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Abstract.

We present a digital shadow Kalman filtering approach
:::::::::
framework

:
based on the direct linearization of a multibody aeroservoelastic

model of a wind turbine
::::::
trusted

:::::::::
multibody

:::::::::::::
aeroservoelastic

:::::
wind

::::::
turbine

::::::
model. In contrast to approaches

:::::::::
shadowing based

on ad hoc models, the reuse of existing trusted
::::::::
modeling

::::::::::
approaches,

::::::
reusing

::::::::
validated

:::::::::
industrial

::
or

::::::::::::
research-grade

:
models

reduces development time and duplication of effort, leverages resources invested in tuning and validation, and eventually5

increases confidence in the results.

This approach has already been pursuded by others, but it is here improved with respect to several main aspects of the

formulation. To extend the applicability to
:::::::
Building

::
on

:::::
earlier

:::::
work,

:::
the

:::::::::::
filter-internal

::::::
model

:
is
::::::::
extended

::
to

:::::::
improve

::::::::::
applicability

:::::
under non-symmetric, waked, and yaw-misaligned conditions, the filter-internal model – in addition to the

:::::
inflow

::::::::::
conditions.

::
In

:::::::
addition

::
to tower fore-aft and rotor rotational dynamics – now also includes the

:::::::::
rotor-speed

:::::::::
dynamics,

:::
the

:::::
model

:::::::::::
incorporates10

tower side-side and the
:::::
motion

:::
as

::::
well

::
as

:::::
blade

:
flapwise and edgewise degrees of freedomof the rotor blades. To make the

model aware of the inflow conditions at the rotor disk, inflow estimators are used to detect in real time during operation
:
.

::::::::
Real-time

::::::
inflow

::::::::
observers

:::::::
estimate

:
rotor-equivalent values of the wind speed, vertical shear, horizontal shear(on account of

waked conditions)
:::
and

::::::::
horizontal

:::::
shear, and yaw misalignment(in support of wake-steering control). These inflow parameters

are used to schedule the filter-internal model, adapting its behavior to the current conditions experienced by the turbine.15

Furthermore, the filter-internal
:
,
:::::::
enabling

::::::::::::::::::::::
operating-point-dependent

::::::::::
scheduling

::
of

:::
the

:::::::::
linearized

::::::
model.

::
To

:::::::
further

:::::::
enhance

::::::::
predictive

::::::::
accuracy,

:::
the

:
white-box model is augmented with data-driven correctionsto improve its predictive accuracy. Two

approaches are explored for the correction of the model: a bias correction method that attempts to improve both
:
,
::::::::::
considering

::::
both

:
a
:::::::::::::
bias-correction

::::::::
approach

:::
that

::::
acts

::
on

:
states and outputs, and a neural-based one that only corrects the outputs but not

the states
::::::::::::::::::
neural-network-based

:::::
output

:::::::::
correction.20

The proposed digital shadow is demonstrated first in a simulation environment, considering clean
::::::
method

::
is

:::::::
validated

:::
in

::::::::
simulation

:::::
under

:
freestream, waked, and wake-steering conditions, and then using a field dataset collected on an instrumented

turbine. To further validate its performance under complex inflow conditions, additional field data evaluations are conducted,

including cases of extreme vertical shear , waked, and wake-steering conditions. Remarkably, the quality of the estimates

of the damage equivalent loads for the field case is similar to the simulation case, even without any specific correction of25

the filter-internal model. However, after applying correction techniques, the quality of the estimates improves drastically,

yielding errors in the damage equivalent load estimates of
:::::::
scenarios

:::
and

:::::::::::
subsequently

:::
on

::::
field

::::
data

::::
from

::
an

:::::::::::
instrumented

:::::
wind

::::::
turbine.

:::::::::
Additional

::::
field

:::::
cases

::::
with

:::::::
extreme

::::
shear

::::
and

:::::
waked

::::::::
operation

:::
are

::::
used

::
to
::::::
assess

:::::::::
robustness.

:::::
Even

::::::
without

::::::::::
data-driven
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:::::::::
correction,

:::::::::::::::
damage-equivalent

:::::
loads

::::::::
estimated

:::::
from

::::
field

:::
data

:::::::
exhibit

:::::::
accuracy

::::::::::
comparable

::
to

::::::::::::::
simulation-based

::::::
results.

::::::
When

::::::::
correction

::::::::
strategies

:::
are

:::::::
applied,

::::::::
accuracy

::::::::
improves

:::::::::::
substantially,

::::
with

::::::::::::::::
damage-equivalent

::::
load

:::::
errors

:::::::
reduced

::
to
:

only a few30

percentage points.

::::::
percent.

:

1 Introduction

Digital twins for wind turbine applications have recently received a significant attentionfrom the research community, on their

way to become
:::::::
garnered

:::::::::
significant

::::::::
attention,

::::::::
emerging

::
as

:
key components of modern wind systems. Digital twins can play35

various roles in multiple applications, including the support of control systems (Anand and Bottasso, 2023), the estimation

of consumed and remaining lifetime
:::::
They

::::::
support

:::::::
control

:::::::::::::::::::::::
(Anand and Bottasso, 2023),

:::::::
lifetime

:::::::::
estimation

:
(Branlard et al.,

2020b; Song et al., 2023), and the monitoring of the condition of assets (Olatunji et al., 2021). In fact,
::::
asset

::::::::::
monitoring

:::::::::::::::::
(Olatunji et al., 2021)

:
.
:::::::
Because wind turbines operate autonomously in complex , dynamic, and often harsh ambient conditions.

The
:::
and

:::::::
variable

:::::::::
conditions,

:::
the

:
ability to mirror the behavior of each asset with its own digital replica clearly has a very40

significant potentialand a wide scope. Additionally, by combining data
:::::
offers

:::::::::
substantial

::::::::
potential.

:::::::::
Combined

:
with machine

learning and artificial intelligence, the quality of the digital copy can be improved over time, with obvious benefits in
:::::
digital

::::::::::::
representations

:::
can

::::::::::
continually

:::::::
improve,

:::::::
thereby

:::::::::
enhancing productivity and profitability.

Digital twins provide services by building
::::
build on the predictive abilities of digital shadows. In fact, a digital shadow

is a mirror of an asset obtained through a
:
,
:::::
which

::::
rely

:::
on

::
a
:
one-way data flow (from

::::
from

:::
the

:
physical asset to digital45

model), whereas a digital twin is based on a two-way data flow that closes the loop between the virtual and physical entities

(Sepasgozar, 2021). This paper focuses on the formulation of a method to mirror the behavior of an asset, while the loop closure

is not specifically considered here. Therefore, the term digital shadow, instead of digital twin, is preferred in the present context

::
the

:::::::
model,

:::::
unlike

::::::
twins,

:::::
where

:::
the

::::
loop

::
is

::::::
closed

::::::::::::::::
(Sepasgozar, 2021).

:::
As

::::
this

::::
work

:::::::
focuses

:::::
solely

:::
on

:::::::
accurate

:::::::::
mirroring,

:::
we

::::
adopt

:::
the

:::::
term

:::::
digital

:::::::
shadow (Hoghooghi et al., 2024).50

There is clearly a plethora of ways to develop digital shadows. Here, we expand on an approach based on the integration

of
::::::
Among

::::
the

:::::
many

:::::::
possible

:::::::::::
formulations,

:::
we

::::::
follow

::::
and

::::::
extend

::
an

::::::::
approach

::::
that

:::::::::
integrates an aeroservoelastic model of

the machine with a Kalman filter (Grewal and Andrews, 2014; Branlard, 2019; Branlard et al., 2024a; Hoghooghi et al.,

2024). Although this may seem to be a relatively standard and straightforward way of developing a digital shadow, it has a

number of interesting characteristics. First, each wind turbine developer has trusted aeroservoelastic models of its turbines
:::::
Wind55

::::::
turbine

::::::::::::
manufacturers

::::::
already

::::::::
maintain

:::::
trusted

::::
and

::::::::
validated

:::::::::::::
aeroservoelastic

::::::
models, which are fine-tuned during design and

often carefully validated with data from instrumented prototypes and field trials. These models seem to be ideally suited for

developing digital shadowsinstead of creating new ad hoc models from scratch for this specific task. Second, developing a

digital shadow from an existing model immediately gives a baseline predictive ability, even in the absence of
::::
ideal

:::::::::
candidates

::
for

:::
the

:::::::::::
development

::
of

::::::
digital

::::::::
shadows.

:::::
Using

::::
these

:::::::
models

::::::::
eliminates

:::
the

:::::
need

::
to

::::::
rebuild

::
ad

:::
hoc

:::::::::::::
representations

:::
and

::::::::
provides60

::::::::
immediate

:::::::::
predictive

::::::::::
capabilities,

::::
even

:::::::
without

:
extensive field datasets . On the other hand,

:::
–an

::::::::
advantage

::::
over

:
purely data-
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driven black-box approachescan only be aware of the informational content of the data they are trained on. Long measurement

times may be needed for collecting datasets that cover all the operating conditions of interest (including the ones at the

boundaries of the operational envelope) and that possess sufficient statistical significance, in turn hindering the applicability of

methods that exclusively rely on data. From this point of view, an approach based on an existing trusted aeroservoelastic model65

seems to be more appealing, especially when considering that such a white
::::::::::
approaches,

:::::
which

::::::
require

:::::::
lengthy

:::
and

:::::::::
expensive

:::::::::::
measurement

:::::::::
campaigns.

:::::::::
Moreover,

::
a

::::::::
white-box

:
model can later be turned

:::::::::
augmented

::::
with

:::::::::
data-driven

::::::::::
corrections,

::::::::
evolving

into an adaptive grey modelwhen augmented with corrective elements based on data.

The approach proposed here is based on the work of Branlard (2019) and Branlard et al. (2024a): an existing
::::::::
Following

::::::::::::::::::::::::::::::::
Branlard (2019); Branlard et al. (2024a),

:::
an

:
aeroservoelastic model is linearized around a number of operating conditionsto70

define
::::::
multiple

::::::::
operating

::::::::::
conditions,

:::::::
yielding

:
a linear state-space filter-internal model ;

::::::
internal

:::::
model

:::::::
updated

:
at each time

step , a Kalman filter is used to innovate the predictions of the model by using supervisory control and data acquisition (SCADA

) measurementsfrom the operating asset, delivering estimates of the model states and of additional outputs of interest.

This existing approach is improved here
::
via

:::::::
SCADA

:::::::::::::
measurements.

:::::
Here,

::
we

:::::::
improve

::::
this

:::::::::
framework

:
in four main ways.

First, in addition to the
:::
the

::::::
internal

:::::
model

::
is
::::::::
expanded

::::::
beyond

:
tower fore-aft and rotor rotational dynamics (Branlard, 2019; Branlard et al., 2024a)75

, the filter-internal model now includes also the
:::::::::
rotor-speed

::::::::
dynamics

::
to

::::::
include

:
tower side-side and the

:::::
motion

::::
and

:::::
blade flap-

wise and edgewise degrees of freedom (DOFs) of the rotor blades
::::
DOFs. This richer description of the system response is

meant to enable the application of the digital shadow to more general operating conditions, as for example the ones in strongly

shearedflows, or in wake overlap, or in yaw misalignment for
:::::::::::
representation

:::::::
extends

::::::::::
applicability

::
to

:::::::
strongly

::::::::
sheared,

::::::
waked,

:::
and

:::::::::::::
yaw-misaligned

:::::::::
conditions

:::::::
relevant

::
to wake-steering wind farm control.80

Second, because of the wider range of possible operating conditions now supported by the digital shadow, a more sophisticated

schedulingof its linear state-space filter-internal model is necessary. To this aim
:::
the

:::::
wider

::::::::
operating

::::::::
envelope

:::::::
requires

:::::
more

::::::::
advanced

:::::::::
scheduling.

:::::::::::
Accordingly, the model is scheduled here not only in terms of wind speed – as commonly done –, but

also with respect to
:::
not

::::
only

::
by

:::::
wind

:::::
speed

:::
but

:::
also

:::
by vertical shear, horizontal shear (on account of possible

::::::::
capturing

:
wake

impingement), and yaw misalignment. These three extra scheduling parameters are tasked with informing the model of the85

current inflow conditions present at the rotor disk. These quantities are detected
:::::
inflow

::::::::::
parameters

:::
are

::::::::
estimated in real time

during operation by dedicated observers (Kim et al., 2023; ?)
::::
using

::::::::
dedicated

::::::::
observers

:::::::::::::::::::::::::::::::
(Kim et al., 2023; Bertelè et al., 2024).

Third, a bias-correction approach is used to improve
::::::::
procedure

:::::::::
improves the accuracy of the filter-internal model. The

approach is designed to compensate for possible biases in the estimation of both the system states and of the
::::
both

::::
state

::::
and

output equations. To correct the system states, an error term is added to the dynamic force-balance equilibriumequations,90

and it is calibrated depending on the operating conditions. A more general approach would be to correct the stateequations

with a non-linear error term, following for example Bottasso et al. (2006). This is a planned future improvement, and in

fact the implemented Kalman filter is already able to handle non-linear models (Wan and Van Der Merwe, 2000), but this

capability is not discussed further here. To correct the output equations, measurement
::::
State

::::::
biases

:::
are

:::::::::::
compensated

:::::::
through

::::::
additive

:::::
error

:::::
terms

::
in

:::
the

:::::::
dynamic

:::::::::::
equilibrium,

::::::::
calibrated

::
as

::
a
:::::::
function

::
of

:::
the

::::::
current

:::::::::
operating

::::
state.

::::::
Output

:
biases are pro-95

moted to state variables , whose dynamics are triggered by a dedicated process noiseterm. The approach is shown to yield a

3



considerable improvement in the quality of the estimationof fatigue damage
::::::::
governed

::
by

:::::::
process

::::
noise.

::::::::
Although

::::
more

:::::::
general

::::::::
nonlinear

:::::::::
corrections

:::::::::::::::::::
(Bottasso et al., 2006)

::
are

::::::::
possible,

:::
the

:::::::
adopted

::::::::
approach

::::::
already

:::::::
delivers

::::::::::
substantial

::::::::::::
improvements

::
in

::::::::::::
fatigue-damage

::::::::::
estimation.

Fourth,
:::
for

::::::::
condition

::::::::::
monitoring

::::::::::
applications

:
the model is augmented by

::::::::
enhanced

:::
via

:
a data-driven learning element to100

improve its predictive ability for condition monitoring (CM) applications. In such a case, the correction is only applied to

specific outputs of interest for which measurements are available
:::
that

::::::::
corrects

:::::::
selected

:::::::
outputs

:::::
using

::::::::::::
measurements

:::::
from

:::::::
onboard

::::::
sensors. A neural-based correction term is

::::
term

::
is

::::::
trained

:::
on

:::
the

::::::::
observed

:::::::::::
discrepancies

::::
and

:
added to the relevant

model equationsand trained based on the measurements provided by on-board sensors. After learning, the model achieves a

very high accuracy in the predictions of these outputs, which a CM system (not described here) can leverage by comparing105

predictions with measurements in order to detect possible anomalies and faults
:::::::::::
corresponding

::::::
model

::::::::
equations,

:::::::
yielding

::::::
highly

:::::::
accurate

:::::::::
predictions

:::::::
suitable

:::
for

:::::::
anomaly

::::::::
detection.

The proposed approach is first demonstrated in a simulation environment
:::::
digital

:::::::
shadow

::
is

:::::::::::
demonstrated

::
in

:::::::::
simulation under

clean freestream, waked, and wake-steering conditionsand then validated in the field using ,
::::
and

:::::::
validated

::::
with

:::::
field data from

an instrumented multi-MW wind turbine , encompassing
::::::
turbine

:::::
under

:
both clean and complex inflowconditions. The imple-110

mentation is based on the widely used open-source aeroservoelastic simulation environment OpenFAST and
::::::
utilizes

::::::::::
OpenFAST

:::
and

::
its

:
associated tools (OpenFAST, 2024; Jonkman and Shaler, 2021; TurbSim, 2023), while the filter is based on MATLAB

(The MathWorks, Inc., 2022). Clearly,
::::
with

::
the

:::::
filter

::::::
realized

::
in
:::::::::
MATLAB

::::::::::::::::::::::::
(The MathWorks, Inc., 2022),

::::::::
although the method-

ology is completely general and could be implemented in other software environments than the ones used here
::::::
general

::::
and

:::::::::::::::::
software-independent.115

The literature on digital twins and their applications in wind energy is vast, especially on the topics revolving around

structural fatigue
::::::::::::
Fatigue-related

::::::::::
applications

::
of

::::::
digital

::::
twins

:::
are

:::::::::
extensively

:::::::::::
documented (Bernhammer et al., 2016; Hoghooghi

et al., 2019a, b). In fact, ,
:::

as
:
fatigue loads affect various wind turbine components – such as tower, blades, drivetrain,

bearings, and others – causing permanent damage, in turn reducing lifetime, limiting revenue, and increasing operational

costs (IEC, 2005; Hoghooghi, 2021). Consequently, fatigue reduction and lifetime estimation are areas of primary significance120

and interest for industry
::
all

:::::
major

::::::::::
components

::::::::::::::::::::::::::
(IEC, 2005; Hoghooghi, 2021)

:::
and

:::::::
directly

::::::::
influence

:::::::
lifetime,

::::::::::::
performance,

:::
and

::::
cost (Bottasso et al., 2013; Loew and Bottasso, 2022; Dimitrov et al., 2018). CM facilitates the real-time assessment of

turbine health and performance, enabling proactive maintenance strategies to mitigate fatigue-induced failures and to optimize

::::::::
Condition

:::::::::
monitoring

:::::
(CM)

::::::::
supports

:::::::
proactive

:::::::::::
maintenance

:::
and

:::::::::
improved operational efficiency (Chen et al., 2016; Wu et al.,

2021; Liu et al., 2023). Therefore, accurate fatigue estimation, coupled with effective CM practices, is essential for enhancing125

performance and reducing costs ,
:::::
with

::::::
several

:::::::
methods

:::::::::
leveraging

:::::::
machine

:::::::
learning

:
(Bangalore et al., 2017; Hoghooghi et al.,

2020a, b, 2021; Surucu et al., 2023).

The application of digital twin technology in condition monitoring and diagnosis offers numerous benefits. These include the

optimization of fleet-wide performance, the continuous monitoring of critical components throughout their entire lifecycle, and

the proactive planning of physical maintenance visits and repairs. Benefits also extend to other interesting applications, such as130

the training of maintenance engineers and technicians in virtual environments. All this has the potential for reduced costs, for
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improved availability by minimizing downtime, and for a faster and more effective identification of inefficiencies. Additionally,

digital twins enable the forecasting of failure modes and their likely consequences, providing unique insights into the health of

mechanical components of wind turbines (Olatunji et al., 2021). Intelligent monitoring procedures, a primary responsibility of

digital twins, can be implemented directly (offline) or indirectly (online). Offline monitoring involves periodic machine-assisted135

onsite inspections, necessitating operational interruptions. In contrast, online monitoring entails a continuous monitoring of

equipment via sensors during operation (Chen et al., 2016; Bangalore et al., 2017; Wu et al., 2021; Surucu et al., 2023).

There is also an ample literature on methods for estimating fatigue loads. For example, hybrid techniques that combine

physics-based methods with SCADA data have been demonstrated by Noppe et al. (2016). Various other load estimation

techniques have been described and successfully employed, including
::::::::
Numerous

:::::::::::::
load-estimation

:::::::::
techniques

::::
also

::::
exist,

:::::::
ranging140

::::
from

::::::
hybrid

::::::::::
physics-data

::::::::
methods

:::::::::::::::::
(Noppe et al., 2016)

::
to

:
lookup tables (Mendez Reyes et al., 2019), modal expansion (Il-

iopoulos et al., 2016), ensemble aggregation of fatigue loads based on concurrent multiple simulations
:::::::::::::
ensemble-based

::::::
fatigue

:::::::::
aggregation

:
(Abdallah et al., 2017), machine learning (Evans et al., 2018), neural networks (NNs) (Schröder et al., 2018), poly-

nomial chaos expansion (Dimitrov et al., 2018), deconvolution (Jacquelin et al., 2003), load extrapolation (Ziegler et al., 2017),

virtual sensing based on reduced-order models (ROMs) extracted from finite element (FE ) models
:::
via

::::::::
ROM–FE

::::::::
coupling145

(Vettori et al., 2020), and NN-based load surrogates (Guilloré et al., 2024).

This quick and necessarily incomplete overview of the vast literature on the subject gives an idea of the wide range of

applications and benefits that digital twins may bring to the field. Yet, a successful digital twin must invariably rely on

the modeling accuracy of its underlying digital shadow(s).
::::
brief

::::::::
overview

:::::::::
illustrates

:::
the

:::::
broad

::::::::
relevance

::
of

::::::
digital

::::::::
shadows

::
for

:::::::
turbine

:::::
health

::::::::::
monitoring

:::
and

:::::::
fatigue

:::::::::
estimation.

:
The present work contributes to this important topic by formulating a150

procedure to develop digital shadows that leverage existing trusted multibody dynamics models, which often encapsulate a

large body of experience and knowledge of wind turbine manufacturers. These models are linearized to increase computational

efficiencyand then augmented with flow
::::::
general

:::::::::
procedure

:::
for

:::::
digital

:::::::
shadow

:::::::::::
development

::::
that

::::::::
leverages

::::::
trusted

:::::::::
multibody

::::::
models,

:::::::::::
linearization

:::
for

::::::::::::
computational

:::::::::
efficiency,

:::
and

::::::::
adaptive

:::::::::
corrections

::::::::
informed

:::
by

:::::
inflow

:
estimators and learning ele-

ments , yielding simple-to-use yet effective and adaptive mirroring capabilities of wind assets in their full range of operating155

conditions
:::
for

::::::::
improved

:::::::
accuracy.

The paper is organized as follows: .
:

Sect. 2 outlines
::::::::
describes the methodology, detailing the filter-internal

::::::::
including

:::
the

::::::
internal

:
model, its schedulingby inflow estimators, the correction of biases, and the a-posteriori data-driven adaptation of

selected outputs. Section 3 characterizes the performance of the proposal digital shadow approach, first in a simulation

environment considering clean freestream, waked, and wake-steering conditions, and then in the field using data from an160

instrumented multi-MW wind turbine, covering both clean and complex inflow conditions. Finally, ,
::::
and

::::::::
correction

:::::::::
strategies.

::::
Sect.

::
3

::::::::
evaluates

::::::::::
performance

:::
in

:::::::::
simulation

:::
and

::::
field

::::::::::
conditions.

:
Sect. 4 summarizes the key findings and outlines the next

steps in this research
::::
future

:::::
work.

5



2 Methods

Figure 1 illustrates the key
::::
main

:
components of the proposed digital shadow workflow. A Kalman filter uses SCADA measurements165

to improve
::::::::
combines

:::::::
SCADA

::::::::::::
measurements

::::
with

:
the predictions of a turbine ROM , in order to estimate the

::
to

:::::::
estimate

:
sys-

tem states and other outputsof interest
::::::::
additional

:::::::
outputs. The filter-internal model is obtained by linearization of

:::::::::
linearizing

a higher-fidelity multibody model of the turbine. Measurements of the blade loads are fused with the SCADA data stream to

estimate some key characteristics of the inflow
:::::::::
Blade-load

::::::::::::
measurements

:::
are

::::::::
combined

::::
with

::::::::
SCADA

:::
data

::
to
:::::
infer

:::
key

::::::
inflow

:::::::::::
characteristics

:
in real timeduring operation. In turn, these

:
.
:::::
These

:
inflow parameters are used for the scheduling of the

::::
then170

::::
used

::
to

:::::::
schedule

:::
the

:
coefficients of the filter-internal model, thereby adjusting the filter behavior to

:::::::
enabling

:::
the

::::
filter

::
to

:::::
adapt

::
to the full range of operating and inflow conditions to which the turbineis exposed to

:::::::::
experienced

:::
by

:::
the

::::::
turbine.

Figure 1. Schematic representation of the proposed digital shadowing approach.

:::
The

::::::::
proposed

::::::
digital

::::::
shadow

::::::::
combines

::
a
::::::::::::
physics-based

:::::::::::
reduced-order

::::::
model

::::
with

::::::::
real-time

::::::::::::
measurements

::
to

:::::::::::
continuously

:::::::
estimate

:::
the

::::::
turbine

:::::::
dynamic

::::
state

:::
and

:::::::
selected

::::::::::
unmeasured

:::::
loads.

::::
The

:::::::
Kalman

::::
filter

:::::
serves

:::
as

::
the

::::
core

::::::::::
data-fusion

::::::::::
mechanism,

::::::::::
propagating

::
the

::::::
turbine

::::::::
response

:::::
using

::
the

:::::::::
linearized

:::::::::
aeroelastic

:::::
model

:::
and

:::::::::
correcting

::::
these

:::::::::
predictions

::::::::
whenever

::::
new

::::::::::::
measurements175

::::::
become

:::::::::
available.

:::::
Model

::::::::::
scheduling

::::::
ensures

::::
that

:::
the

:::::
filter

:::::::
remains

::::
valid

::::::
across

:::::::
varying

:::::
inflow

::::
and

::::::::
operating

:::::::::
conditions

:::
by

:::::::
adjusting

:::
the

::::::
model

:::::::::
coefficients

:::
in

:::
real

:::::
time.
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2.1 Filter-internal model

We consider a non-linear
::::::::
nonlinear multibody model of a wind turbine. The model is

:
, expressed in terms of the generalized dis-

placements q, generalized velocities v, and inputs u. Measurements affected by noise ν are available for
:::::
Noisy

::::::::::::
measurements

::
ν180

:::::
affect the outputs y , which are used by the filter to improve the prediction of the model states. Finally,

:::::
update

:::
the

:::::
model

::::::
states,

::::
while

:
z are additional output quantities

:::::::
denotes

::::::::
additional

::::::
outputs

:
of interest that do not participate in the filter innovation step.

The filter ROM is obtained by directly linearizing the non-linear multibody
::::::::
nonlinear model around multiple equilibrium

conditionswhere state, input, and output vectors are noted
:
,
::::
with

::::::::::
equilibrium

::::::
vectors

:
q0, v0, u0, y0, and z0. The resulting

filter-internal linear model is written
::::::::
formulated

:
in terms of increments δ(·) as185

˙δq= δv, (1a)

˙δv =−M−1(Cδv+Kδq+Uδu+ω), (1b)

δy =Dvδv+Dqδq+Eδu+ ν, (1c)

δz= Fvδv+Fqδq+Gδu. (1d)

The Kalman filter integrates these equations over time
:::
the

::::::::
linearized

:::::
model

:
by first predicting the system state variables

:::::
states190

and their uncertainties
:
, and then correcting (innovating) these estimates

::::
these

::::::::::
predictions using the available measurements

, considering their associated uncertainties. Since
:::
and

:::::
their

::::::::
associated

:::::
noise

:::::::::::::
characteristics.

:::::::
Because

:
the underlying model is

linearized, the non-linear
:::::::
nonlinear

:
values of all quantities are obtained

::::::::
recovered

:
by adding the perturbations to the reference

equilibrium conditions. For example, the generalized displacements are computed as
:::::::::::
corresponding

::::::::::
equilibrium

::::::
values,

::::
e.g.

q= q0 + δq, and the same holds
::::::::::
analogously for all other vectors appearing in Eqs. (1).195

Equations (1a) are the
:::::::
represent

:::
the

::::::::::
(noise-free)

:
kinematic relations, which are assumed to be exact and not affected by

noise.Equations
::::
while

::::
Eqs. (1b) express the dynamic equilibrium of the system, affected by the process noise ω, where

:::::::
affected

::
by

:::::::
process

:::::
noise

::
ω,

:::::
with M, C, K, and U are, respectively,

:::::::
denoting

:
the mass, damping, stiffness

:
, and control matrices.

Finally, Eqs.
::::::::
Equations (1c) and (1d) represent

::::
give the linearized output equations

::::::
relations

:
for y and z, respectively. The

:::
All

noise terms are assumed to be zero mean
:::::::::
zero-mean and uncorrelated (Grewal and Andrews, 2014).200

It should be noted that the equilibrium conditions are, in general, periodic. As a result, the entries of the
:::::::
Although

:
a
::::::::
standard

:::::
linear

:::::::
Kalman

::::
filter

::::::
would

::
be

::::::::
sufficient

:::
for

:::
the

:::::::
present

::::::::
linearized

::::::::::
state–space

::::::
model,

:::
we

:::::
adopt

::::
the

::::::::
unscented

:::::::
Kalman

:::::
filter

:::::
(UKF)

:::::::::::::
implementation

:::
of

:::::::::
MATLAB

::::::::::::::::::::::::::::::::::::::::::::::::::
(Wan and Van Der Merwe, 2000; The MathWorks, Inc., 2022).

:::::
This

:::::
choice

::
is
:::::::::
motivated

::
by

:::::::::
anticipated

:::::
future

:::::::::
extensions

::
to
::::::::
nonlinear

:::::::::::
filter-internal

:::::::
models.

:::::
While

:::
the

:::
use

:::
of

:::
the

::::
UKF

::
is

:::::::
therefore

:::
not

::::::
strictly

:::::::::
necessary

::
in

:::
the

::::::
present

::::::
linear

:::::
case,

::
it

:::::::
remains

::::
fully

:::::::::
applicable

:::
to

:::::
linear

::::::::
systems,

:::::
albeit

:::::
with

::::::::
somewhat

::::::
higher

:::::::::::::
computational

::::
cost205

::::::::
compared

::
to

:
a
::::::::
standard

:::::
linear

::::::
Kalman

:::::
filter.

:

:::::::
Because

:::
the

::::::::::
equilibrium

:::::::::
conditions

:::
are

::::::::
generally

::::::::
periodic,

::::
the matrices associated with rotating quantities – as well as

the associated
::::
–and

:::
the

::::::::::::
corresponding

:
states, inputs, and outputs – depend on time through the time-dependent azimuthal

position of the rotor
:::::::
outputs–

::::::
depend

::
on

:::
the

:::::
rotor

:::::::
azimuth. To avoid working

::::::
dealing with periodic systems, this dependency

is eliminated by averaging throughout a complete rotor
::::::::::
dependence

::
is

:::::::
removed

:::
by

::::::::
averaging

::::
over

:::
one

::::
full revolution.210
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The present implementationconsiders 9 DOFs in the definition of the
:
In

::::
the

::::::
present

::::::::::::::
implementation,

:::
the

:
filter-internal

dynamics. Accordingly,
:::::
model

:::::::
includes

:
9
::::::
DOFs,

:::
and

:
the generalized displacement vector is defined as

q=
{
dFA
T ,dSS

T ,ψ,dFB1,d
F
B2,d

F
B3,d

E
B1,d

E
B2,d

E
B3

}T
, (2)

where dFA
T and dSS

T are the tower FA and SS deflections, respectively, ψ is the rotor azimuthal position, while dFBi and dEBi are

respectively the flapwise and edgewise DOFs of the ith blade. The associated velocities are v = q̇.215

The input vector u contains 8 entries and it is defined as

u= {V,α,γ,θ1,θ2,θ3,θcoll,Qgen}T , (3)

where V is the wind speed, α is the vertical power-law shear exponent, γ is the
::
the

::::
yaw

:
misalignment angle, θi is the total

blade pitch angle of the
::::
total

:::::
pitch

::
of

:::::
blade

:
ith blade, θcoll is the collective blade pitchangle

::
the

::::::::
collective

:::::
pitch, and Qgen

indicates the generator torque. Individual pitch control adds to the ith blade an extra amplitude θi − θcoll with respect to the220

collective value
::::::::
introduces

::
a

:::::::::::
blade-specific

:::::
pitch

:::::::::
component

::::::::
θi − θcoll, whereas θi = θcoll when only collective pitch is used.

Notice that the input to the model not only considers the control inputs (i.e., quantities commanded by
:::::
active.

::::
The

::::
input

::::::
vector

:::
thus

::::::::
includes

:::
not

::::
only

:::::::
control

:::::::::
commands

:::::
from the on-board control system) but also includes exogenous terms due to the

ambient conditions
::::::::
controller

:::
but

::::
also

:::::::::
exogenous

:::::
terms

:::::::::
associated

::::
with

:::
the

:::::::
ambient

::::::
inflow. The present inputs are relevant to

the linearization performed
::
set

::
of

::::::
inputs

::::::::::
corresponds

::
to

::::
those

::::
used

:::
for

:::::::::::
linearization in OpenFAST (Jonkman et al., 2018; NREL225

Forum), although other codes might use different quantities; for example, we note the presence of the vertical shear but not of

the horizontal one
:
;
:::::
other

:::::::::
simulation

::::
tools

::::
may

:::
use

:::::::
different

::::::
inflow

:::::::::
descriptors

:::::
(e.g.,

::::::::
including

::::::::
horizontal

::::::
shear).

It is assumed
::
We

:::::::
assume that a biaxial accelerometer measures accelerationsat the tower top

:::::::
provides

::::::::
tower-top

:::::::::::
accelerations,

an encoder measures the rotor speed, and load measurements are available for each blade in the form of
::::
blade

::::
root

:::::
loads

:::
are

:::::::
available

::
in

:
flapwise and edgewise bending moment components. Accordingly, the

::::::::
directions

:::
for

::::
each

:::::
blade.

::::
The output vector230

ycontains 9 entries and it ,
::::::::
therefore,

::::::::
contains

::::
nine

::::::::::
components

:::
and

:
is defined as

y =
{
d̈FA
T , d̈SS

T , ψ̇,mF
B1,m

F
B2,m

F
B3,m

E
B1,m

E
B2,m

E
B3

}T

. (4)

The FA and SS tower top accelerations are
::::::::
tower-top

:::::::::::
accelerations

:::
are

:::::::
denoted

::
by

:
d̈FA
T and d̈SS

T , respectively, the
:
.
:::
The

:
rotor

angular speed is ψ̇ =Ω
:::::
ψ̇ =Ω, while the flapwise and edgewise bending components for the ith bladeare noted

:::::::
moments

:::
of

::::
blade

::
i
::
are

::::::::
indicated

:::
by mF

Bi and mE
Bi, respectively.235

The model is completed by the definition of
::::::
defining

:
additional to-be-estimated quantities

:::::::
collected

::
in

:::
the

:::::
vector

:
z, which ,

however, do not participate in the filter innovation step. This is because of two possible
::::::::
exclusion

::::
may

:::::
occur

::
for

::::
two reasons:

– the digital shadow operates as a virtual sensor , as measurements of these quantities are not available through physical

sensors (because of
::
for

:::::::::
quantities

:::
that

:::
are

:::
not

:::::::::
physically

::::::::
measured

:::
due

::
to
:
technical or economic reasons)

::::::::
constraints;

– the digital shadow supports a condition monitoring systemthat compares predictions with measurements in order
:::::::::::::::::
condition-monitoring240

::::::
system,

:::::
where

::::::::
predicted

::::
and

::::::::
measured

:::::
values

:::
are

:::::::::
compared to detect anomalies and

:
or

:
faults.
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Both of these scenarios are illustrated later in this work. Here the
::
In

:::
the

::::::
present

::::::::::::::
implementation,

::
the

:
z outputs are represented

by the
::::::
include

:::
the

:::::::::
tower-base

:::::::
bending

:::::::
moment

:
components mFA

TB and mSS
TBof the bending moment at tower base and by the

componentsmF
Bi−15%:

,
::
as

::::
well

::
as

:::
the

:::::::
flapwise

:::
and

::::::::
edgewise

:::::::
bending

::::::::
moments

:::::::
mF

Bi-15%:
andmE

Bi−15% of the bending moment

at
:::::::
mE

Bi-15%::
at

:::
the

:
15% span of each blade ; however, other choices are clearly possible, depending on need

::::
blade

:::::
span.

:::::
Other245

::::::::
quantities

:::::
could

::
be

:::::::
selected

:::::::::
depending

::
on

:::
the

:::::::
specific

:::::::::
application.

2.2 Model scheduling

To be usable in practice, the filter-internal model is scheduled as a function of a small set of parameters s, chosen to capture

::::::
selected

::
to
::::::::::
characterize

:
the equilibrium operating condition about which

:::
the linearization is performed. As a result

:::::::::::
Consequently,

all matrices appearing in the state-space model expressed by
:::::::::::
representation

::
of

:
Eqs. (1) depend on s. For example, considering250

the mass matrix ,
:::::::
becomes

:
M=M(s), and the same holds

:::::::
similarly for all other matrices. Similarly, all

:::::
system

::::::::
matrices.

::::
The

:::::::::
equilibrium

::::::
values

::
of

::::
the states, inputs, and outputs at the equilibrium condition depend on

:::
also

::::
vary

::::
with

:
s. For example,

considering ;
:::
for

::::::::
instance, the generalized displacements ,

:::::
satisfy

:
q0 = q0(s), and the same holds for all other

:::
with

:::::::::
analogous

:::::::
relations

::::::
holding

:::
for

:::
the

:::::::::
remaining vectors.

The vector of scheduling parameters is defined as255

s= {V,α,kh,γ}T . (5)

The first two entries express
::::::
capture the dependency of the model coefficients and equilibrium reference values on the ambient

conditions through the wind speed V and the vertical power-law shear exponent α. The third entry is the linear horizontal shear

kh, on account of the possible presence of impinging wakesshed by upstream turbines. The fourth entry is γ,
::::::::
horizontal

:::::
shear

:::
kh,

:::::::::
accounting

:::
for

::::::
wakes,

:::
and

:::
the

:::::
fourth

::
is

:
the yaw misalignment angle, included here to support wake-steering conditions for260

wind farm control
::
γ,

:::::::
relevant

:::
for

::::
wake

:::::::
steering.

The purpose of the scheduling vector of parameters is to make the model (and , hence, the filter ) aware of the
:::::::::
scheduling

:::::
vector

::::::
enables

:::
the

::::::
model

:::
and

::::
filter

::
to
::::::
remain

::::::
aware

::
of operating conditions that affect the turbine response; these effects would

otherwise be lost when moving from the full non-linear model to its linearization.

::::
after

:::::::::::
linearization. The non-linear model is linearized at a preselected set of discrete values of s , chosen to cover the entire265

range of operative and ambient conditions of the machine. The
:::::
values

::::::::
spanning

:::
the

:::
full

::::::::::
operational

:::
and

:::::::
ambient

:::::
range,

::::
and

:::
the

corresponding matrices and equilibrium states, inputs and outputs
::::::::
quantities are stored in look-up tables (LUTs). To express

the dependency of the model on the linearization point, at run time, the current value of the scheduling vector
:::::
During

:::::::::
operation,

s is estimated at each time instant by dedicated observers as explained in
:
in

::::
real

::::
time

:
(Sect. 2.3

:
), and the model matrices are

interpolated accordingly. The equilibrium values of states, inputs and outputs are similarly interpolated , which allows for the270

transformation of the filter-predicted incremental values into their
:::
and

::::::::::
equilibrium

:::::
values

:::
are

::::::::::
interpolated

::::::::::
accordingly,

::::::::
allowing

::
the

::::::::::
incremental

:::::
filter

:::::::::
predictions

::
to

::
be

:::::::
mapped

:::::
back

::
to

:::
the non-linear corresponding

::::::
physical

:
quantities.
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2.3 Observers

As previously explained
:::::
noted, the filter-internal model coefficients are

::
is scheduled with respect to the parameters sthat capture

the current operating conditions. These parameters are chosen here ,
::::
here

::::::
chosen

:
as the wind speed, the vertical and horizontal275

shears, and the misalignment angle.

These quantities are estimated at each instant of
::
in

::::
real time during operation and used to inform

::::::
update the filter-internal

model of the current conditions
::::::::::
accordingly. The present sequential implementation – where observers feed information

::::
setup

::::::
–where

::::::::
observers

::::::
supply

::
s
:
to the Kalman filter – is clearly not the only option. Alternatively, one could have included the

estimation of s in an expanded Kalman filter. The sequential approach was chosen here purely for simplicityand because280

legacy implementations of the
:::::
filter–

::
is

:::::::
adopted

::
for

:::::::::
simplicity,

:::
as

:::::
legacy

:
observers were already available (Hoghooghi et al.,

2024).
:::::::
However,

:::
an

:::::::::
augmented

:::::::
Kalman

::::
filter

:::::
could

::::::::::
alternatively

::::::::
estimate

:
s
:::::::
directly.

Regarding the misalignment, we note that its actual value can differ significantly
::::
Since

::::
the

:::::
actual

:::::::::::
misalignment

::::
can

:::::
differ

::::::::::
substantially

:
from the commanded one. Therefore, here, we prefer to estimate

:
,
:
γ through

:
is
:::::::::
estimated

:::
via an observer rather

than using the values requested by the on-board controller
::::
taken

:::::
from

:::
the

::::::::
controller

:::::::
demand.285

2.3.1 Simple wind speed observer

A rotor-equivalent wind speed is obtained by inverting the expression of the power coefficient:

Cp(θcoll,λ) =
QaeroΩ

0.5ρAV 3
, (6)

where λ=ΩR/V
:::::::::
λ=ΩR/V is the tip-speed ratio,R is the rotor radius,A= πR2

::::::::
A= πR2 is the rotor swept area,Qaero is the

aerodynamic torque, and ρ indicates
:
is
:
the air density. The power coefficient Cp is computed by executing dynamic simulations290

with
:::::::
obtained

:::::
from

:::::::
dynamic

::::::::::
simulations

::
of

:
the full aeroservoelastic turbine model in constant wind speeds

:::::
model

::
in

::::::
steady

::::
wind

:::::::::
conditions

:
for a reference density ρref. Sufficient time is allowed for the transient response to subside, and afterwards,

::::
After

::::::::
transient

::::::
effects

::::::
decay, the response is averaged over a few

:::::
several

:
rotor revolutions to compute the relevant

::::::
extract

::
the

:
steady-state quantities. The results are stored in

:::::
values.

::::::
These

::::::
results

:::::::
populate

:
a LUT, yielding an expression

:::::::
providing

::
a

:::::::
mapping

:
for the rotor-equivalent wind speed as a function of pitch, rotor speed, aerodynamic torque, and density:295

V = LUTCp(θcoll,Ω,Qaero,ρ/ρref). (7)

At run time, the LUT is used to obtain
:::::::
provides an estimate VE of the rotor-equivalent wind speed. The current pitch setting

θcoll and rotor speed Ω are measured by the corresponding
:::
read

::::
from

:
on-board sensors. The aerodynamic torque is computed

as Qaero ≈Qgen + JΩ̇
::::::::::::::::
Qaero ≈Qgen + JΩ̇, where Qgen is the measured generator torque , and the angular acceleration

:::
and Ω̇ is

obtained by numerically differentiating the rotor speed,
::
Ω,

:::::
with J being the rotor inertia. Finally,

::
Air

:
density ρ is computed300

using
::
via

:
the gas law from

::::
using

:::
the

::::::::
measured

:
temperature.
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2.3.2 Shear and misalignment observers

The estimation of the horizontal and vertical shearsand of ,
:::

as
::::
well

:::
as

:
the wind misalignmentis obtained by the “,

::::
are

::::::::
estimated

:::::
using

:::
the

:
"rotor as a sensor” technology (see Kim et al. (2023); ? and references therein). This method

:
"
::::::::
approach

::::::::::::::::::::::::::::::
(Kim et al., 2023; Bertelè et al., 2024)

:
,
:::::
which

:
exploits the fact that each of these inflow characteristics leaves a specific trace305

in the load response of a wind turbine. Leveraging this fact, one can then “invert” the measured response to infer these inflow

quantities
::::::
imprint

:::::::::
distinctive

:::::::::
signatures

::
in

:::
the

:::::
blade

:::::
load

:::::::
response.

:::
By

::::::::
inverting

::::
these

::::::::::
signatures,

:::
the

::::::::::::
corresponding

::::::
inflow

::::::::
quantities

:::
can

::
be

::::::::
inferred.

In this work, we use a version of the rotor as a sensor based on load harmonic amplitudes (Kim et al., 2023; ?). In a

nutshell, the estimator is formulated
::::
Here,

:::
we

:::::
adopt

:::
the

::::::::::::::::::::::
harmonic-amplitude-based

:::::::::
formulation

:::
of

::
the

::::::::::::::
rotor-as-a-sensor

:::::::
method310

::::::::::::::::::::::::::::::
(Kim et al., 2023; Bertelè et al., 2024)

:
.
::::
The

::::::::
estimator

:
is
:::::::
written as

cE =NN(p, iM ), (8)

where cE is an estimated wind inflow characteristic (either the vertical power-law shear coefficient
::
the

::::::::
estimated

::::::
inflow

:::::::
quantity

:::::
(either

:
α, the horizontal linear shear coefficient kh, or the yaw misalignment angle γ), NN(·, ·) is a single-output NN with free

parameters p, and iM is a
:::
the vector of measured NN inputs. A different

::::::
separate

:
NN is used for each one of the three inflow315

parametersof interest. The input vector is defined as iM = {mT ,V,ρ}T
:::::::::::::::
iM = {mT ,V,ρ}T , where m is a vector of harmonic

amplitudes of the blade loads. For
::::::
collects

:::
the

::::::
relevant

:::::::::
blade-load

::::::::::
harmonics.

:::::
Since the estimation of shears and misalignment

, it is enough to limit the harmonics to the one per rev (
::::
only

:::::::
requires 1P ) components (Kim et al., 2023; ?). Accordingly, vector

m is defined as
::::::
content

:::::::::::::::::::::::::::::::
(Kim et al., 2023; Bertelè et al., 2024),

:::
we

:::::
define

:

m= {mOP
1c ,m

OP
1s ,m

IP
1c ,m

IP
1s }T , (9)320

where the subscripts (·)1c and (·)1s respectively indicate
:::::
denote

:
1P cosine and sine terms, while the

:::
and

:
superscripts (·)OP

and (·)IP indicate out
::::
refer

::
to

::::
out- and in-plane load components, respectively. The out and in-plane load components are

referred to the rotor disk, and they are
:
.
:::::
These

::::::::::
components

:::
are

:
obtained by transforming the

::::::::
measured

:
flapwise and edgewise

components measured by the blade-attached sensors
:::::
loads

::
to

:::
the

::::
rotor

::::
disk

:::::
frame based on the current blade pitchsetting.

The present implementation is based on a
::::
NNs

:::
are simple single-hidden-layer feed-forward neural network

::::::
models

:
with sig-325

moid activationfunctions. The free network parameters
:
.
:::::::::
Parameters

:
p are trained by

::
via

:
backpropagation with Bayesian regu-

larization to reduce the chances of being trapped in local minima (Matlab, 2023; Burden and Winkler, 2009) . Training is based

on simulations conducted with the full aeroelastic model of the turbine using OpenFAST
:::::::::::::::::::::::::::::::::::
(Matlab, 2023; Burden and Winkler, 2009)

::::
using

::::::::::
simulations

::::
from

:::
the

:::
full

::::::::::
OpenFAST

:::::::::
aeroelastic

:::::
model (OpenFAST, 2024). At each time

::::::::
simulation

:
step, the inflow quan-

tities (shears and misalignment) are extracted from the TurbSim (TurbSim, 2023) turbulent flow field
:::
field

:::::::::::::::
(TurbSim, 2023)330

by best-fitting over the rotor diskarea. Load harmonics are obtained from the blade root sensors via the Coleman-Feingold
:
,

:::
and

::::
load

:::::::::
harmonics

:::
are

::::::::
computed

:::
via

:::
the

::::::::::::::::
Coleman–Feingold transformation (Coleman and Feingold, 1958) and then filteredto

remove any remaining spurious noise.
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At run time
:::::::::::
subsequently

:::::::
filtered.

::::::
During

::::::::
operation, Eq. (8) is used to produce estimates of the inflow quantities based on

:::::::
provides

::::::::
real-time

:::::::
estimates

:::
of

::
α,

:::
kh,

:::
and

::
γ

:::::
using

::
the

:
measured load harmonics, on the current

::
the

:
rotor-equivalent wind speed335

from Eq. (7), and on air density ρ.

2.4 Model error correction

In general
::::::
practice, some mismatch between the plant and the filter-internal model is to be expected

::::::::::
unavoidable, and this will

invariably affect
:::::
affects

:
the performance of the digital shadow. The effects of model mismatches

::::
Such

::::::::::::
discrepancies can be

mitigated in various ways, such as by the tuningof the model parameters, by the
::::::
through

::::::::::::::
model-parameter

::::::
tuning, dynamic data-340

driven adaption of the model (Anand and Bottasso, 2023; Bottasso et al., 2006), by the correction of biases
:::::
model

:::::::::
adaptation

::::::::::::::::::::::::::::::::::::::::
(Anand and Bottasso, 2023; Bottasso et al., 2006),

:::::::::::::
bias-correction

::::::::
strategies (Chui and Chen, 1999; Drécourt et al., 2006; Gre-

wal and Andrews, 2008), or by adapting the process noise term to capture the effects of unmodelled physics , among others

(Branlard et al., 2020a). Here, we explore two methods
:
to

:::::::
account

:::
for

:::::::::
unmodelled

:::::::
physics

:::::::::::::::::::
(Branlard et al., 2020a).

::
In

::::
this

:::::
work,

::
we

:::::
focus

:::
on

:::
two

:::::::::
approaches: a bias-correction approach

::::::
method and a data-driven correction limited

::::::
applied

::::
only

:
to the output345

equations.

2.4.1 Bias correction

First, we consider the correction of biases, intended
::::::
address

::::
bias

:::::::::
correction

:::::
(BC),

:::::::::
interpreted

:
as additive errors in the model.

To this end, the filter-internal model expressed by
::
of Eqs. (1) is modified as

˙δq= δv, (10a)350

˙δv =−M−1(Cδv+Kδq+Uδu+ f0 +ω), (10b)

ḃ= ωb, (10c)

δy =Dvδv+Dqδq+Eδu+b+ ν, (10d)

δz= Fvδv+Fqδq+Gδu. (10e)

With respect to Eqs. (1), the model is modified to include two corrections.355

The first is represented by
::::::::
correction

::::
term

::
is

:
the static force f0, which induces a steady extra deflection in the generalized

displacements , meant to correct possible
::
to

::::::::::
compensate

:::::
model

:
biases. As for all other terms in the model , also

::::
with

::
all

::::::
model

:::::
terms,

:
f0 is assumed to depend

:::::::
depends on the operating condition through the vector of scheduling parameters

:::::::::
scheduling

:::::
vector s.

A second modification is obtained by introducing the
::::::::
correction

::
is
:::
the

:::::::
additive

:
term b in the output

:::::::
equation

::
(Eq. (10d),360

on account of possible biasesin the sensors. Following a standard bias correction approach
:::::
which

:::::::
accounts

:::
for

::::::
sensor

::::::
biases.

::::::::
Following

::::::::
standard

:::::::
practice (Chui and Chen, 1999; Drécourt et al., 2006; Grewal and Andrews, 2008), the extra term b is

promoted to a new state variable
::::
state undergoing a random walk excited by the

:::::
driven

:::
by process noise ωb, as expressed by

::
in

Eq. (10c).
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It should be noted that the two correction terms may compete with each other, and it might not always be possible to365

disentangle the effects of one from the effects of the other. In fact,
:::::::
Because

::
f0:::

and
::
b
::::
can

::
be

::::::::
collinear,

:::::
their

:::::
effects

:::::
may

:::
not

::
be

:::::::
uniquely

:::::::::
separable:

:
a correction on the generalized displacements performed by f0 will in turn correct the outputs through

the δq term in Eq. (10d), eventually affecting b. To cope with the possible collinearity of these two corrections
:::::::
mitigate

:::
this,

f0 is first calibrated by neglecting
:::
with

:
b from the model. Once

:::::::
disabled;

:::::
once suitable values for f0 for varying s have been

obtained, then f0 is frozen and the bias b is activated in the filter. This two-step process is demonstrated lateron. In the interest370

of
:
.
:::
For

:
simplicity, one can instead neglect

:::
may

::::
omit

:
f0 and only use the extra

::::::
entirely

::::
and

::::
rely

::::
only

::
on

:
bstates, implicitly

accepting that the displacements might be in error. Additionally, one can iterate between calibrating f0 and b, adjusting both

corrections to achieve better accuracy
:
,
::::::::
accepting

:::::::
possible

:::::::::::
displacement

::::::
errors.

:::::::
Iterative

:::::
tuning

::
of

::::
both

:::::
terms

::
is
::::
also

:::::::
possible.

It is worth mentioning that the tuning of the model is performed
::::::
Finally,

::::::
tuning

:
is
:
based solely on the measured outputs y, as

in general measurements of the states or biases are not available
::::
since

::::::
neither

:::::
states

:::
nor

::::::
sensor

:::::
biases

:::
are

:::::::
directly

::::::::::
measurable.375

2.4.2 A posteriori error correction for condition monitoring applications

Next, we consider a case relevant to CM applications. In this scenario ,
:::::::::::
CM-oriented

:::::::
scenario

::
in

:::::
which

:
the digital shadow is

tasked with predicting the behavior of some
::::::
predicts

:::::::
selected

:
quantities of interest . However, measurements are available for

these same quantities
::::
while

::::::::::::
measurements

::
of

:::
the

:::::
same

::::::::
quantities

:::
are

::::
also

:::::::
available

:
at run time. A CM system can then exploit

this redundancy by comparing
:::::::
compare predictions and measurements in order to detect faults or anomalies. Clearly, for such380

a system to work in an effectivemanner
::
For

::::
this

::::::::::
redundancy

::
to

:::
be

:::::::
effective, the digital shadow predictions must be in very

close agreement with the measurements in all nominal operating
::::
must

:::::::
closely

:::::
match

:::
the

:::::::::
measured

:::::::
behavior

::::::
under

:::::::
nominal

conditions. In general, such a close match is not possible by the use of the model expressed by
:::::::
practice,

:::
the

:::::::
baseline

::::::
model

::
of

Eqs. (1)
:::::
cannot

::::::::
typically

::::::
achieve

::::
such

::::::::
accuracy.

To achieve the desired accuracy between predictions and measurements
::::::
improve

:::::::::
agreement, the linearized output equations385

for z (Eq. 1d) are augmented with a correction term ϵ
:
ϵ:

δz= Fvδv+Fqδq+Gδu+ ϵ. (11)

For complete generality, the error correction term is assumed to depend on the states δq and δv, inputs δu and scheduling

parameters s, and it is approximated using a neural network:

ϵ=NNϵ(pϵ,s, δq, δv, δu), (12)390

where pϵ are the free network parameters.

Note that this approach does not attempt to correct the system governing dynamics expressed by
::::::
modify

:::
the

:::::::::
governing

::::::::
dynamics

::
in

:
Eq. (1b). This means that

::::::::::::
Consequently, the filtered states will , in general, not precisely match the true plant

states (which, typically , are also not known) . Nonetheless, this approach can still deliver
::::::::
generally

:::
not

:::::::
coincide

::::
with

:::
the

::::
true

::::
(and

:::::::
typically

:::::::::
unknown)

::::
plant

::::::
states.

::::::::
However,

:
accurate estimates of the outputs of interest z when

::
can

::::
still

::
be

::::::::
achieved

:::
by395

::::::
training

:
the correction term is trained to learn the measured outputs zM:::

zM .
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Here again
::
As

::::::
before, a simple single-hidden-layer feed-forward neural network is found to give the necessary

:::
NN

::::::::
provides

:::::::
sufficient

:
accuracy. Training is based on backpropagation (Matlab, 2023). Weibull weighting is used to improve performance

in
::::::::
performed

:::
by

::::::::::::::
backpropagation

:::::::::::::
(Matlab, 2023),

::::
with

:::::::
Weibull

:::::::::
weighting

::::::
applied

::
to
:::::::::
emphasize

:
the most probable operating

conditions (Bangalore et al., 2017; Surucu et al., 2023; Anand and Bottasso, 2023).400

3 Results

3.1 Simulation-based results

First, we investigate the performance of the proposed digital shadow framework in a simulation environment,
:::
We

::::::
assess

::
the

::::::
digital

:::::::
shadow

::
in
::::::::::

simulation using the IEA-3.4-130-RWT
:::
-130

:
reference wind turbine (IEA3.37MW, 2023) as

::::::
(RWT)

:::::::::::::::::
(IEA3.37MW, 2023) implemented in OpenFAST

:
(OpenFAST, 2024). The complete aeroelastic model was linearized for wind405

speeds ranging from
::::
from

:
5 to 25 with increments of 1 , power-law ms−1,

:
vertical shear exponents spanning from

::::
from

:
0 to

0.48with increments of 0.12, horizontal shears ranging
:
,
:::::::::
horizontal

::::
shear

:
from −0.1 to 0.1with increments of 0.1, and at ,

::::
and

yaw misalignments of 0◦ and −30◦. The filterwas ,
:
implemented in MATLAB(The MathWorks, Inc., 2022), and its execution

on a standard single-CPU laptop took of the order of
::::::::::::::::::::::::
(The MathWorks, Inc., 2022),

:::::::
required

:::::
about

:
6 minutes for a 10-minute

physical-time simulation at a step frequency of
:
to

::::::::
simulate

::
10

:::::::
minutes

::
of

::::::::
physical

::::
time

::
at 100 Hz

::
on

:
a
::::::::

standard
::::::::::
single-CPU410

:::::
laptop.

Turbulent flow
:::::
inflow

:
fields were generated with TurbSim(TurbSim, 2023), spanning wind speeds varying in the range

::::::::::::::
(TurbSim, 2023)

:::
for

::::
wind

::::::
speeds

:::
of 5–11 , with a vertical power-law ms−1

:
,
:
a
:::::::
vertical shear exponent of 0.2

::
0.2, and turbu-

lence intensities (TIs) of 6% and 18%. According to standards, simulations were conducted for a duration of 10 minutes and

repeated for 6 distinct
:::::::::
Simulations

::::::::
followed

:::::::
standard

:::::::::
10-minute

::::
runs

::::
with

:::
six random seeds. Gaussian noisewas added to each415

measurement signal to account for typical uncertainties affecting SCADA sensors (Branlard et al., 2020b, a), with the noise

level set at
:
,
::::
equal

::
to
:
10% of the standard deviation of each signal. Damage equivalent ,

::::
was

:::::
added

::
to

:::::::
emulate

:::::::
SCADA

::::::
sensor

::::::::::
uncertainties

:::::::::::::::::::::
(Branlard et al., 2020b, a)

:
.
::::::::::::::::
Damage-equivalent loads (DELs) were computed by rainflow counting(Natarajan, 2022)

.
::
via

:::::::
rainflow

::::::::
counting

::::::::::::::
(Natarajan, 2022)

:
.
::::::
Unless

:::::
stated

:::::::::
otherwise,

::
all

::::::
results

::::::::
presented

::
in

:::
this

::::::
section

::::
refer

::
to

:::
the

::::::::::::
representative

::::::::
operating

::::::::
condition

::::::::
described

:::::
below

::
in

:::::
Sect.

:::::
3.1.1.420

While various aspects of the digital shadow formulation are significant, the selection of the
:::::::::
Estimation

::::::::
accuracy

:::::::
depends

:::::::
strongly

::
on

:::
the

::::::
choice

::
of process and measurement covariance matrices, as well as the filtering of measurements, can strongly

impact the accuracy of the estimates (Branlard et al., 2020a). The measurement covariance was based on the expected noise

affecting the measurements. The process noise covariance was empirically tuned by a trial and error process to improve

the accuracy of the estimates (Branlard et al., 2020a).The tuned covariance did not exhibit a significant dependence on wind425

speed
:::::::::::::::::::
(Branlard et al., 2020a)

:
.
:::::::::::
Measurement

:::::::::
covariance

::::::::
reflected

:::::::
expected

::::::
sensor

:::::
noise,

:::::
while

:::::::
process

:::::::::
covariance

::::
was

:::::
tuned

:::::::::
empirically.

::::
The

::::::::
resulting

::::::
values

::::::
showed

:::::
little

::::::::::
dependence

::
on

:::
the

:::::::::
operating

::::::::
condition

:::
and

::::::::
delivered

:::::::::
consistent

:::::::::::
performance

:::::
across

::
all

::::::
cases.
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3.1.1
:::::::::::::
Representative

:::::::
example

::::
and

:::::
input

::::
data

::
To

::::::::
illustrate

:::
the

:::::
digital

:::::::
shadow

::::::::
workflow

:::
and

::::::
clarify

:::
the

:::::::::
associated

::::
input

:::::
data,

::
we

:::::::
provide

:
a
:::::
brief

::::::::
summary

::
of

:
a
::::::::::::
representative430

::::::::
simulation

::::
case

::::
that

::
is

::::
used

:::::::::
repeatedly

:::::::::
throughout

::::
Sect.

::::
3.1.

:::
The

::::::::
reference

::::::::
example

::::::::::
corresponds

::
to

:
a
:::::
single

::::
IEA

:::::::
3.4-130

:::::
RWT

:::::::::::::::::
(IEA3.37MW, 2023)

::::::::
operating

::
in

::::::
Region

::
II

::
at

:
a
:::::
mean

:::::
wind

:::::
speed

::
of

:::::::
7 m s−1,

::::
with

::
a

::::::
vertical

:::::::::
power-law

:::::
shear

::::::::
exponent

::
of

:::
0.2

:::
and

:::
TIs

::
of

:::
6%

:
and turbulence, eventually delivering a consistent performanceacross all considered conditions.

::::
18%.

:::::::::
Turbulent

:::::
inflow

:::::
fields

:::
are

::::::::
generated

::::
with

::::::::
TurbSim

::::::::::::::
(TurbSim, 2023)

::::
using

::::::::
standard

::::::::
10-minute

::::::::::
realizations

:::
and

:::
six

:::::::
random

:::::
seeds.

:

:::
The

::::::
digital

:::::::
shadow

:::::::
receives

:::
as

::::::
inputs

:::
the

::::::::
measured

:::::
rotor

::::::
speed,

::::::::
generator

:::::::
torque,

:::::::
selected

:::::::::
blade-root

::::
and

:::::
tower

:::::
load435

::::::::::::
measurements,

::::
and

:::
air

::::::
density

:::::::::
(assumed

:::::::
known).

::::::::
Gaussian

:::::
noise

:::::
with

:
a
::::::::

standard
::::::::
deviation

:::::
equal

:::
to

::::
10%

:::
of

::::
each

::::::
signal

:::::::
standard

::::::::
deviation

::
is

::::::::::::
superimposed

::
to

:::::::
emulate

:::::::
SCADA

::::::
sensor

::::::::::
uncertainty.

::::::
These

::::::::::::
measurements

:::
are

::::::::
processed

:::
by

:::
the

:::::
filter

::
to

:::::::
estimate

:::::::::::::
rotor-equivalent

:::::
wind

:::::
speed,

:::::::
vertical

::::
and

::::::::
horizontal

::::::
shears,

:::::::::
structural

:::::
states,

::::
and

:::::::::::::
fatigue-relevant

::::
load

:::::::::
quantities.

::::
This

:::::::::::
representative

::::
case

::
is
:::::
used

::
in

::::
Figs.

::::
2–5

::
to

:::::::::::
demonstrate

:::::::
observer

:::::::::::
performance,

:::::::::::::
bias-correction

::::::::
behavior,

::
as

::::
well

::
as

:::::
state

:::
and

::::
load

:::::::::
estimation

:::::::
accuracy

::::::
before

::::::::
extending

:::
the

:::::::
analysis

::
to

::::::
waked

:::
and

:::::::::::::
yaw-misaligned

:::::::
turbines

::
in
:::::
Sect.

:::::
3.1.5.440

3.1.2 Estimation of wind speed and shears

We start by verifying
:::
first

:::::
assess

:
the accuracy of the estimates of

:::::::
estimated

:
wind speed and shear , which are used to schedule the

model coefficients. Reference (ground truth) values were obtained at each instant of time
:::::::::::
Ground-truth

:::::
values

:::::
were

::::::::
extracted

::::::
directly

:
from the TurbSim longitudinal components of the wind field: speed was obtained by averaging over the rotor disk,

while shears by interpolating over the same rotor disk area
::
the

::::::::::::
rotor-average

::::
wind

::::::
speed

:::
was

:::::::::
computed

:::
by

:::::::::::::
disk-averaging,445

::::
while

:::::::
vertical

:::
and

:::::::::
horizontal

::::::
shears

::::
were

::::::::
obtained

::
by

::::::
fitting a power law in the vertical direction and a linear function in the

horizontal one
::::::
profile

::::
over

:::
the

::::
rotor

::::
disk,

::::::::::
respectively.

Figure 2 compares the reference rotor-average wind speed (dashed blueline) with the estimated rotor-equivalent wind speed

VE from Eq. (7) (solid redline) for one of the simulations conducted in regionII at a wind speed of 7 m s−1 and TI equal to

:
)
:::
for

:
a
::::::::::::
representative

::::::
region

::
II

:::::::::
simulation

::
at

:::::::
7 m s−1

::::
and

:::
TIs

::
of

:
6% (Fig. 2a) and 18% (Fig. 2b). For the calculation of the450

estimated rotor-equivalent wind speed, the
::
To

::::::::
compute

:::
VE ,

:
rotor speed and torque signals were low-pass filtered using

::::
with

a fifth-order Butterworth filter with a −3 dB
:
-3

:
dB cutoff frequency of 8 rpm (Schreiber et al., 2020b), in order to eliminate

higher-frequency
::::::::
removing

:::::::::::::
high-frequency turbine dynamics and measurement noise.

For the same
::::::::
operating condition, Fig. 2c shows time histories of

::::::::
compares the reference power-law vertical shear (dashed

blueline) and its estimate obtained with )
:::::

with
::
its

:::::::
estimate

:::::
from

:
Eq. (8) (solid redline). Figure 2d displays a time history of455

:::::
shows

:
the reference linear horizontal shear (dashed blue line) and of its estimate from Eq. (8) (solid red line) for a wind

turbine in full-waked conditions (as described later in
:::
and

:::
its

:::::::
estimate

:::
for

:
a
:::::
fully

:::::
waked

::::::
turbine

::
(Sect. 3.1.5). We demonstrate

the behavior of the horizontal observer in this condition
:
,
:
a
::::

case
::::::::

selected because wake meandering creates visible changes

in the shear at the impinged turbine, whereas only very modest horizontal shear changes are
:::::::
induces

::::
clear

:::::::::
horizontal

:::::
shear

::::::::::
fluctuations,

:::::
unlike

:::
the

:::::::
modest

::::::::
variations typically observed in TurbSim ambient

:::::::
ambient

:::::::
TurbSim

:
flow fields.460
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Figure 2. Time histories of the rotor-average wind speed from TurbSim and from Eq. (7) at a wind speed of 7 m s−1 and at TIs of 6% (a)

and 18% (b), respectively. (c): time histories of the power-law vertical shear from TurbSim and from Eq. (8)
:
, a wind speed of 7 m s−1

:
, and

TI equal to 6%. (d): time histories of the linear horizontal shear from TurbSim and from Eq. (8) for the downstream turbine in full-waked

conditions (see Sect. 3.1.5). Reference results from TurbSim: dashed blue line; estimates: solid red line.

For the calculation of shears, the load harmonics were computed via the Coleman–Feingold transformation(Coleman and Feingold, 1958)

from the corresponding measured signals
::::
Shear

:::::::::
estimation

::::
relies

:::
on

::::
load

::::::::
harmonics

::::::::
obtained

:::
via

::
the

::::::::::::::::
Coleman-Feingold

::::::::::::
transformation

:::::::::::::::::::::::::
(Coleman and Feingold, 1958)

, followed by low-pass filtering (Bertelè et al., 2021). The shear-observing network is also fed with the estimated
:::::::
network

::::
also

::::::
receives

::::
the

::::::::
estimated

:::::::::::::
rotor-equivalent

:
wind speed VE obtained from Eq. (7) and with

::
the

:
air density (here assumed to be

known, and therefore not estimated
:::::::
assumed

::::::
known).465

In
::::::
Across all cases, the estimates track the ground-truth values reasonably well , although they fail to capture some of the

higher frequency
::::::::
observers

::::
track

:::
the

:::::::
ground

::::
truth

:::::::::
reasonably

::::
well

:::
but

::::
miss

:::::
some

::::::::::::::
higher-frequency

:
content. This is due to the

fact that the rotor-equivalent wind speed is estimated through the response of the turbine, which is smoothed by the large inertia

of the rotor and the presence of the control system. Similarly,
:::
loss

::
is

::::::::
expected,

::
as

:::
VE::

is
:::::::
inferred

::::
from

::::::
turbine

::::::::
response

:::::::
–filtered

::
by

:::::
rotor

:::::
inertia

::::
and

::::::
control

:::::::
action–

:::::
while

:
the shear observers are driven by load harmonics , which here again entail some470

filtering of the higher frequency content of the
:::
rely

:::
on

::::
load

:::::::::
harmonics

:::
that

::::::::
similarly

::::::
smooth

:::
the

:
blade response. Considering

that
::::::
Because

:
these quantities are used for scheduling (i.e., interpolating) the system matrices and reference

:::::
solely

::
to

::::::::
schedule
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::::::::::
(interpolate)

:::
the

::::::
model

:::::::
matrices

::::
and

:
equilibrium conditions, the absence of some of the highest frequency components is

probably an advantage more than a deficiency
::::::
omitting

:::::::::::::
high-frequency

::::::::::
components

::
is
::::::::
arguably

::::::::
beneficial.

Over the entire range of simulations, the average absolute error was found to be
::::
errors

:::::
were 2.4% for wind speed, 14.5%475

for the vertical power-law shear exponent, and 11.1% for the linear horizontal shear. Furthermore, the average error for the

mean yaw misalignment in the wake steering scenarios (described later in
::
In

::::::::::::
wake-steering

::::::::
scenarios

:
(Sect. 3.1.5)

:
,
:::
the

:::::
mean

:::::::::::::::
yaw-misalignment

:::::::::
estimation

::::
error

:
was 14.5%.

3.1.3 Performance of the bias correction approach

To evaluate
::
To

:::::
assess

:
the BC approach described in

::
of Sect. 2.4.1 and to analyze the behavior

:::::::
examine

:::
the

:::::
roles of the two480

correction terms, we employed the same individual turbine operating
::::
used

:::
the

::::
same

:::::::
turbine in a clean low-TI inflow that was

used
::
as in Sect. 3.1.2. Initially, the BC terms were switched off, yielding the baseline performance

::::::
initially

:::::::
disabled

::
to

::::::::
establish

::
the

::::::::
baseline of the uncorrected approach

:::::
model. Figure 3a presents time histories of the tower top FA deflection as measured

on the OpenFAST model
::::
shows

:::::::::
tower-top

:::
FA

::::::::
deflection

::::
from

::::::::::
OpenFAST (dashed blueline), uncorrected estimates from the

:
),

::
the

::::::::::
uncorrected

:
digital shadow (solid redline), and corrected estimates using the BC approach

::
the

::::::::::::
BC-corrected

:::::::
estimate (solid485

yellowline) . These results correspond to a wind speed of
:
)
::
at 7 m s−1 and a turbulence intensity (TI )

::
TI

:
of 6%.

Introducing the static corrective force for the tower FA deflection, fFA
0 , reduces the average absolute error from 16.4%

to 2.5%. Figure 3b shows the variation
::::::::
illustrates

:::
the

:::::::::::
dependence of this static force with respect to the wind speed; the

force is normalized to one at ratedwind speed
::
on

:::::
wind

::::::
speed,

:::::::::
normalized

::
to
:::::

unity
::
at
:::::
rated. Similar analyses were conducted

::::::::
performed

:
for other DOFs , but are omitted here for brevity. It is worth noting that the small deviations observed

:::
The

:::::::::
remaining490

:::::::::::
discrepancies between the linear and nonlinear models can be attributed to several factors , including

::::
stem

::::
from

::::::
factors

:::::
such

::
as shaft tilt, structural deflections, gravity loads, and slight discrepancies in azimuth angles due to minor differences in rotor

speeds between the models (NREL Forum). Additionally, errors in the estimation of
::::
small

:::::::
azimuth

::::::::::
differences

:::
due

:::
to

:::::
slight

:::::::::
rotor-speed

:::::::::
deviations

:::::::::::::
(NREL Forum),

::::
and

:::::
errors

::
in

:::::::::
estimating

:::
the

:::::::::
scheduling

:
vector scontribute to the observed differences

between the linear and nonlinear models.495

It is common to observe bias in one or more blade sensors
:::
Bias

::
in

:::::
blade

:::::::
sensors

::
is

::::::::
common (Pacheco et al., 2024). To

demonstrate
:::::
assess

:
the effect of the term b in the correction of sensor biases (see

:::
term

:::
for

::::::::::
sensor-bias

:::::::::
correction

:
(Sect. 2.4.1,

Eq. 10c), we artificially introduced a non-zero Gaussian noise in the strain gauge of
:::::
added

::::::::
Gaussian

::::
noise

:::
to

::
the

:
blade 1

:::::
strain

:::::
gauge, with a standard deviation of 0.01% and a mean equal to 10% of the mean value of the flapwise bending moment. Results

are illustrated in Fig.
:::::
Figure 4a , where the OpenFAST unbiased model measurements are shown as a dashed blueline

:::::
shows500

::
the

::::::::
unbiased

::::::::::
OpenFAST

::::::::::::
measurements

:::::::
(dashed

:::::
blue)

:
and the biased one as a dashed tealline

:::
ones

:::::::
(dashed

:::::
teal). Figure 4b

shows how the term
:::::::
illustrates

::::
how

:
b (dashed tealline) converges to the mean of the artificially added bias in the sensor

::::::
injected

::::
bias

:
(solid yellowline), effectively correcting the sensor output

::::::::::
measurement. Figure 4c shows the estimated

::::::::
compares

::
the

:
blade 1 deflection measured on the OpenFAST model without bias

::::
from

:::
the

::::::::
unbiased

:::::::::
OpenFAST

::::::
model (dashed blueline),

with artificially introduced bias
:
),
:::
the

::::::
biased

::::
case

:
(dashed tealline), and the deflection estimated by the digital shadow using505

the BC approach
:::::::::::
BC-corrected

::::::
digital

::::::
shadow

:
(solid yellowline). The average absolute deflection error is 3.61% without the
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Figure 3. Time histories of tower top FA deflection as measured on the OpenFAST model (dashed blue line), uncorrected estimates from

the digital shadow (solid red line), and corrected estimates using the BC approach (solid yellow line) at a wind speed of 7 m s−1 and a TI

of 6% (a). Variation of the static corrective force fFA
0 for the tower top FA deflection with respect to wind speed (b). The static force is

normalized to one at
::
the

:
rated wind speed to highlight relative variations.

artificial bias and 3.67% with the compensated artificial bias, demonstrating
::::::::::::
compensation,

::::::::
indicating

:
that the correction is

able to remove the problem without significant effects on the accuracyof the estimates. We also implemented this method for

scenarios where
:::::::
removes

:::
the

::::
bias

:::::::
without

::::::::
degrading

::::::::
accuracy.

:::::::
Similar

::::::::::
performance

::::
was

:::::::
obtained

:::::
when

::::::::
different

:::::
biases

:::::
were

::::::
applied

::
to each blade sensorwas affected by a different bias, achieving a similar quality in the results.510

3.1.4 Application to an individual turbine

For the same individual turbine in
:
a
:
clean low-TI inflow shown in

::
of

:
Sect. 3.1.2, Fig. 5athrough 5d report the time histories

of the tower top
::
–d

:::::
show

:::
the

:::::::::
tower-top

:
FA and SS displacements , and the blade tip flapwise and edgewise deflections ,

respectively, as measured on the OpenFAST model
:::::::
measured

:::
in

:::::::::
OpenFAST

:
(dashed blueline) and estimated by the digital

shadow using
::::
with BC (solid yellowline). Similarly, Fig.

:
).

::::::
Figures 5e and 5f report the time histories of the tower-base resultant515

bending moment and of the blade resultant bending moment at 15% blade span, respectively. Figure 5 reports a typical result,

which was obtained with one single seed in region II at a wind speed of
::::
span.

::::
The

:::::
figure

:::::
shows

::
a

:::::::::::
representative

::::
case

::
at 7 m s−1

and TI equal to 6%
:::::
= 6%. Table 1 gives a more complete overview of the performance of the digital shadow by reporting

::::::::::
summarizes

::
the

:::::::::::
performance

::::::
across

::
all

::::::::::
simulations

::
by

::::::
listing the average absolute errorsfor all conducted simulations.

Results indicate
::::
show

:
that the average absolute errors of the estimated turbine states consistently remain below 10% across520

all conducted
::
for

:::
all simulations. DELs were computed for the resultant moment at tower base, noted

:::::::::
tower-base

::::::::
resultant

:::::::
moment MTB , and

:::
and

:::
the

:::::
blade

::::::::
resultant

:::::::
moment at 15% blade span , noted

:::
span

:
MB−15%. The

:::::
Their average absolute

errors for these two quantities are in the range of
:::
fall

::
in

:::
the

:
5%–15%

:::::
range, with standard deviations averaging approximately

::
of

:::::
about

:
2.7% for MTB and 4.5% for MB−15% across all simulation scenarios. As expected, errors are larger for higher

:::::::
increase

::::
with TI. The range of the average estimation errors is in line with the findings of

:::::
overall

:::::
error

:::::
levels

:::
are

:::::::::
consistent525
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Figure 4. Time histories of blade 1 flapwise bending moment (mB1
F ) as measured on the OpenFAST model without bias (dashed blue line)

and with artificially introduced non-zero Gaussian noise (dashed teal line) (a). Convergence of the term b (dashed teal line) to the mean of

the artificially added bias (solid yellow line) (b). Time histories
::
of the estimated blade 1 deflection as measured on the OpenFAST model

without bias (dashed blue line), with artificially introduced non-zero Gaussian noise (dashed teal line), and as estimated by the digital shadow

using the BC approach (solid yellow line) (c). Results correspond to a wind speed of 7 m s−1 and a TI of 6%.

Table 1. Average absolute errors for all conducted simulations for clean inflow conditions.

Situation
Avg. estimation error [%]

dFA
T dSS

T dFB dEB MTB DELs MB−15% DELs

No wake, TI=6% 3.1 1.7 3.8 4.4 5.1 12.2

No wake, TI=18% 6.9 3.5 5.6 6.0 6.9 13.0

Average 5.0 2.6 4.7 5.2 6.0 12.6
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Figure 5. Time histories of tower top FA deflection (a), tower top SS deflection (b), and blade tip flapwise (c) and edgewise (d) deflections,

tower-base bending moment (e), and blade bending moment at 15% blade span (f), as measured on the OpenFAST model (dashed blue line)

and estimated by the digital shadow using BC (solid yellow line). A wind speed of 7 m s−1 and TI equal to 6% is considered.
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::::
with previous studies (Abdallah et al., 2017; Branlard et al., 2020a, b, 2024a), which, however, used a smaller number of

:::::::
although

::::::
those

:::::
works

:::::
relied

:::
on

:::::
fewer DOFs and did not consider

::::::
include

:
blade dynamics.

3.1.5 Application to waked turbines in a small cluster

To assess the performance of the proposed method in
:::::::
evaluate

:::
the

::::::
method

:::::
under

:
more complex inflow conditions, simulations

were conducted for a small cluster of wind turbines
:::
we

::::::::
simulated

:
a
:::::
small

::::::
turbine

::::::
cluster using FAST.Farm (OpenFAST, 2024).530

The cluster consists of three IEA 3.4-130 RWT turbines
:::::
RWTs (IEA3.37MW, 2023) arranged in a row , as shown in (Fig. 6,

and named
:
),
:::::::
denoted

:
WT1, WT2, and WT3 , from the upstream to the most downstreamone

::::
from

::::::::
upstream

::
to

::::::::::
downstream.

Figure 6. Layout of a small cluster of three IEA 3.4-130 RWT turbines
:::::
RWTs. For all considered cases, the wind direction (indicated by the

blue arrow) is parallel to the row of turbines.

Two different scenarios were considered
::::::::
scenarios

::::
were

::::::::::
investigated:

– In the firstcase, the front turbine
:
,
:
WT1 is aligned with the wind direction. The incoming wind is at rated speed

(9.8 m s−1) with a turbulence intensity of 6%. As a result, turbine
:::
and

::
TI

::::::
= 6%.

:
WT2 is entirely within

:::
lies

:::::
fully

::
in535

the wake of WT1, and WT3 is entirely within the wake
:
in

:::
the

::::::::::
consecutive

::::::
wakes of WT1 and WT2. The digital shadow

is applied to the two downstream wake-affected turbines WT2 and WT3.

– In the secondcase, the
:
, ambient conditions are the sameas in the first case, but the front turbine

:
,
:::
but

:
WT1 is misaligned

:::::
yawed

:
by −30◦(i.e., pointing to the right when looking upstream) relative to the wind direction. Consequently, turbine

:
.

WT2 is
::::
then partially waked by WT1, while WT3 is fully within the wake of

:::::
waked

:::
by WT2 and partially in the one of540
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::
by WT1. The digital shadow is applied to the misaligned front turbine WT1, as well as to the two waked ones WT2,

:
and

WT3.

Table 2 presents an overview of
:::::::::
summarizes

:
the average absolute errors and the estimated output DELs for the two

::::
DEL

:::::::
estimates

:::
for

::::
both

:
scenarios. For the waked and yawed turbines, the order of magnitude of the average estimation errors in the

blade DELs is in line with the errors observed
:::::
blade

::::
DEL

::::::
errors

::::::
remain

::::::::::
comparable

::
to

:::::
those

:::::::
obtained

:
in Sect. 3.1.4 for the545

single turbine operating in a high TI freestream. However, the errors in the tower DELs are somewhat higherin both scenarios.

Although the ambient turbulence here is only 6%, these results are
:
a
:::::
single

::::::
turbine

::
in

:::::::
high-TI

:::::
inflow,

:::::::
whereas

:::::
tower

:::::
DEL

:::::
errors

::
are

::::::
higher.

::::
This

::
is
:
consistent with the effects of wake-added turbulence on the impinged turbines. While the errors in the tower

DELs
:::::
added

:::::
wake

::::::::
turbulence

:::::::::
impinging

:::
on

::::::::::
downstream

::::::::
machines.

::::::
While

:::::
tower

::::
DEL

:::::
errors

:
are similar for WT1 in misaligned

conditions and for
::::
under

::::
yaw

::::::::::::
misalignment

:::
and

:
WT2 when partially waked, blade DELs

::::
under

::::::
partial

:::::::
waking,

:::::
blade

:::::
DEL550

:::::
errors are larger for the latter. This is

:::::
WT2,

:
likely due to the complexand asymmetrical inflow generated ,

::::::::::
asymmetric

::::::
inflow

::::::
induced

:
by the deflected wakeon the impacted turbines and the ensuing complex response of the rotor blades.

Notwithstanding
::::::
Despite

:
the low ambient turbulence, the errors in the tower DELs

:::
TI,

:::::
tower

::::
DEL

::::::
errors are somewhat

larger for the front turbine when it is yawed , compared to the typical errors observed
::::::
yawed

::::
WT1

::::
than

:
for the downstream

waked turbines. This is likely due to the complex response of a yawed rotor , which is probably not accurately
:::
may

::::::
reflect555

::
the

::::::::
complex

::::
rotor

::::::::::::
aerodynamics

::
in

::::
yaw,

::::::
which

:::
are

:::
not

::::
fully

:
captured by the filter-internal model. In addition, even the blade

element momentum (BEM) approach implemented in OpenFAST is not necessarily very accurate in such
::::::::
Moreover,

:::::
even

::::::::::
BEM-based

:::::::::::
aerodynamics

::
in

::::::::::
OpenFAST

:::
can

:::
be

::::::::
inaccurate

::
in
::::::

strong
::::::::::
yawed-flow conditions (Branlard et al., 2024b), whereas

computational fluid dynamics (CFD ) and free vortex methods may be able to better render the underlying complex
::::
where

:::::
CFD

::
or

:::::::::
free-vortex

:::::::
methods

::::
can

::::::
provide

:::::
more

::::::
reliable

:
physics (Boorsma et al., 2018).560

Table 2. Average absolute errors of the estimated outputs for all considered situations with complex inflow conditions, encompassing fully,

partially, and overlapping waked conditions.

Scenario Turbine Condition
Avg. estimation error [%]

MTB DELs MB−15% DELs

No wake steering
WT2 Fully waked 13.0 14.2

WT3 Fully waked 10.1 13.4

Wake steering

WT1 Misaligned 16.1 13.4

WT2 Partially waked 15.5 16.7

WT3 Overlapping wakes 10.5 15.7

Average estimation error over all complex inflow conditions 13.0 14.7

For a deeper insight into
::
To

::::::
further

::::::::
interpret these results, Fig. 7aand 7c show the amplitude of the Fast Fourier Transform

(FFT )
::
–d

:::::
show

:::
the

::::::::::
normalized

::::
FFT

::::::::::
amplitudes of the tower-base bending and

::::::
moment

::::
and

:::
the

:
blade bending moment at
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15% blade span , respectively,
::::
span for a single turbine in clean inflow condition at a wind speed of 9 m s−1 and TI equal to

6%, while Fig. 7b and 7d show the same
::
and

:
for WT2 in partially waked condition, with an observed average wind speed of

9 m s−1. The OpenFAST ground-truth measurements are shown with dashed bluelines, while the estimates are represented by565

solid yellowlines. All FFT amplitudes are normalized relative to the peak amplitude recorded by OpenFAST.

:::::::::
conditions.

:::::::::
OpenFAST

::::::::::::
measurements

:::::::
(dashed

:::::
blue)

:::
are

::::::::
compared

::::
with

::::::
digital

::::::
shadow

::::::::
estimates

:::::
(solid

:::::::
yellow).

:
The digital

shadow is capable of capturing reasonably well the overall trend of the spectrum as the turbine moves from an aligned to

a misaligned condition for the frequencies clustered around the 1 to the
:::::::::
reproduces

:::
the

::::
main

:::::::
spectral

::::::::
features,

::::::::::
particularly

::::::
around

::
the

::::
1P–3P harmonics. The peaks of the OpenFAST-measured tower-base and blade bending moments are approximately570

:::::::::
harmonics,

:::
and

::::::::
captures

:::
the

:::::::
increase

::
in

::::
load

:::::::::
amplitudes

:::::
from

::::::
aligned

::
to
::::::

waked
::::::
inflow.

::::::
Under

::::::
waked

:::::::::
conditions,

::::::::::
OpenFAST

::::
peak

:::::::::
amplitudes

::::
rise

:::
by

::::::
factors

::
of

::::::
about 5

::::::
(tower)

:
and 3 times higher under waked conditions compared to the no wake

condition. The errors in the peak amplitude of the tower-base bending moment
::::::
(blade).

::::
The

::::::
digital

:::::::
shadow

:::::
errors

::
in

:::::
peak

::::::::
amplitude

:
are 14% under cleaninflow conditions

::::::
(clean)

:
and 46% under wakedconditions. Similarly, the errors in the peak

amplitude of the blade bending momentare
:::::::
(waked)

::
for

:::
the

::::::::::
tower-base

:::::::
moment,

:::
and

:
18% for the cleaninflow case

:::::
(clean)

:
and575

34% for the waked condition
:::::::
(waked)

:::
for

::
the

:::::
blade

:::::::
moment.

Although the proposed digital shadow is clearly not providing an exact representation of the turbine behavior, the accuracy

of the blade response in complex partially-waked and misaligned conditions is only slightly worse than the tower response

provided by recent simpler digital shadows (Branlard et al., 2020b, 2024b), which would not be applicable in such non-

symmetric conditions.580

3.2 Validation against field measurements

Next, the digital shadow is tested in
::::::::
evaluated

:::::
under real-world conditions , using measurements obtained on

::::
using

::::::::::::
measurements

::::
from a 3.5 MW eno wind turbine (eno energy GmbH). The available measurements

:::::::
Available

::::::
signals

:
include generator torque,

rotor rotational speed, pitch angle, tower-top accelerations in both FAand SS directions, and blade root bending moments in the

:::::
FA/SS

::::::::::::
accelerations,

:::
and

:::::::::
blade-root flapwise and edgewise directions. Additional strain gauges measure

::::::
bending

:::::::::
moments,

::
as585

:::
well

:::
as

::::::::::
strain-gauge

::::::::::::
measurements

::
of two components of the tower-base bending moment and of the blade bending moment at

25% blade span. All measurements
:::
data

:
are sampled at a rate of 10 Hz. We leverage these measurements for a dual purpose:

in a first step, they are used
::::
These

::::::::::::
measurements

:::::
serve

::::
two

::::::::
purposes:

::
(i)

:
to assess the

::::::::
prediction quality of the predictions of

the digital shadow , as discussed in
:::::
digital

::::::
shadow

::
(Sect. 3.2.2; in a second step, they are used

:
);
::::
and

:::
(ii) to train a data-driven

correction of the corresponding output model using Eq. (11) , as discussed later in
:
(Sect. 3.2.4.590

Following the same approach described in
::
).

::::::::
Following

:::
the

:::::::::
procedure

::
of Sect. 2.1, the filter-internal model is obtained

::::
built

by linearizing an existing OpenFAST model of the wind turbine across a predetermined
::::::
turbine

::::
over

::
a
:
range of operating

conditions
:::::
points from cut-in to cut-out.
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Figure 7. Spectra of the tower base bending moment (a, b) and the blade bending moment at 15% blade span (c, d) under clean inflow and

partially waked conditions, respectively. The results are shown as measured on the OpenFAST model (dashed blue line) and as estimated by

the digital shadow using BC (solid yellow line). The frequencies are normalized by the mean rotor speed, and all FFT amplitudes are scaled

relative to the peak amplitude recorded by OpenFAST.

3.2.1 Test site

The dataset used in the current
:::
this

:
study was collected at a test site from 15 to 30

:::::
during

::::
two

::::::
periods

::::::
(15–30

:
October 2020 , and595

23 to 26
:::
and

:::::
23–26 February 2021within the scope of a different project unrelated to the research described here. Measurements

were used without applying any calibrations or adjustments and were filtered to eliminate )
:::
as

:::
part

::
of

:::
an

::::::::
unrelated

::::::
project.

::::
The

:::::::::::
measurements

:::::
were

::::
used

:::
as

::::::::
recorded,

::::::
without

::::::::::
calibration

::
or

:::::::::::::
post-processing,

::::
and

::::::
filtered

::::
only

:::
to

::::::
remove

:
gaps, stops, faults,

or any other condition that does not represent a normal power production operating mode
:::
and

:::::
other

:::::::::::::::::::
non-power-production

::::::::
conditions.600

The test site, illustrated in Fig. 8, is located in northeast Germany, near the village of Kirch Mulsow, in the Rostock district

of Mecklenburg-Vorpommern, a few kilometers from the Baltic Sea. The terrain comprises gentle hills, open fields, and forests.

Four turbines, manufactured by eno energy GmbH (eno energy GmbH), are installed at the site. The digital shadow was applied

to replicate the response of WT3. The main technical specifications of WT3 and WT4 are summarized in Table 4; WT1 and

WT2 are not described further, as they played no role in the present experiment.605
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Figure 8. Layout of the test site, showing the turbine locations. The digital shadow is tested for the response of WT3. The sectors highlighted

in red and yellow indicate the wind direction range during the testing period, which are characterized by clean freestream and waked

conditions, respectively.

The testing period is classified
:::
was

::::::::::
categorized

:
into different inflow conditions, as presented

::::::::::
summarized in Table 3. After

filtering to remove gaps and non-power production conditions, approximately 49 h of data were selected from the available

measurement streams during the testing period under
::
out

::::
gaps

::::
and

::::::::::::::::::
non–power-production

:::::::
periods,

::::::::::::
approximately

::::
49h

::
of

:
clean

free-stream conditions. The resulting dataset was divided
::::
data

::::
were

:::::::
retained.

:::::
This

::::::
dataset

:::
was

::::
split

:
into two subsets: the first ,

comprising 38 h (approximately
::::
38h

:::::
(about

:
77%of the total) , was

:
)
::::
were

:
used to train the correction approaches described in610

Sect. 2.4. The remaining 11 h were reserved for validation , representing a sample day with clean inflowconditions. In addition,

as shown ,
:::::
while

:::
the

:::::::::
remaining

::::
11h

::::
were

::::
kept

:::
for

::::::::
validation

::::
and

:::::::::
correspond

::
to

:::
one

::::::::::::
representative

::::
day

::
of

::::
clean

::::::
inflow.

:

::::::::::
Furthermore,

:::
as

::::::::
indicated in Table 3, data from selected days with complex inflow conditions were used to further assess

the performance of the
::::::
evaluate

:::
the

:
digital shadow under complex inflow scenarios. It should be noted that

::::
more

::::::::::
challenging

:::::::::
conditions.

::::::::::
Importantly,

:
no data from complex inflow conditions were used for

:::::::
scenarios

:::::
were

::::
used

::
in

:
tuning the correction615

terms discussed
::::::::
presented in Sect. 2.4.1.

Wind speed and shear estimators for these turbines were developed and validated in previous studies (Schreiber et al., 2020a;

Bertelè et al., 2021).
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Table 3. Inflow conditions during the testing period.

Inflow conditions Specific conditions Wind direction [◦] Time period Total hours Data split [hrs]

Clean freestream Normal 145–335 17-31 Oct. 2020 49 38 (training) / 11 (testing)

Complex inflow

Extreme vertical shear 145–335 26 Oct. 2020 3 3 (testing)

Wake steering via yaw control 200–230 23 Feb. 2021 2.5 2.5 (testing)

Waked 40–70 15 Oct. 2020 2 2 (testing)

Table 4. Technical specifications of the WT3 and WT4 turbines at the test site.

Wind turbine
Turbine specifications

Turbine model Rotor diameter [m] Hub height [m] Rated power [MW] Cut-in, rated, cut-out speeds [m s−1]

WT3 eno126 126 117 3.5 3.0, 12.5, 25.0

WT4 eno126 126 137 3.5 3.0, 12.5, 25.0

3.2.2 Digital shadow performance without correction

First, we assess the ability of the digital shadow in estimating
:
to

::::::::
estimate quantities of interest (in this case, loads), where620

::::
when

:
no physical sensors are available. To this purpose

:::
end, the digital shadow is fed with SCADA data, blade root load

measurements, and the inflow quantities produced by the wind observers, but not with the tower-base and 25%-span blade

measurements. Rather, these measurements are used to assess
:::::
These

::::::::
withheld

::::::::::::
measurements

:::
are

::::::
instead

::::
used

:::
to

:::::::
evaluate the

quality of the estimates of the same quantities provided by the digital shadow
:::::::::::
corresponding

::::::::
estimates.

Figure 9a and 9b report the time histories of the
::::
show

:::
the

:
normalized measured (dashed blue line) and estimated (solid red625

line) tower-base bending moment resultant and blade bending moment resultant at 25% blade span, respectively, for 11 h
::::
over

:::
11h

:
on a sample day (20 October 2020) in the available dataset under clean freestream conditions. On this day, the turbine

experienced clean inflow conditions with
:
,
:::::::::::
characterized

::
by

:
an average TI of 13.5% , as measured by the met mast.

Upon closer inspection of the zoomed-in insets of Fig. 9, it appears
:::
(met

::::::
mast).

::::
The

:::::::
zoomed

:::::
insets

:::::
reveal

:
that the digital

shadow is able to follow remarkably well both the high and low-frequency variations of the measurements. However, the630

estimated response also exhibits
::::::
captures

::::
both

::::
low-

::::
and

::::::::::::
high-frequency

::::::::
variations

:::::
well,

:::::::
although a clear offset . This is the effect

of the approximate nature of the aeroelastic model, which creates a larger
::
is

::::::
present

::::
due

::
to

:::
the plant/internal-model mismatch

in real-world conditions than in the simulated case analyzed in
:::::::
between

:::
the

:::
real

::::::
turbine

::::
and

:::
the

::::::::::
approximate

:::::::::
aeroelastic

::::::
model

:::
–an

:::::
effect

:::
not

::::::::
observed

::
in

:::
the

::::::::
simulated

:::::
study

:::
of Sect. 3.1.4, where an identical OpenFAST model was used for defining the

::
the

:::::
same

::::::::::
OpenFAST

:::::
model

::::::
served

::
as

::::
both

:::::
plant

:::
and filter-internal model but also served as plant

:::::
model.635

The
::
For

::::
this

::::::
sample

::::
day,

:::
the average absolute errors

:::
are

:::::
5.9% for the tower-base and

::::::
bending

:::::::
moment

::::::::
resultant

:::
and

::::::
21.3%

::
for

:::
the

:
25%-span blade bending moment resultants are found to be 5.9% and 21.3%, respectively, for the sample day shown
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in Fig. 9. Additionally, considering the
::::::::
resultant.

::::
Over

:::
the

::::
full training dataset, the average absolute error for the tower-base

bending moment resultant is
::::
error

:::::::
averages

:
12.4% (with a minimum of

::::
min: 9.7%and a maximum of

:
,
:::::
max: 19.7%), while

for the 25%-span blade bending moment resultant is equal to 18.7% (ranging between
::::
error

:::::::
averages

::::::
18.7%

::::::
(range:

:
13.7%and640

:
–23.7%).

Figure 9. Time histories of tower-base bending moment (a) and blade bending moment at 25% blade span (b), as measured (dashed blue

line) and estimated by the digital shadow (solid red line) for 11 h on a sample day (20 October 2020) in the available dataset under clean

freestream conditions. All values have been normalized using the same factor to preserve the confidentiality of the turbine data.
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3.2.3 Virtual sensing (bias correction)

Second, in order to remove the
:::::::
observed

:
offset, the correction of both outputs and states is obtained with

::::::::
performed

:::::
using the

BC approach described in Sect. 2.4.1 and based on Eqs. (10).

The empirical
:::
The

:
tuning of the correction terms was guided by the quality of the measurements at the tower top and645

blade root, utilizing the data streams available
:::::::
followed

:::
the

:::::::::
procedure

:::
of

::::
Sect.

:::::
3.1.3,

:::::::
relying

:::
on

::::::::
tower-top

::::
and

:::::::::
blade-root

:::::::::::
measurements

::::::::
collected

:
during the testing period, as described in Sect. 3.1.3. .

:

First, the static force term f0 was modified by trial and error
:::::::
adjusted

:::::::
through

::
an

:::::::
iterative

::::::
tuning

:::::::
process until no further

improvement was possible. It was found that this term depends primarily
:::::::
obtained.

::::
This

:::::
term

:::
was

::::::
found

::
to

::::::
depend

:::::::
mainly

on wind speed, while the other terms of the scheduling set
:::::::
whereas

:::
the

:::::
other

:::::::::
scheduling

::::::::
variables

:
s had only a negligible650

effect for the data streams
::::::::
negligible

::::::::
influence under clean freestream conditions.

:::::
While

::
a

::::::
manual

::::::
tuning

::::::
strategy

::::
was

:::::::
adopted

::
in

:::
this

::::::
work,

::::
more

::::::::::
systematic

::
or

:::::::::
automated

:::::::::::
optimization

::::::::::
approaches

:::::
(e.g.,

:::::::::::::
gradient-based,

::::::::
Bayesian,

:::
or

:::::::
heuristic

::::::::
methods

:::::::::::::::::::::::
(Nocedal and Wright, 2006))

:::::
could

:::
be

::::::::
employed

::::
and

::::::::
represent

:
a
:::::::::

promising
::::::::
direction

:::
for

:::::
future

::::::::::::
development. Next, the bias

::::
term b was activated, and its driving process noise was calibrated

::::
tuned

:
to further reduce the error in the measurements. As

for
::::::::::
measurement

::::::
errors.

:::
As

::::
with the process noise affecting the dynamic equilibrium equations, this calibration term again did655

not exhibit a
::
no

:
significant dependency on wind speed or turbulence intensity . It should be noted that, considering the training

dataset, after
:::
was

::::::::
observed.

::::
After

:
tuning, the average absolute error

:::::
errors

:::
over

:::
the

:::::::
training

::::::
dataset

::::
were

:::::
3.1% for the tower-top

acceleration resultant is 3.1%, while it is
:::
and 3.5% for the blade root

:::::::::
blade-root bending moment resultant.

Table 5 presents an overview of
:::::::::
summarizes

:
the average absolute errors and the estimated output DELs for the complete

dataset, categorized
:::
full

:::::::
dataset,

:::::::
grouped by the inflow conditions

::::::
classes defined in Table 3.660

After implementing the bias correction,
:::
For

:::
the

:::::
same

::::::
sample

:::
day

::::::
shown

::
in

::::
Fig.

:::
10,

:::
the

::::
bias

::::::::
correction

:::::::
reduces

:
the average

absolute errors for MTB and MB−25% decreased to 4.2% and 2.7%, respectively, for the same sample day shown in Fig. 10,

indicating that the offset in the estimations has been effectively removed. In addition, the
:::
The

::::::::::::
corresponding

:
DEL estimation

errors
:::
are

::::
4.3%

:
for MTB and MB−25% became 4.3% and 9.1% , respectively

::
for

::::::::
MB−25%. Overall, the BC approach seems to

be capable of tracking
::::::::
accurately

::::::
tracks both low- and high-frequency fluctuationsin the quantities of interest, and of providing665

accurate estimates of their DELs
:
,
::::::::
providing

::::::
reliable

:::::
DEL

::::::::
estimates

:::
for

::
the

:::::::::
quantities

::
of

::::::
interest.

It should be mentioned
:
is

:::::
worth

::::::
noting

:
that the BC method appears to be

:::::
proves

:
more effective in correcting estimated

quantities in the real field case
::
the

::::
field

:
than in the simulation environment. This could be due to several reasons, such as

::::
may

::::
stem

::::
from

:::
the

:
higher TI and a sampling rate that is ten times faster in the simulation case. In fact, the higher sampling rate

introduces more
:::
the

::::::
tenfold

:::::
faster

::::::::
sampling

:::
rate

::::
used

::
in
:::::::::::
simulations,

:::::
which

:::::::::
introduces

::::::::
additional

:
high-frequency fluctuations ,670

which are more challenging
:::
that

:::
are

:::::
harder

:
to estimate accurately.

Since the bias correction approach is a generalizable method and has demonstrated strong performance, the
::::
Given

:::
the

::::::
strong

:::
and

:::::::::::
generalizable

:::::::::::
performance

::
of

:::
the

::::
BC

::::::::
approach,

:::
all

:
remaining results for complex inflow conditions are obtained using

this approach. This decision is further motivated by one of the key applications
::::::
method.

::::
This

::::::
choice

::::
also

:::::
aligns

:::::
with

:
a
::::
key

:::::::::
application

:
of the digital shadow , which acts as a virtual sensor to estimate

::
for

:
quantities that cannot be measured directly675
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Figure 10. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b) for 11 h on a sample

day (20 October 2020) in the available dataset under clean freestream conditions. Measurements: dashed blue line; corrected estimates of

the digital shadow using BC: solid yellow line. All values have been normalized using the same factor to preserve the confidentiality of the

measured turbine data.

due to
::::::
directly

:::::::::
measured

:::
for technical or economic limitations. To illustrate these results, time history plots are provided

::::::
reasons.

::::
For

:::::::
brevity,

::::::::::
time-history

:::::
plots

:::
are

::::::
shown

:
only for the waked inflow conditions

::::
case (Fig. 11), as this scenario is

particularly relevant and informative for understanding
:::::::::
informative

::::::::
regarding

:
model behavior under complex aerodynamic

interactions. Figures for other inflow conditions are omitted to maintain concisenessand avoid redundancy
::
the

:::::
other

::::::
inflow

::::::
classes

::
are

:::::::
omitted

:::
for

::::::::::
conciseness.680

– Extreme vertical shear:
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The bias correction – tuned using
:::
BC

::::::::
correction

::::::
–tuned

:::::::::
exclusively

:::
on the training dataset defined in Table 3 – was developed

without using any data from complex inflow conditions. Despite this
::::::::::::
complex-inflow

:::::
data.

::::
Even

::
so, the average absolute errors

for MTB and MB−25% are 6.0% and 2.4%, respectively, for the dataset corresponding to the extreme vertical shear scenario

defined in Table 3. Additionally, the
::::::
dataset.

:::
The

::::::::::::
corresponding

:
DEL estimation errors for MTB and MB−25% are 6.7% and685

7.3%, respectively, demonstrating the ability of the BC approach to provide estimations with .
::::::
These

:::::
results

:::::::
confirm

::::
that

:::
the

:::
BC

::::::::
approach

::::::::
maintains

:
errors below 10% , even under extreme shear conditions. It should be noted that

::::
even

:::::
under

::::::
severe

::::
shear

::::::::::
conditions,

:::::
where

:
the power law vertical shear

::::::::
exponent ranges from 0.15 to 0.72 , with an average value of

:::::::
(average

0.42).

– Wake steering via yaw control:690

For the dataset corresponding to the wake steering via yaw control scenariodefined in Table 3
:::::::::::
wake-steering

:::::::
scenario, the

average absolute errors for MTB and MB−25% are 6.2% and 2.3%, respectively. Additionally,
:
,
:::::
while

:
the DEL estimation

errors for MTB and MB−25% are 0.9% and 8.0%, respectively, with yaw misalignment ranging from
:
.
::::
Yaw

::::::::::::
misalignment

:::::
varies

:::::::
between

:
−16◦ to

:::
and 11◦. It is important to note that the turbine dynamics in wake steering control mode are

::::::
Despite

::
the

:
inherently more complex , further highlighting the performance of the digital shadow under complex inflow

::::::::
dynamics695

::::::::
associated

::::
with

:::::
wake

:::::::
steering,

:::
the

::::::
digital

::::::
shadow

:::::::::
continues

::
to

:::::::
perform

:::::::
robustly

:::::
under

::::
these

:
conditions.

– Waked:

Figures 11(a) ,
::::::
through 11(b), 11(c), and 11(d) present the time histories of the

:
d)
:::::
show

:::
the

:
tower-base bending moment,

:::
the

25%-span blade bending moment resultants, and
:::::::
resultant,

:::
and

:::
the

:
vertical and horizontal shears , respectively, for the dataset

corresponding to the waked scenario defined in Table 3
:::
for

:::
the

:::::
waked

::::::
dataset. Measurements are indicated by a dashed blue line,700

while the fine-tuned
:::::
shown

::
as

::::::
dashed

::::
blue

:::::
lines,

:::
and

:
BC-corrected values are shown with a solid yellow line. As illustrated in

Fig. 11(c), the
:::::::
estimates

::
as

:::::
solid

::::::
yellow

::::
lines.

::::
The

:
power law vertical shear has an average value of −0.15 , marked by a (dark

red dashed line. This condition is
:
),
:
attributed to the higher hub height of WT4 and the influence of its wake

::
its

:::::
wake

::::::::
influence

on WT3. Furthermore, as shown in Fig. 11(d), the horizontal shear – indicated by a
:::
The

::::::::
horizontal

:::::
shear

:::::::
averages

::::::
−0.12

:
(light

red dashed line – has an average value of −0.12
:
), further confirming the presence of waked conditionson WT3

:::::::
strongly

::::::
waked705

::::::::
conditions.

The
::
For

::::
this

:::::::
dataset,

:::
the average absolute errors for MTB and MB−25% are 11.4% and 5.1%, respectively, while the DEL

estimation errors are 0.9% and 13.3%, respectively, for the dataset presented in Fig. 11. These results indicate that, while
:
.

::::::::
Although the BC approach generally performs well, the inherently complex turbine dynamics and the significant

::::
large varia-

tions in vertical and horizontal shear under wake conditions contribute to the observed discrepancies, resulting in errors slightly710

::::
result

::
in
:::::::

slightly
::::::
higher

:::::
errors,

::::
with

:::::
some

::::::
values exceeding 10%.

Overall, the range of average estimation errors is consistent with the findings of previous studies (Abdallah et al., 2017;

Branlard et al., 2020a, b, 2024a), which , however, used a reduced number of degrees of freedom (DOFs), did not account for

:::::
relied

::
on

:::::
fewer

::::::
DOFs,

::::::::
neglected blade dynamics, and were not validated under complex inflowconditions.
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However
:::::
While

:::
the

:::::
digital

:::::::
shadow

:::::::
remains

:::::::
effective

:::::
under

::
all

:::::
tested

:::::::::
conditions, the slightly higher estimation errors observed715

under complex inflow conditions suggest that , while the model is effective, further refinement using
:::::
errors

::
in

:::::::
complex

::::::
inflow

::::::
indicate

::::
that

::::::
further

:::::::::
refinement

:::::
could

::
be

::::::::
achieved

::::
with a larger datasetmay be necessary to reduce residual offsets and achieve

more accurate predictions in such scenarios. Additionally
:
.
::
In

::::::::
particular, the tuning of the BC correction term could be enhanced

by incorporating not only wind speed but also
::::
terms

::::
may

::::::
benefit

::::
from

:::::::::
explicitly

:::::::::::
incorporating variations in vertical and hori-

zontal shear, as well as yaw misalignment
:
,
::
in

:::::::
addition

::
to

:::::
wind

:::::
speed.720

Table 5. Overview of average absolute errors and estimated output damage equivalent loads (DELs ) under various inflow conditions.

Inflow conditions Time duration [hrs]
Estimation error [%]

MTB Avg. Abs. MB−25% Avg. Abs. MTB DELs MB−25% DELs

Clean freestream 11 4.2 2.7 4.3 9.1

Extreme vertical shear 3 6.0 2.4 6.7 7.3

Wake steering via yaw control 2.5 6.2 2.3 0.9 8.0

Waked 2 11.4 5.1 0.9 13.3

3.2.4 Condition monitoring

Next, the measurements of the tower-base and 25%-span blade bending moments were utilized
::::
used to implement and validate

a data-driven a posteriori error
:
a
:::::::::
posteriori correction of the corresponding output equations, following Eq. (11), in order to

provide a
::
to

::::::
obtain high-quality prediction

::::::::
predictions

:
of these quantities. In this second scenario

:::::::::::
configuration, the turbine

is permanently equipped with sensors
::::::::::
instrumented, and the digital shadow provides expected values for these quantities of725

interest based on the current operational
::::
under

:::
the

:::::::
current

::::::::
operating

:
conditions. A CM activity (not discussed or analyzed

further in this work) can then be based on the comparison of measurements and predictions , thereby detecting possible

anomalies. The quality of the predictions is quantified in terms of
:::::
further

:::::::::
discussed

::::
here)

::::
may

::::
then

::::::::
compare

:::::::::
predictions

::::
and

:::::::::::
measurements

:::
to

:::::
detect

:::::::::
anomalies.

:::::::::
Prediction

::::::
quality

::
is

::::::::
quantified

:::::
using

:
the Root Mean Squared Percentage Error (RMSPE),

which is commonly used
:::::::::
commonly

:::::::
adopted in CM (Liu et al., 2023).730

The same dataset presented
::::
used in Sect. 3.2.2 was used for training, with the sample day allocated

::::::::
employed,

::::
with

::
a

::::::
sample

:::
day

:::::::
reserved

:
for validation. The

::::::::
NN-based

:::::::::
correction

::::
term

::::
was

:::::::::::
implemented

:::::
using

::::
the MATLAB Deep Learning Toolbox

(The MathWorks, Inc., 2022)was used to implement and train the NN-based correction term. Following a .
::
A

:
basic trial-and-

error approach,
:::::
study

:::
led

::
to

:
a neural network architecture with a single hidden layer containing

::::
with

:::
one

:::::::
hidden

::::
layer

:::
of

16 neuronswas selected. During training, the Polak-Ribiére Conjugate Gradient algorithm (traincgp) and BFGS quasi-Newton735

backpropagation (trainbfg) yielded the best performance for
::
the

:
tower-base and 25%-span blade bending moment, respectively.

Notably, the achieved RMSPEs for the training of the
:::
The

::::::::
resulting

:::::::
RMSPEs

::::::
during

:::::::
training

::::
were

::::::::::::
approximately

:::::
0.8%

:::
for

:::
the

tower-base and
::::
0.9%

:::
for

:::
the 25%-span blade bending moments were as low as about 0.8% and 0.9%, respectively

:::::::
moment.
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Figures 12(a) and 12(b) report time histories of the tower-base and 25%-span blade bending moment resultants, respectively.

Measurements are shown with a dashed blue line and the corrected ones
::::::::
estimates with a solid green line. Before implementing740

the a-posteriori
:
a
::::::::
posteriori error correction, the RMSPE for MTB and MB−25% were 6.1% and 21.6%, respectively. After

data-driven correction, these values dropped to 1.3% and 1.5%, respectively.

:
A
::::::
closer

::::::::
inspection

:::
of

:::
the

::::
time

:::::
series

:::
also

::::::
shows

:::
that

:::
the

::::::::::::
NN-corrected

:::::
model

:::::::
captures

:::::
most

::
of

:::
the

:::::::::
short-term

:::::::::::
intermittency

::::::
present

::
in

:::
the

::::::::
measured

:::::
loads,

::::::::
including

:::
the

::::::::
majority

::
of

:::
fast

::::::::::
fluctuations

::::::
driven

::
by

::::::::
turbulent

::::::
inflow.

::::
The

:::::::
sharpest

::::::::::
intermittent

:::::
spikes

::::::::
observed

::
in

::::
real

::::::
turbine

::::
data

:::
are

::::
only

:::::::
partially

::::::::::
reproduced,

:::::::::
reflecting

:::
the

:::::::
inherent

:::::::::
smoothing

::
of

:::
the

::::::::::
underlying

:::::
linear745

::::::
model.

::::::::::::
Nevertheless,

:::
the

::::::::
dominant

::::::::
variability

::::
and

::::::
overall

:::::::::::
intermittency

::::
level

:::
are

::::::::
matched

::::
well

::::::
enough

:::
for

:::
the

:::
CM

::::::::::
application

:::::::::
considered

::::
here.

:
Overall, it appears that the proposed data-driven approach is very effective at

:::::
highly

::::::::
effective

::
in

:
correcting

the output equations, as both slow and fast fluctuations of the two quantities of interest are followed
::::::
tracked

:
with remarkable

accuracy, although it cannot improve the state model.

4 Conclusions750

We have presented, verified, and validated with respect to one field dataset a wind turbine digital shadow
:
a
::::::
digital

::::::
shadow

::
of

::
a

::::
wind

:::::::
turbine,

:::
first

::
in
::
a
:::::::::
simulation

::::::::::
environment

:::::
under

::::::::::
freestream,

::::::
waked,

::::
and

:::::::::::
wake-steering

:::::::::
scenarios,

:::
and

::::
then

::::::
against

::
a

::::
field

::::::
dataset. Building on a classical Kalman filtering approach, the proposed digital shadow formulation

:::::::::
framework,

:::
the

::::::::
approach

linearizes an existing and trusted aeroservoelastic model to derive the filter-internal linear model. Reusing existing
::::
such models

reduces development time, leverages resources already invested in
::::
prior tuning and validation

:::::
efforts, increases confidence in755

the results, and avoids duplication of effort
::::
work.

However, departing from the existing literature, we have included in the model the
::::::::
Departing

::::
from

:::::::
existing

:::::::
studies, tower

side-side and the rotor blade DOFs in order
::::
were

:::::::
included

:
to support more general operating conditions, such as the ones

deriving from sheared inflows, waked , and yaw-misaligned operation
::::::
sheared

::::::
inflow,

::::::
waked

::::
flow,

:::
and

::::
yaw

:::::::::::
misalignment. Since

the linearization must now span a much wider solution spacethan in existing similar approaches
::::::
broader

:::::::
solution

:::::
space, the760

filter-internal model is scheduled with respect to a number of parameters tasked with
:::::::::
parameters representing the main drivers

of the turbine response. The rotor as a sensor technology is used to estimate these scheduling parameters
::::
These

::::::::::
scheduling

:::::::::
parameters

:::
are

::::::::
estimated

:
in real time during operation

::::
using

:::
the

:::::
rotor

::
as

::
a
::::::
sensor

:::::::::
technology

:
from SCADA and blade load

measurements.

Testing in a simulation environment showed that the accuracy of the states of the digital shadow generally remains
:::::::::
Simulation765

:::::
testing

:::::::
showed

:::::::::::::
state-estimation

:::::
errors

::::::::
generally

:
below 10% across all tested conditions. The average absolute error for DELs

is in the range of
:::::::::
conditions.

::::
DEL

:::::
errors

::::::
ranged

:::::
from 5%–15%, the larger values being observed in higher ambient turbulence

and in waked conditions
::::
with

:::::
higher

::::::
values

:::::
under

::::::::
elevated

:::::::::
turbulence

:::
and

::::::
waked

::::::
inflow, as expected. Slightly larger errors

(16.1%) were observed for a misaligned turbine, where the complex behavior of the rotor is probably not completely captured

by the
::::::
16.1%)

:::::::
occurred

:::::
under

::::
yaw

::::::::::::
misalignment,

:::::::::
reflecting

:::::
limits

::
of

:::
the

:
linearized model. Remarkably, the accuracy of the770

digital shadow applied to a field dataset was very similar to the one obtained in the simulationenvironment
::::
Field

::::::
results

:::::
were
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:::::::::
remarkably

::::::
similar

::
to
:::::

those
::
in
::::::::::

simulation, even without any ad hoc tuningof the model. However, clear biases were present,

which are indicative of the limits of the ,
::::::::
although

::::
clear

::::::
biases

::::::::
indicated

:::::::::
limitations

::
of

:::
the underlying filter-internal model.

Indeed, the main weakness
:
A

::::
key

::::::::
limitation of a digital shadow is its reliance

:::::::::
dependence on a white state-space model. This

is invariably affected by errors, which in turn will always limit the quality of the estimates that it can produce. To cope with775

thisissue, we have investigated two alternative ways of augmenting the model with ,
:::::
which

::
is
:::::::::
inevitably

:::::::
affected

::
by

:::::::::
modelling

:::::
errors.

:::
To

::::::
address

:::::
this,

:::
two

:::::::::
alternative

:
data-driven correction terms, resulting in grey models of greatly improved predictive

::::::::
strategies

::::
were

:::::::::
examined,

:::::::
yielding

::::
grey

::::::
models

::::
with

:::::::::::
substantially

::::::::
improved

::::::::
prediction

:
accuracy.

In particular, the fine-tuned BC approach demonstrated robust performance
:::
The

:::
BC

::::::::
approach

:::::::::
performed

:::::::
robustly

:
under

complex inflow conditions, including extreme vertical shear, waked
:::
flow, and wake-steering control, during field validation.780

Despite these challenging scenarios, the errors remained small across all tested cases, further highlighting the .
::::::
Errors

::::::::
remained

::::
small

::
in
:::
all

:::::
cases,

::::::::::::
demonstrating

::::::
strong reliability and adaptabilityof the proposed approach.

The bias correction method demonstrated strong performance, lowering the average absolute error from approximately
:
.

::::::
Overall,

:::
the

::::
BC

::::::
method

:::::::
reduced

:::::::
average

:::::::
absolute

:::::
errors

:::::
from

:::::::
roughly 20% to a range of 2%–11%. Additionally, the average

DEL estimation error was reduced to between
:
,
:::
and

:::::
DEL

:::::::::
estimation

:::::
errors

:::
to 1%–13%. These improvements represent a785

substantial advancement over results reported in the
:
,
::::::::::
representing

:
a
:::::::::
significant

:::::::::::
improvement

::::
over recent literature and highlight

the potential of the proposed approach
:::::::::::
underscoring

::
its

::::::::
potential

:
for fatigue analysis, lifetime consumption estimation, and

load-aware controlstrategies. In parallel, the neural correction of the selected outputs of interest also
::::::::
NN-based

:
a
:::::::::

posteriori

:::::
output

:::::::::
correction proved highly effective, reducing the load RMSPE from a range of 10%–15% to approximately

::::
about

:
1%.

This outcome
:
,
:::::
which

:
is particularly promising for the application of the digital shadow in CM scenarios

:::
CM

::::::::::
applications.790

The approach discussed here can be improved in several ways. For example, other
::::::
Several

::::::::::::
improvements

:::
are

::::::::
possible.

:::::::::
Additional inflow quantities may be necessary to further improve the

::::::
further

:::::::
enhance

:
scheduling of the filter-internal model.

One such parameter is veer, which, however, could be readily added to the scheduling parameters, as it can be estimated with

the ;
:::
for

::::::::
instance,

::::
veer

:::::
could

::
be

:::::::
included

::::
and

::::::::
estimated

:::::
using rotor as a sensor technology by expanding the load harmonics to

include the
::::::::
extending

:::
the

::::::::
harmonic

::::::
content

::
to

:
2P (?). Regarding validation, while the current results are encouraging, it is clear795

that the proposed approach should be tested on
:::::::::::::::::
(Bertelè et al., 2024).

:::::::::
Validation

::::::
should

::::
also

::
be

::::::::
expanded

::
to larger field datasets

covering a wider range of
::::::
broader

:
inflow and operating conditions, as well as different turbine types. In addition

::::::::
Moreover, the

tuning of the BC correction term could be improved by considering not only wind speed but also
::::::
refined

::
by

::::::::::
accounting

:::
for

variations in vertical and horizontal shearand
:
,
::
as

::::
well

::
as

:
yaw misalignment, which also

:::::
would

:
require more extensive data.

:::
We

:::
also

::::
note

::::
that

:::
the

::::
wind

:::::
speed

:::
and

:::::
shear

::::::::
observers

:::::::
smooth

::::
some

:::::::::::::
high-frequency

:::::::
content;

:::::::
however,

:::::
since

:::::
these

::::::::
quantities

:::
are800

::::
used

:::::
solely

:::
for

:::::
model

::::::::::
scheduling,

:::
this

:::::::::
limitation

:::
has

::::::
limited

:::::::
practical

:::::::
impact.
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Figure 11. Time histories of the tower-base bending moment (a), blade bending moment at 25% blade span (b), vertical shear (c), and

horizontal shears (d). Measurements: dashed blue line; corrected estimates of the digital shadow using fine-tuned BC: solid yellow line. The

shears are shown with solid red lines, with an average value marked by red dashed lines. All values have been normalized using the same

factor to preserve the confidentiality of the measured turbine data.
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Figure 12. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b). Measurements: dashed

blue line; corrected estimates of the digital shadow using NN: solid green line. All values have been normalized using the same factor to

preserve the confidentiality of the measured turbine data.
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Appendix A: Nomenclature

b Vector of sensor biases

f0 Static correction force

i Input vector of the inflow estimator805

p Vector of free network parameters

q Vector of generalized displacements

s Vector of scheduling parameters

u Input vector

v Vector of generalized velocities810

y Vector of outputs for Kalman innovation

z Vector of other outputs of interest

ν Measurement noise vector

ω Process noise vector815

A Rotor swept area

c Generic output of the wind inflow characteristic observer

Cp Power coefficient

d Displacement820

J Rotor inertia

κh Horizontal shear

M Bending moment resultant

m Bending moment component

Q Torque825

R Rotor radius

V Wind speed

α Vertical power-law shear exponent

γ Misalignment angle830

ϵ Output correction term

θ Blade pitch angle

λ Tip speed ratio

ρ Air density

ψ Rotor azimuthal position835
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Ω Rotor rotational speed

(·)E Edgewise component

(·)F Flapwise component

(·)FA Fore-aft component840

(·)SS Side-side component

(·)IP In-plane component

(·)OP Out-of-plane component

(·)NN Quantity corrected by a neural network

(·)1c 1P cosine component845

(·)1s 1P sine component

(·)Bi Quantity referred to the ith blade

(·)B−s% Quantity referred to the s% spanwise location

(·)TB Quantity referred to the base of the tower

(·)E Estimated quantity850

(·)M Measured quantity

(·)0 Reference equilibrium condition

δ(·) Perturbation about a reference equilibrium condition

BEM Blade element momentum855

CFD Computational fluid dynamics

CM Condition monitoring

DEL Damage-equivalent load

DOF Degree of freedom

FA Fore-aft860

FEM Finite element method

FFT Fast Fourier transform

LUT Look-up table

NN Neural network

BC Bias correction865

PSD Power spectral density

RMSPE Root mean squared percentage error

ROM Reduced order model

::::
RWT :

::::::::
Reference

:::::
wind

::::::
turbine

SCADA Supervisory control and data acquisition870
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SS Side-side

TI Turbulence intensity

WT Wind turbine
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