataset, grouped by the inflow eonditions-classes defined in Table 3.

Afterimplementing-the bias-correetion; For the same sample day shown in Fig, 10, the bias correction reduces the average
absolute errors for Mg and Mp_g59, deereased-to 4.2% and 2.7%, respectively, for-the-same-sample-day-showninFig—10;
indicating that the offset in-the-estimations-has been effectively removed. In-additionsthe-The corresponding DEL estimation
errors are 4.3% for Mpp and Mp—y59-became43%and-9.1% srespeetivelyfor Mp_o59,. Overall, the BC approach seems-to
be-capable-of-tracking-accurately tracks both low- and high-frequency fluctuationsin-the-quantities-ofinterest-and-of providing
aceurate-estimates-of their- DELs, providing reliable DEL estimates for the quantities of interest.

It should-be-mentioned-is worth noting that the BC method appears—to-be-proves more effective in eorrecting-estimated
quantities-in-the-real-field-ease-the field than in the simulation environment. This eeu%ébefltte%&sevefa%—fea%eﬁs—saelm%mi

stem from the higher TI and

introduces-more-the tenfold faster sampling rate used in simulations, which introduces additional high-frequency fluctuations 5
whfeh—dfe—mef&ehaﬂeﬁgmg@m to estimate accurately.

Given the strong
and generalizable performance of the BC approach, all remaining results for complex inflow conditions are obtained using

method. This choice also aligns with a ke
application of the digital shadow ;—whieh-aets-as a virtual sensor to-estimate-for quantities that cannot be measured-directly
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Figure 10. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b) for 11 h on a sample
day (20 October 2020) in the available dataset under clean freestream conditions. Measurements: dashed blue line; corrected estimates of

the digital shadow using BC: solid yellow line. All values have been normalized using the same factor to preserve the confidentiality of the
measured turbine data.

due—to—directly measured for technical or economic

reasons. For brevity, time-history plots are shown only for the waked inflow eonditions—case (Fig. 11), as this scenario is

particularly féevaﬂkmﬁmfefmaﬂve%ﬁtmdeﬁwﬂﬁg@mmodel behavior under complex aerodynamic

interactions. Figures for

vthe other inflow.

680 classes are omitted for conciseness.

— Extreme vertical shear:
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The bias-eorrection—tuned-using BC correction —tuned exclusively on the training dataset defined in Table 3— was developed
without using any datafrom-complex-inflow-conditions—Despite-thiscomplex-inflow data. Even so, the average absolute errors
for M7p and Mp_o59 are 6.0% and 2.4%, respectively, for the dataset-correspondingto-the-extreme vertical shear seenario
%MH%M&%M(MWQ&DEL estimation errors ferMrp-and-A p—oso—are 6.7% and
7.3%-respe ith- These results confirm that the
BC approach maintains errors below 10% s-even-underextreme-shear-conditions—It-should-be-noted-that-even under severe

shear conditions, where the power law vertieal-shear-exponent ranges from 0.15 to 0.72 —with-an-average-vatue-of-(average
0.42).

— Wake steering via yaw control:

For the

wake-steering scenario, the
average absolute errors for Mrp and Mpg_o59, are 6. 2% and 2.3%, respectively—Additionally;—, while the DEL estimation

errors forMrp-and-Mpg—mo—are 0.9% and 8. O%ﬂemewmwﬂ%gﬂ%&gﬂgﬁﬂw

varies between —16° to-and 11°.

the inherently more complex

associated with wake steering, the digital shadow continues to perform robustly under these conditions.

— Waked:

Figures 11(a) sthrough 11(b)y;H(e)-and-H{(d)present-the-time-histeries-of-the-d) show the tower-base bending moment, the
25%-span blade bending moment resultants;-and-resultant, and the vertical and horizontal shears ;respeetively;for-the-dataset
corresponding-to-the-waked-seenario-defined-inTable3for the waked dataset. Measurements are indicated-by-a-dashed-bluetine;
while-the-fine-tuned-shown as dashed blue lines, and BC-corrected values-are-shown-with-a-solid-yeHowline-As-illustrated-in
Fig—H(e)the-estimates as solid yellow lines. The power law vertical shear has an average value of —0.15 ;-marked-by-a-(dark
red dashed llne‘flihis—eendiﬁeﬂ—wlmattrlbuted to the hlgher hub helght of WT4 and the-influence-ofits-wake-its wake influence
on WT3. a-The horizontal shear averages —0.12 (light
red dashed llne-has—aﬂ—average—va}tl&eﬁ—()&%) further confirming the-presenece-of-waked-conditionson-W¥3strongly waked

conditions.

TFhe-For this dataset, the average absolute errors for Mrp and Mp_ 959 are 11.4% and 5.1%, respectlvely, while the DEL
estimation errors are 0.9% and 13.3%: i

Although the BC approach generally performs well, the mhefem}ycomplex turbine dynamlcs and m&ﬁgmﬁ%lwvana-
tions in vertical and horizontal shear under wake conditions

result in slightly higher errors, with some values exceeding 10%.
Overall, the range of average estimation errors is consistent with the findings of previous studies (Abdallah et al., 2017;

Branlard et al., 2020a, b, 2024a), which

relied on fewer DOFs, neglected blade dynamics, and were not validated under complex infloweenditions.
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WMMW the slightly higher estimation-errors-observed
Mm a larger datasetmay-be-neeessary-to-reduce residual-offsets-and-achieve
more-aceuratepredictions-in-such-seenarios—Additionally. In particular, the tuning of the BC correction term-eould-be-enhanced

by-incorperatingnot-only-wind-speed-but-alse-terms may benefit from explicitly incorporating variations in vertical and hori-
zontal shear, as well as yaw misalignment, in addition to wind speed.

Table 5. Overview of average absolute errors and estimated output damage-equivalenttoads(DELs j-under various inflow conditions.

Estimation error [%]

Inflow conditions Time duration [hrs]
Mrp Avg. Abs.  Mp_o59 Avg. Abs. Mrp DELs Mp_o59 DELs
Clean freestream 11 4.2 2.7 4.3 9.1
Extreme vertical shear 3 6.0 24 6.7 7.3
Wake steering via yaw control 25 6.2 23 0.9 8.0
Waked 2 11.4 5.1 0.9 133

3.24 Condition monitoring

Next, the-measurements of the tower-base and 25%-span blade bending moments were utilized-used to implement and validate

a data-driven a-pesteriori-error-a posteriori correction of the corresponding output equations, following Eq. (11), in-order-to

provide-a-to obtain high-quality predietion—predictions of these quantities. In this second-seenarioconfiguration, the turbine
is permanently equipped-with-sensorsinstrumented, and the digital shadow provides expected values for-these-quantities—of
Mmmmmem%%mcondmons A CM act1v1ty (not dﬁeu%%eekeﬁ&m&y—zed

further discussed here) may then compare predictions and
measurements to detect anomalies. Prediction quality is quantified using the Root Mean Squared Percentage Error (RMSPE),
which-is-commenty-used-commonly adopted in CM (Liu et al., 2023).

The same dataset presented-used in Sect. 3.2.2 was used-for-training;-with-the sample-day-allocated-employed, with a sample
day reserved for validation. The NN-based correction term was implemented using the MATLAB Deep Learning Toolbox

(The MathWorks, Inc., 2022)w . A basic trial-and-

error —study led to a neural network architeeture—with-a—single-hiddenlayerecontaining-with one hidden layer of
16 neuronswas-seleeted. During training, the Polak-Ribiére Conjugate Gradient algorithm (traincgp) and BFGS quasi-Newton

backpropagation (trainbfg) yielded the best performance for the tower-base and 25%-span blade bending moment, respectively.

Notably;-the-achieved RMSPEs-for-the-training-of the The resulting RMSPEs during training were approximately 0.8% for the
tower-base and 0.9% for the 25%-span blade bending moments-were-astow-as-about-0-8%-and-0-9%;respeetivelymoment.
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Figures 12(a) and 12(b) report time histories of the tower-base and 25%-span blade bending moment resultants, respectively.
Measurements are shown with a dashed blue line and the corrected enes-estimates with a solid green line. Before implementing
the a-posteriori-a posteriori error correction, the RMSPE for Mrp and Mp_o54 were 6.1% and 21.6%, respectively. After

data-driven correction, these values dropped to 1.3% and 1.5%, respectively.

A closer inspection of the time series also shows that the NN-corrected model captures most of the short-term intermittenc
resent in the measured loads, including the majority of fast fluctuations driven by turbulent inflow. The sharpest intermittent
spikes observed in real turbine data are only partially reproduced, reflecting the inherent smoothing of the underlying linear

model. Nevertheless, the dominant variability and overall intermittency level are matched well enough for the CM application
considered here. Overall, it appears that the proposed data-driven approach is very-effeetive-at-highly effective in correcting

the output equations, as both slow and fast fluctuations of the two quantities of interest are foHowed-tracked with remarkable

accuracy, although it cannot improve the state model.

4 Conclusions

We have presented, verified, and validated w1

w-a digital shadow of a

wind turbine, first in a simulation environment under freestream, waked, and wake-steering scenarios, and then against a field
dataset. Building on a classical Kalman filtering approach;-the-propesed-digital-shadewformulation-framework, the approach

linearizes an existing and trusted aeroservoelastic model to derive the filter-internal linear model. Reusing existing-such models
reduces development time, leverages resourees-already nvestedinprior tuning and validation efforts, increases confidence in
the-results, and avoids duplication of effertwork.

Departing from existing studies, tower
side-side and the-rotor blade DOFs in-order-were included to support more general operating conditions, such as the-ones
asheared inflow, waked flow, and yaw misalignment. Since
the linearization must now span a WMWMMWIW the
filter-internal model is scheduled with respect to a—nﬁmbeeef—p&mme%efs—%askedw\ﬂmw representing the main drivers
s-These scheduling
parameters are estimated in real time duﬂﬂgepef&&eﬁgmsemmww@l@glgg&from SCADA and blade load

measurements.

of the turbine response.

testing showed state-estimation errors generally below 10% across all te%e&emadiﬁeﬂ%%&eﬂvefageﬂl%e}t&eeﬁeefe@l?ﬂ:%
is-t-therange-of-conditions. DEL errors ranged from 5%-15%,

and-in—waked-conditionswith higher values under elevated turbulence and waked inflow, as expected Slightly larger errors

by%hf%lG 1%) occurred under yaw misalignment, reflecting limits of the linearized model. Rem&ﬂe&bky—fheﬁeeufaeyefﬂie

tField results were
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remarkably similar to those in simulation, even without any-ad hoc tuningef-the-medel--However,clear-biases—were-present;
which-are-indieative-of the limits-of-the, although clear biases indicated limitations of the underlying filter-internal model.

Indeed;the-main-weakness-A key limitation of a digital shadow is its relianee-dependence on a white state-space model—Fhis

strategies were examined, yielding grey models with substantially improved prediction accuracy.

The BC approach performed robustly under
complex inflow conditions, including extreme vertical shear, waked flow, and wake- steermg control%}uﬁﬁgﬁe}ekwhdzmow

- Errors remained

Overall, the BC method reduced average absolute errors from roughly 20% to a-ange-of 2%6-11%-Additionatly- the-average
DEL-estimation—error-wasreduced-to-between—, and DEL estimation errors to 1%—13%-—These-improvements—represent-a
substantial-advancementoverresults reportedin-the, representing a significant improvement over recent literature and hightight
the-potential-of-the-propesed-approach-underscoring its potential for fatigue analysis, lifetime eonsumption-estimation, and
load-aware controlstrategies. In parallel, the neural-correction-of-the-selected-outputs-of-interest-also-NN-based a posteriori
output correction proved highly effective, reducing the-load RMSPE from a-—+ange-of-10%—15% to appreximatety-about 1%-

TFhis-euteome-, which is particularly promising for fheapph&%&o&eﬁh&d&gﬁa%s}mdow—m%eemmswm

Several improvements are possible.

Additional inflow quantities may be-necessary-to-furtherimprove-the-further enhance scheduling of the filter-internal model-

MW@&% rotor as a sensor technology by expaﬁdiﬂg—fhe—}oad—lﬁrafmomes—to
inelude the extending the harmonic content to 2P €2
M@WMWMMW larger field datasets
covering a-widerrange-of-broader inflow and operating conditions, as well as different turbine types. tn-additionlMoreover, the

refined by accounting for
variations in vertical and horizontal shearand-, as well as yaw misalignment, which alse-would require more extensive data.
We also note that the wind speed and shear observers smooth some high-frequency content; however, since these quantities are

tuning of the BC correction term could be im
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Figure 11. Time histories of the tower-base bending moment (a), blade bending moment at 25% blade span (b), vertical shear (c), and
horizontal shears (d). Measurements: dashed blue line; corrected estimates of the digital shadow using fine-tuned-BC: solid yellow line. The
shears are shown with solid red lines, with an average value marked by red dashed lines. All values have been normalized using the same

factor to preserve the confidentiality of the measured turbine data.
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Figure 12. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b). Measurements: dashed
blue line; corrected estimates of the digital shadow using NN: solid green line. All values have been normalized using the same factor to

preserve the confidentiality of the measured turbine data.
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Vector of sensor biases

Static correction force

Input vector of the inflow estimator
Vector of free network parameters
Vector of generalized displacements
Vector of scheduling parameters

Input vector

Vector of generalized velocities

Vector of outputs for Kalman innovation

Vector of other outputs of interest

Measurement noise vector

Process noise vector

Rotor swept area

Generic output of the wind inflow characteristic observer
Power coefficient

Displacement

Rotor inertia

Horizontal shear

Bending moment resultant

Bending moment component

Torque

Rotor radius

Wind speed

Vertical power-law shear exponent
Misalignment angle

Output correction term

Blade pitch angle

Tip speed ratio

Air density

Rotor azimuthal position
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Q Rotor rotational speed

()F Edgewise component
(HF Flapwise component
840 (-)f4 Fore-aft component
(+)% Side-side component
()P In-plane component
()or Out-of-plane component
(NN Quantity corrected by a neural network
845 (+)1c 1P cosine component
()1s 1P sine component
() Bi Quantity referred to the ith blade
()B_s% Quantity referred to the s% spanwise location
()rs Quantity referred to the base of the tower
850 (g Estimated quantity
(m Measured quantity
()o Reference equilibrium condition
o(+) Perturbation about a reference equilibrium condition
855 BEM Blade element momentum
CFD Computational fluid dynamics
CM Condition monitoring
DEL Damage-equivalent load
DOF Degree of freedom
860 FA Fore-aft
FEM Finite element method
FFT Fast Fourier transform
LUT Look-up table
NN Neural network
865 BC Bias correction
PSD Power spectral density
RMSPE Root mean squared percentage error
ROM Reduced order model
870 SCADA Supervisory control and data acquisition
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875

880

885

SS Side-side
TI Turbulence intensity

WT Wind turbine
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