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Abstract.

We present a digital shadow Kalman filtering framework based on the direct linearization of a trusted multibody aeroser-

voelastic wind turbine model. In contrast to shadowing based on ad hoc modeling approaches, reusing validated industrial

or research-grade models reduces development effort, leverages resources invested in tuning and validation, and eventually

increases confidence in the results.5

Building on earlier work, the filter-internal model is extended to improve applicability under non-symmetric, waked, and

yaw-misaligned inflow conditions. In addition to tower fore-aft and rotor-speed dynamics, the model incorporates tower side-

side motion as well as blade flapwise and edgewise degrees of freedom. Real-time inflow observers estimate rotor-equivalent

wind speed, vertical and horizontal shear, and yaw misalignment, enabling operating-point-dependent scheduling of the lin-

earized model. To further enhance predictive accuracy, the white-box model is augmented with data-driven corrections, con-10

sidering both a bias-correction approach that acts on states and outputs, and a neural-network-based output correction.

The proposed method is validated in simulation under freestream, waked, and wake-steering scenarios and subsequently

on field data from an instrumented wind turbine. Additional field cases with extreme shear and waked operation are used to

assess robustness. Even without data-driven correction, damage-equivalent loads estimated from field data exhibit accuracy

comparable to simulation-based results. When correction strategies are applied, accuracy improves substantially, with damage-15

equivalent load errors reduced to only a few percent.

1 Introduction

Digital twins for wind turbine applications have recently garnered significant attention, emerging as key components of modern

wind systems. They support control (Anand and Bottasso, 2023), lifetime estimation (Branlard et al., 2020b; Song et al., 2023),

and asset monitoring (Olatunji et al., 2021). Because wind turbines operate autonomously in complex and variable conditions,20

the ability to mirror the behavior of each asset offers substantial potential. Combined with machine learning and artificial

intelligence, digital representations can continually improve, thereby enhancing productivity and profitability.

Digital twins build on the predictive abilities of digital shadows, which rely on a one-way data flow from the physical asset

to the model, unlike twins, where the loop is closed (Sepasgozar, 2021). As this work focuses solely on accurate mirroring, we

adopt the term digital shadow (Hoghooghi et al., 2024).25
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Among the many possible formulations, we follow and extend an approach that integrates an aeroservoelastic model with

a Kalman filter (Grewal and Andrews, 2014; Branlard, 2019; Branlard et al., 2024a; Hoghooghi et al., 2024). Wind turbine

manufacturers already maintain trusted and validated aeroservoelastic models, which are ideal candidates for the development

of digital shadows. Using these models eliminates the need to rebuild ad hoc representations and provides immediate predictive

capabilities, even without extensive field datasets –an advantage over purely data-driven approaches, which require lengthy30

and expensive measurement campaigns. Moreover, a white-box model can later be augmented with data-driven corrections,

evolving into an adaptive grey model.

Following Branlard (2019); Branlard et al. (2024a), an aeroservoelastic model is linearized around multiple operating con-

ditions, yielding a linear state-space internal model updated at each time step via SCADA measurements. Here, we improve

this framework in four main ways.35

First, the internal model is expanded beyond tower fore-aft and rotor-speed dynamics to include tower side-side motion

and blade flapwise and edgewise DOFs. This richer representation extends applicability to strongly sheared, waked, and yaw-

misaligned conditions relevant to wake-steering control.

Second, the wider operating envelope requires more advanced scheduling. Accordingly, the model is scheduled not only by

wind speed but also by vertical shear, horizontal shear (capturing wake impingement), and yaw misalignment. These inflow40

parameters are estimated in real time using dedicated observers (Kim et al., 2023; Bertelè et al., 2024).

Third, a bias-correction procedure improves the accuracy of both state and output equations. State biases are compensated

through additive error terms in the dynamic equilibrium, calibrated as a function of the current operating state. Output biases

are promoted to state variables governed by process noise. Although more general nonlinear corrections (Bottasso et al., 2006)

are possible, the adopted approach already delivers substantial improvements in fatigue-damage estimation.45

Fourth, for condition monitoring applications the model is enhanced via a data-driven learning element that corrects selected

outputs using measurements from onboard sensors. A neural-based term is trained on the observed discrepancies and added to

the corresponding model equations, yielding highly accurate predictions suitable for anomaly detection.

The digital shadow is demonstrated in simulation under clean freestream, waked, and wake-steering conditions, and validated

with field data from an instrumented multi-MW turbine under both clean and complex inflow. The implementation utilizes50

OpenFAST and its associated tools (OpenFAST, 2024; Jonkman and Shaler, 2021; TurbSim, 2023), with the filter realized in

MATLAB (The MathWorks, Inc., 2022), although the methodology is general and software-independent.

Fatigue-related applications of digital twins are extensively documented (Bernhammer et al., 2016; Hoghooghi et al.,

2019a, b), as fatigue loads affect all major components (IEC, 2005; Hoghooghi, 2021) and directly influence lifetime, per-

formance, and cost (Bottasso et al., 2013; Loew and Bottasso, 2022; Dimitrov et al., 2018). Condition monitoring (CM)55

supports proactive maintenance and improved operational efficiency (Chen et al., 2016; Wu et al., 2021; Liu et al., 2023), with

several methods leveraging machine learning (Bangalore et al., 2017; Hoghooghi et al., 2020a, b, 2021; Surucu et al., 2023).

Numerous load-estimation techniques also exist, ranging from hybrid physics-data methods (Noppe et al., 2016) to lookup

tables (Mendez Reyes et al., 2019), modal expansion (Iliopoulos et al., 2016), ensemble-based fatigue aggregation (Abdallah

et al., 2017), machine learning (Evans et al., 2018), neural networks (Schröder et al., 2018), polynomial chaos (Dimitrov et al.,60
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2018), deconvolution (Jacquelin et al., 2003), load extrapolation (Ziegler et al., 2017), virtual sensing via ROM–FE coupling

(Vettori et al., 2020), and NN-based surrogates (Guilloré et al., 2024).

This brief overview illustrates the broad relevance of digital shadows for turbine health monitoring and fatigue estimation.

The present work contributes by formulating a general procedure for digital shadow development that leverages trusted multi-

body models, linearization for computational efficiency, and adaptive corrections informed by inflow estimators and learning65

elements for improved accuracy.

The paper is organized as follows. Sect. 2 describes the methodology, including the internal model, its scheduling, and

correction strategies. Sect. 3 evaluates performance in simulation and field conditions. Sect. 4 summarizes findings and outlines

future work.

2 Methods70

Figure 1 illustrates the main components of the proposed digital shadow workflow. A Kalman filter combines SCADA mea-

surements with the predictions of a turbine ROM to estimate system states and additional outputs. The filter-internal model is

obtained by linearizing a higher-fidelity multibody model of the turbine. Blade-load measurements are combined with SCADA

data to infer key inflow characteristics in real time. These inflow parameters are then used to schedule the coefficients of the

filter-internal model, enabling the filter to adapt to the full range of operating and inflow conditions experienced by the turbine.75

The proposed digital shadow combines a physics-based reduced-order model with real-time measurements to continuously

estimate the turbine dynamic state and selected unmeasured loads. The Kalman filter serves as the core data-fusion mecha-

nism, propagating the turbine response using the linearized aeroelastic model and correcting these predictions whenever new

measurements become available. Model scheduling ensures that the filter remains valid across varying inflow and operating

conditions by adjusting the model coefficients in real time.80

2.1 Filter-internal model

We consider a nonlinear multibody model of a wind turbine, expressed in terms of generalized displacements q, velocities

v, and inputs u. Noisy measurements ν affect the outputs y used by the filter to update the model states, while z denotes

additional outputs of interest that do not participate in the innovation step. The filter ROM is obtained by directly linearizing

the nonlinear model around multiple equilibrium conditions, with equilibrium vectors q0, v0, u0, y0, and z0. The resulting85

filter-internal linear model is formulated in terms of increments δ(·) as

˙δq= δv, (1a)

˙δv =−M−1(Cδv+Kδq+Uδu+ω), (1b)

δy =Dvδv+Dqδq+Eδu+ ν, (1c)

δz= Fvδv+Fqδq+Gδu. (1d)90
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Figure 1. Schematic representation of the proposed digital shadowing approach.

The Kalman filter integrates the linearized model by first predicting the system states and their uncertainties, and then correct-

ing these predictions using the available measurements and their associated noise characteristics. Because the underlying model

is linearized, the nonlinear values of all quantities are recovered by adding the perturbations to the corresponding equilibrium

values, e.g. q= q0 + δq, and analogously for all other vectors in Eqs. (1).

Equations (1a) represent the (noise-free) kinematic relations, while Eqs. (1b) express the dynamic equilibrium affected by95

process noise ω, with M, C, K, and U denoting the mass, damping, stiffness, and control matrices. Equations (1c) and (1d)

give the linearized output relations for y and z, respectively. All noise terms are assumed zero-mean and uncorrelated (Grewal

and Andrews, 2014).

Although a standard linear Kalman filter would be sufficient for the present linearized state–space model, we adopt the

unscented Kalman filter (UKF) implementation of MATLAB (Wan and Van Der Merwe, 2000; The MathWorks, Inc., 2022).100

This choice is motivated by anticipated future extensions to nonlinear filter-internal models. While the use of the UKF is

therefore not strictly necessary in the present linear case, it remains fully applicable to linear systems, albeit with somewhat

higher computational cost compared to a standard linear Kalman filter.

Because the equilibrium conditions are generally periodic, the matrices associated with rotating quantities –and the corre-

sponding states, inputs, and outputs– depend on the rotor azimuth. To avoid dealing with periodic systems, this dependence is105

removed by averaging over one full revolution.
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In the present implementation, the filter-internal model includes 9 DOFs, and the generalized displacement vector is defined

as

q=
{
dFA
T ,dSS

T ,ψ,dFB1,d
F
B2,d

F
B3,d

E
B1,d

E
B2,d

E
B3

}T
, (2)

where dFA
T and dSS

T are the tower FA and SS deflections, respectively, ψ is the rotor azimuthal position, while dFBi and dEBi are110

respectively the flapwise and edgewise DOFs of the ith blade. The associated velocities are v = q̇.

The input vector u contains 8 entries and it is defined as

u= {V,α,γ,θ1,θ2,θ3,θcoll,Qgen}T , (3)

where V is the wind speed, α the vertical power-law shear exponent, γ the yaw misalignment angle, θi the total pitch of blade i,

θcoll the collective pitch, and Qgen the generator torque. Individual pitch control introduces a blade-specific pitch component115

θi − θcoll, whereas θi = θcoll when only collective pitch is active. The input vector thus includes not only control commands

from the on-board controller but also exogenous terms associated with the ambient inflow. The present set of inputs corresponds

to those used for linearization in OpenFAST (Jonkman et al., 2018; NREL Forum); other simulation tools may use different

inflow descriptors (e.g., including horizontal shear).

We assume that a biaxial accelerometer provides tower-top accelerations, an encoder measures rotor speed, and blade root120

loads are available in flapwise and edgewise directions for each blade. The output vector y, therefore, contains nine components

and is defined as

y =
{
d̈FA
T , d̈SS

T , ψ̇,mF
B1,m

F
B2,m

F
B3,m

E
B1,m

E
B2,m

E
B3

}T

. (4)

The FA and SS tower-top accelerations are denoted by d̈FA
T and d̈SS

T , respectively. The rotor angular speed is ψ̇ =Ω, while the

flapwise and edgewise bending moments of blade i are indicated by mF
Bi and mE

Bi.125

The model is completed by defining additional to-be-estimated quantities collected in the vector z, which do not participate

in the filter innovation step. This exclusion may occur for two reasons:

– the digital shadow operates as a virtual sensor for quantities that are not physically measured due to technical or economic

constraints;

– the digital shadow supports a condition-monitoring system, where predicted and measured values are compared to detect130

anomalies or faults.

Both scenarios are illustrated later in this work. In the present implementation, the z outputs include the tower-base bending

moment components mFA
TB and mSS

TB , as well as the flapwise and edgewise bending moments mF
Bi-15% and mE

Bi-15% at the

15% blade span. Other quantities could be selected depending on the specific application.

2.2 Model scheduling135

To be usable in practice, the filter-internal model is scheduled as a function of a small set of parameters s, selected to character-

ize the equilibrium operating condition about which the linearization is performed. Consequently, all matrices in the state-space
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representation of Eqs. (1) depend on s. For example, the mass matrix becomes M=M(s), and similarly for all other system

matrices. The equilibrium values of the states, inputs, and outputs also vary with s; for instance, the generalized displacements

satisfy q0 = q0(s), with analogous relations holding for the remaining vectors.140

The vector of scheduling parameters is defined as

s= {V,α,kh,γ}T . (5)

The first two entries capture the dependency of the model on the ambient conditions through the wind speed V and the vertical

power-law shear exponent α. The third entry is the horizontal shear kh, accounting for wakes, and the fourth is the yaw

misalignment γ, relevant for wake steering.145

The scheduling vector enables the model and filter to remain aware of operating conditions that would otherwise be lost

after linearization. The non-linear model is linearized at a set of discrete s values spanning the full operational and ambient

range, and the corresponding matrices and equilibrium quantities are stored in look-up tables (LUTs). During operation, s is

estimated in real time (Sect. 2.3), and the model matrices and equilibrium values are interpolated accordingly, allowing the

incremental filter predictions to be mapped back to the non-linear physical quantities.150

2.3 Observers

As previously noted, the filter-internal model is scheduled with respect to the parameters s, here chosen as the wind speed, the

vertical and horizontal shears, and the misalignment angle. These quantities are estimated in real time during operation and

used to update the filter-internal model accordingly. The present sequential setup –where observers supply s to the Kalman

filter– is adopted for simplicity, as legacy observers were already available (Hoghooghi et al., 2024). However, an augmented155

Kalman filter could alternatively estimate s directly.

Since the actual misalignment can differ substantially from the commanded one, γ is estimated via an observer rather than

taken from the controller demand.

2.3.1 Simple wind speed observer

A rotor-equivalent wind speed is obtained by inverting the expression of the power coefficient:160

Cp(θcoll,λ) =
QaeroΩ

0.5ρAV 3
, (6)

where λ=ΩR/V is the tip-speed ratio,R is the rotor radius,A= πR2 is the rotor swept area,Qaero is the aerodynamic torque,

and ρ is the air density. The power coefficient Cp is obtained from dynamic simulations of the full aeroservoelastic model in

steady wind conditions for a reference density ρref. After transient effects decay, the response is averaged over several rotor

revolutions to extract the steady-state values. These results populate a LUT, providing a mapping for the rotor-equivalent wind165

speed as a function of pitch, rotor speed, aerodynamic torque, and density:

V = LUTCp(θcoll,Ω,Qaero,ρ/ρref). (7)
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At run time, the LUT provides an estimate VE of the rotor-equivalent wind speed. The current pitch θcoll and rotor speed

Ω are read from on-board sensors. The aerodynamic torque is computed as Qaero ≈Qgen + JΩ̇, where Qgen is the measured

generator torque and Ω̇ is obtained by numerically differentiating Ω, with J the rotor inertia. Air density ρ is computed via the170

gas law using the measured temperature.

2.3.2 Shear and misalignment observers

The horizontal and vertical shears, as well as the wind misalignment, are estimated using the "rotor as a sensor" approach (Kim

et al., 2023; Bertelè et al., 2024), which exploits the fact that these inflow characteristics imprint distinctive signatures in the

blade load response. By inverting these signatures, the corresponding inflow quantities can be inferred.175

Here, we adopt the harmonic-amplitude-based formulation of the rotor-as-a-sensor method (Kim et al., 2023; Bertelè et al.,

2024). The estimator is written as

cE =NN(p, iM ), (8)

where cE is the estimated inflow quantity (either α, kh, or γ), NN(·, ·) is a single-output NN with parameters p, and iM is

the vector of measured inputs. A separate NN is used for each of the three inflow parameters. The input vector is defined as180

iM = {mT ,V,ρ}T , where m collects the relevant blade-load harmonics. Since the estimation of shears and misalignment only

requires 1P content (Kim et al., 2023; Bertelè et al., 2024), we define

m= {mOP
1c ,m

OP
1s ,m

IP
1c ,m

IP
1s }T , (9)

where subscripts (·)1c and (·)1s denote 1P cosine and sine terms, and superscripts (·)OP and (·)IP refer to out- and in-plane

load components. These components are obtained by transforming the measured flapwise and edgewise loads to the rotor disk185

frame based on the current blade pitch.

The NNs are simple single-hidden-layer feed-forward models with sigmoid activation. Parameters p are trained via back-

propagation with Bayesian regularization (Matlab, 2023; Burden and Winkler, 2009) using simulations from the full Open-

FAST aeroelastic model (OpenFAST, 2024). At each simulation step, the inflow quantities are extracted from the TurbSim field

(TurbSim, 2023) by best-fitting over the rotor disk, and load harmonics are computed via the Coleman–Feingold transforma-190

tion (Coleman and Feingold, 1958) and subsequently filtered. During operation, Eq. (8) provides real-time estimates of α, kh,

and γ using the measured load harmonics, the rotor-equivalent wind speed from Eq. (7), and air density ρ.

2.4 Model error correction

In practice, some mismatch between the plant and the filter-internal model is unavoidable, and this affects the performance of

the digital shadow. Such discrepancies can be mitigated through model-parameter tuning, dynamic data-driven model adapta-195

tion (Anand and Bottasso, 2023; Bottasso et al., 2006), bias-correction strategies (Chui and Chen, 1999; Drécourt et al., 2006;

Grewal and Andrews, 2008), or by adapting the process noise to account for unmodelled physics (Branlard et al., 2020a). In this

work, we focus on two approaches: a bias-correction method and a data-driven correction applied only to the output equations.
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2.4.1 Bias correction

First, we address bias correction (BC), interpreted as additive errors in the model. To this end, the filter-internal model of200

Eqs. (1) is modified as

˙δq= δv, (10a)

˙δv =−M−1(Cδv+Kδq+Uδu+ f0 +ω), (10b)

ḃ= ωb, (10c)

δy =Dvδv+Dqδq+Eδu+b+ ν, (10d)205

δz= Fvδv+Fqδq+Gδu. (10e)

With respect to Eqs. (1), the model is modified to include two corrections.

The first correction term is the static force f0, which induces a steady extra deflection in the generalized displacements to

compensate model biases. As with all model terms, f0 depends on the operating condition through the scheduling vector s.

A second correction is the additive term b in the output equation (Eq. 10d), which accounts for sensor biases. Following210

standard practice (Chui and Chen, 1999; Drécourt et al., 2006; Grewal and Andrews, 2008), b is promoted to a state undergoing

a random walk driven by process noise ωb, as in Eq. (10c).

Because f0 and b can be collinear, their effects may not be uniquely separable: a correction on the generalized displacements

performed by f0 will in turn correct the outputs through the δq term in Eq. (10d), eventually affecting b. To mitigate this, f0 is

first calibrated with b disabled; once suitable values for f0 for varying s have been obtained, then f0 is frozen and the bias b is215

activated in the filter. This two-step process is demonstrated later. For simplicity, one may omit f0 entirely and rely only on b,

accepting possible displacement errors. Iterative tuning of both terms is also possible.

Finally, tuning is based solely on the measured outputs y, since neither states nor sensor biases are directly measurable.

2.4.2 A posteriori error correction for condition monitoring applications

Next, we consider a CM-oriented scenario in which the digital shadow predicts selected quantities of interest while measure-220

ments of the same quantities are also available at run time. A CM system can then compare predictions and measurements to

detect faults or anomalies. For this redundancy to be effective, the digital shadow must closely match the measured behavior

under nominal conditions. In practice, the baseline model of Eqs. (1) cannot typically achieve such accuracy.

To improve agreement, the linearized output equations for z (Eq. 1d) are augmented with a correction term ϵ:

δz= Fvδv+Fqδq+Gδu+ ϵ. (11)225

For complete generality, the error correction term is assumed to depend on the states δq and δv, inputs δu and scheduling

parameters s, and it is approximated using a neural network:

ϵ=NNϵ(pϵ,s, δq, δv, δu), (12)
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where pϵ are the free network parameters.

Note that this approach does not modify the governing dynamics in Eq. (1b). Consequently, the filtered states will generally230

not coincide with the true (and typically unknown) plant states. However, accurate estimates of the outputs of interest z can

still be achieved by training the correction term to learn the measured outputs zM .

As before, a simple single-hidden-layer feed-forward NN provides sufficient accuracy. Training is performed by backpropa-

gation (Matlab, 2023), with Weibull weighting applied to emphasize the most probable operating conditions (Bangalore et al.,

2017; Surucu et al., 2023; Anand and Bottasso, 2023).235

3 Results

3.1 Simulation-based results

We assess the digital shadow in simulation using the IEA-3.4-130 reference wind turbine (RWT) (IEA3.37MW, 2023) imple-

mented in OpenFAST (OpenFAST, 2024). The aeroelastic model was linearized for wind speeds from 5 to 25 ms−1, vertical

shear exponents from 0 to 0.48, horizontal shear from −0.1 to 0.1, and yaw misalignments of 0◦ and −30◦. The filter, imple-240

mented in MATLAB (The MathWorks, Inc., 2022), required about 6 minutes to simulate 10 minutes of physical time at 100 Hz

on a standard single-CPU laptop.

Turbulent inflow fields were generated with TurbSim (TurbSim, 2023) for wind speeds of 5–11 ms−1, a vertical shear

exponent of 0.2, and turbulence intensities (TIs) of 6% and 18%. Simulations followed standard 10-minute runs with six

random seeds. Gaussian noise, equal to 10% of the standard deviation of each signal, was added to emulate SCADA sensor245

uncertainties (Branlard et al., 2020b, a). Damage-equivalent loads (DELs) were computed via rainflow counting (Natarajan,

2022). Unless stated otherwise, all results presented in this section refer to the representative operating condition described

below in Sect. 3.1.1.

Estimation accuracy depends strongly on the choice of process and measurement covariance matrices (Branlard et al.,

2020a). Measurement covariance reflected expected sensor noise, while process covariance was tuned empirically. The re-250

sulting values showed little dependence on the operating condition and delivered consistent performance across all cases.

3.1.1 Representative example and input data

To illustrate the digital shadow workflow and clarify the associated input data, we provide a brief summary of a representative

simulation case that is used repeatedly throughout Sect. 3.1. The reference example corresponds to a single IEA 3.4-130 RWT

(IEA3.37MW, 2023) operating in Region II at a mean wind speed of 7 m s−1, with a vertical power-law shear exponent of255

0.2 and TIs of 6% and 18%. Turbulent inflow fields are generated with TurbSim (TurbSim, 2023) using standard 10-minute

realizations and six random seeds.

The digital shadow receives as inputs the measured rotor speed, generator torque, selected blade-root and tower load mea-

surements, and air density (assumed known). Gaussian noise with a standard deviation equal to 10% of each signal standard
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deviation is superimposed to emulate SCADA sensor uncertainty. These measurements are processed by the filter to estimate260

rotor-equivalent wind speed, vertical and horizontal shears, structural states, and fatigue-relevant load quantities. This repre-

sentative case is used in Figs. 2–5 to demonstrate observer performance, bias-correction behavior, as well as state and load

estimation accuracy before extending the analysis to waked and yaw-misaligned turbines in Sect. 3.1.5.

3.1.2 Estimation of wind speed and shears

We first assess the accuracy of the estimated wind speed and shear used to schedule the model coefficients. Ground-truth265

values were extracted directly from the TurbSim longitudinal wind field: the rotor-average wind speed was computed by disk-

averaging, while vertical and horizontal shears were obtained by fitting a power law and a linear profile over the rotor disk,

respectively.

Figure 2 compares the reference rotor-average speed (dashed blue) with the estimated rotor-equivalent wind speed VE from

Eq. (7) (solid red) for a representative region II simulation at 7 m s−1 and TIs of 6% (Fig. 2a) and 18% (Fig. 2b). To compute270

VE , rotor speed and torque were low-pass filtered with a fifth-order Butterworth filter with a -3 dB cutoff frequency of 8 rpm

(Schreiber et al., 2020b), removing high-frequency turbine dynamics and measurement noise.

For the same operating condition, Fig. 2c compares the reference power-law vertical shear (dashed blue) with its estimate

from Eq. (8) (solid red). Figure 2d shows the reference linear horizontal shear and its estimate for a fully waked turbine

(Sect. 3.1.5), a case selected because wake meandering induces clear horizontal shear fluctuations, unlike the modest variations275

typically observed in ambient TurbSim flow fields.

Shear estimation relies on load harmonics obtained via the Coleman-Feingold transformation (Coleman and Feingold, 1958),

followed by low-pass filtering (Bertelè et al., 2021). The network also receives the estimated rotor-equivalent wind speed VE

from Eq. (7) and the air density (assumed known).

Across all cases, the observers track the ground truth reasonably well but miss some higher-frequency content. This loss is280

expected, as VE is inferred from turbine response –filtered by rotor inertia and control action– while the shear observers rely

on load harmonics that similarly smooth the blade response. Because these quantities are used solely to schedule (interpolate)

the model matrices and equilibrium conditions, omitting high-frequency components is arguably beneficial.

Over the entire range of simulations, the average absolute errors were 2.4% for wind speed, 14.5% for the vertical power-law

shear exponent, and 11.1% for the linear horizontal shear. In wake-steering scenarios (Sect. 3.1.5), the mean yaw-misalignment285

estimation error was 14.5%.

3.1.3 Performance of the bias correction approach

To assess the BC approach of Sect. 2.4.1 and examine the roles of the two correction terms, we used the same turbine in

a clean low-TI inflow as in Sect. 3.1.2. BC terms were initially disabled to establish the baseline of the uncorrected model.

Figure 3a shows tower-top FA deflection from OpenFAST (dashed blue), the uncorrected digital shadow (solid red), and the290

BC-corrected estimate (solid yellow) at 7 m s−1 and TI of 6%.
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Figure 2. Time histories of the rotor-average wind speed from TurbSim and from Eq. (7) at a wind speed of 7 m s−1 and at TIs of 6% (a)

and 18% (b), respectively. (c): time histories of the power-law vertical shear from TurbSim and from Eq. (8), a wind speed of 7 m s−1, and

TI equal to 6%. (d): time histories of the linear horizontal shear from TurbSim and from Eq. (8) for the downstream turbine in full-waked

conditions (see Sect. 3.1.5). Reference results from TurbSim: dashed blue line; estimates: solid red line.

Introducing the static corrective force fFA
0 reduces the average absolute error from 16.4% to 2.5%. Figure 3b illustrates the

dependence of this static force on wind speed, normalized to unity at rated. Similar analyses were performed for other DOFs

but are omitted for brevity. The remaining discrepancies between the linear and nonlinear models stem from factors such as

shaft tilt, structural deflections, gravity loads, small azimuth differences due to slight rotor-speed deviations (NREL Forum),295

and errors in estimating the scheduling vector s.

Bias in blade sensors is common (Pacheco et al., 2024). To assess the effect of the b term for sensor-bias correction

(Sect. 2.4.1, Eq. 10c), we artificially added Gaussian noise to the blade 1 strain gauge, with a standard deviation of 0.01%

and a mean equal to 10% of the mean flapwise bending moment. Figure 4a shows the unbiased OpenFAST measurements

(dashed blue) and the biased ones (dashed teal). Figure 4b illustrates how b (dashed teal) converges to the injected bias (solid300

yellow), effectively correcting the measurement. Figure 4c compares the blade 1 deflection from the unbiased OpenFAST

model (dashed blue), the biased case (dashed teal), and the BC-corrected digital shadow (solid yellow). The average absolute
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Figure 3. Time histories of tower top FA deflection as measured on the OpenFAST model (dashed blue line), uncorrected estimates from

the digital shadow (solid red line), and corrected estimates using the BC approach (solid yellow line) at a wind speed of 7 m s−1 and a TI

of 6% (a). Variation of the static corrective force fFA
0 for the tower top FA deflection with respect to wind speed (b). The static force is

normalized to one at the rated wind speed to highlight relative variations.

error is 3.61% without the artificial bias and 3.67% with compensation, indicating that the correction removes the bias without

degrading accuracy. Similar performance was obtained when different biases were applied to each blade sensor.

3.1.4 Application to an individual turbine305

For the same individual turbine in a clean low-TI inflow of Sect. 3.1.2, Fig. 5a–d show the tower-top FA and SS displacements

and the blade tip flapwise and edgewise deflections measured in OpenFAST (dashed blue) and estimated by the digital shadow

with BC (solid yellow). Figures 5e and 5f report the tower-base resultant bending moment and the blade resultant bending

moment at 15% span. The figure shows a representative case at 7 m s−1 and TI = 6%. Table 1 summarizes the performance

across all simulations by listing the average absolute errors.310

Table 1. Average absolute errors for all conducted simulations for clean inflow conditions.

Situation
Avg. estimation error [%]

dFA
T dSS

T dFB dEB MTB DELs MB−15% DELs

No wake, TI=6% 3.1 1.7 3.8 4.4 5.1 12.2

No wake, TI=18% 6.9 3.5 5.6 6.0 6.9 13.0

Average 5.0 2.6 4.7 5.2 6.0 12.6

Results show that the average absolute errors of the estimated turbine states remain below 10% for all simulations. DELs

were computed for the tower-base resultant momentMTB and the blade resultant moment at 15% spanMB−15%. Their average
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Figure 4. Time histories of blade 1 flapwise bending moment (mB1
F ) as measured on the OpenFAST model without bias (dashed blue line)

and with artificially introduced non-zero Gaussian noise (dashed teal line) (a). Convergence of the term b (dashed teal line) to the mean of

the artificially added bias (solid yellow line) (b). Time histories of the estimated blade 1 deflection as measured on the OpenFAST model

without bias (dashed blue line), with artificially introduced non-zero Gaussian noise (dashed teal line), and as estimated by the digital shadow

using the BC approach (solid yellow line) (c). Results correspond to a wind speed of 7 m s−1 and a TI of 6%.

absolute errors fall in the 5%–15% range, with standard deviations of about 2.7% for MTB and 4.5% for MB−15% across all

scenarios. As expected, errors increase with TI. The overall error levels are consistent with previous studies (Abdallah et al.,

2017; Branlard et al., 2020a, b, 2024a), although those works relied on fewer DOFs and did not include blade dynamics.315

3.1.5 Application to waked turbines in a small cluster

To evaluate the method under more complex inflow conditions, we simulated a small turbine cluster using FAST.Farm (Open-

FAST, 2024). The cluster consists of three IEA 3.4-130 RWTs (IEA3.37MW, 2023) arranged in a row (Fig. 6), denoted WT1,

WT2, and WT3 from upstream to downstream.

Two scenarios were investigated:320

– In the first, WT1 is aligned with the wind at rated speed (9.8 m s−1) and TI = 6%. WT2 lies fully in the wake of WT1,

and WT3 in the consecutive wakes of WT1 and WT2. The digital shadow is applied to WT2 and WT3.
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Figure 5. Time histories of tower top FA deflection (a), tower top SS deflection (b), and blade tip flapwise (c) and edgewise (d) deflections,

tower-base bending moment (e), and blade bending moment at 15% blade span (f), as measured on the OpenFAST model (dashed blue line)

and estimated by the digital shadow using BC (solid yellow line). A wind speed of 7 m s−1 and TI equal to 6% is considered.
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Figure 6. Layout of a small cluster of three IEA 3.4-130 RWTs. For all considered cases, the wind direction (indicated by the blue arrow) is

parallel to the row of turbines.

– In the second, ambient conditions are the same, but WT1 is yawed by −30◦. WT2 is then partially waked by WT1, while

WT3 is fully waked by WT2 and partially by WT1. The digital shadow is applied to WT1, WT2, and WT3.

Table 2 summarizes the average absolute errors and DEL estimates for both scenarios. For waked and yawed turbines, blade325

DEL errors remain comparable to those obtained in Sect. 3.1.4 for a single turbine in high-TI inflow, whereas tower DEL errors

are higher. This is consistent with the added wake turbulence impinging on downstream machines. While tower DEL errors are

similar for WT1 under yaw misalignment and WT2 under partial waking, blade DEL errors are larger for WT2, likely due to

the complex, asymmetric inflow induced by the deflected wake.

Despite the low ambient TI, tower DEL errors are somewhat larger for the yawed WT1 than for the downstream turbines.330

This may reflect the complex rotor aerodynamics in yaw, which are not fully captured by the filter-internal model. Moreover,

even BEM-based aerodynamics in OpenFAST can be inaccurate in strong yawed-flow conditions (Branlard et al., 2024b),

where CFD or free-vortex methods can provide more reliable physics (Boorsma et al., 2018).

To further interpret these results, Fig. 7a–d show the normalized FFT amplitudes of the tower-base bending moment and the

blade bending moment at 15% span for a single turbine in clean inflow and for WT2 in partially waked conditions. OpenFAST335

measurements (dashed blue) are compared with digital shadow estimates (solid yellow). The digital shadow reproduces the

main spectral features, particularly around the 1P–3P harmonics, and captures the increase in load amplitudes from aligned

to waked inflow. Under waked conditions, OpenFAST peak amplitudes rise by factors of about 5 (tower) and 3 (blade). The

digital shadow errors in peak amplitude are 14% (clean) and 46% (waked) for the tower-base moment, and 18% (clean) and

34% (waked) for the blade moment.340
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Table 2. Average absolute errors of the estimated outputs for all considered situations with complex inflow conditions, encompassing fully,

partially, and overlapping waked conditions.

Scenario Turbine Condition
Avg. estimation error [%]

MTB DELs MB−15% DELs

No wake steering
WT2 Fully waked 13.0 14.2

WT3 Fully waked 10.1 13.4

Wake steering

WT1 Misaligned 16.1 13.4

WT2 Partially waked 15.5 16.7

WT3 Overlapping wakes 10.5 15.7

Average estimation error over all complex inflow conditions 13.0 14.7

Figure 7. Spectra of the tower base bending moment (a, b) and the blade bending moment at 15% blade span (c, d) under clean inflow and

partially waked conditions, respectively. The results are shown as measured on the OpenFAST model (dashed blue line) and as estimated by

the digital shadow using BC (solid yellow line). The frequencies are normalized by the mean rotor speed, and all FFT amplitudes are scaled

relative to the peak amplitude recorded by OpenFAST.
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Although the proposed digital shadow is clearly not providing an exact representation of the turbine behavior, the accuracy

of the blade response in complex partially-waked and misaligned conditions is only slightly worse than the tower response

provided by recent simpler digital shadows (Branlard et al., 2020b, 2024b), which would not be applicable in such non-

symmetric conditions.

3.2 Validation against field measurements345

Next, the digital shadow is evaluated under real-world conditions using measurements from a 3.5 MW eno wind turbine (eno

energy GmbH). Available signals include generator torque, rotor speed, pitch angle, tower-top FA/SS accelerations, and blade-

root flapwise and edgewise bending moments, as well as strain-gauge measurements of two components of the tower-base

moment and of the blade moment at 25% span. All data are sampled at 10 Hz. These measurements serve two purposes: (i) to

assess the prediction quality of the digital shadow (Sect. 3.2.2); and (ii) to train a data-driven correction of the output model350

using Eq. (11) (Sect. 3.2.4). Following the procedure of Sect. 2.1, the filter-internal model is built by linearizing an existing

OpenFAST model of the turbine over a range of operating points from cut-in to cut-out.

3.2.1 Test site

The dataset used in this study was collected at a test site during two periods (15–30 October 2020 and 23–26 February 2021)

as part of an unrelated project. The measurements were used as recorded, without calibration or post-processing, and filtered355

only to remove gaps, stops, faults, and other non-power-production conditions.

The test site, illustrated in Fig. 8, is located in northeast Germany, near the village of Kirch Mulsow, in the Rostock district

of Mecklenburg-Vorpommern, a few kilometers from the Baltic Sea. The terrain comprises gentle hills, open fields, and forests.

Four turbines, manufactured by eno energy GmbH (eno energy GmbH), are installed at the site. The digital shadow was applied

to replicate the response of WT3. The main technical specifications of WT3 and WT4 are summarized in Table 4; WT1 and360

WT2 are not described further, as they played no role in the present experiment.

The testing period was categorized into different inflow conditions, as summarized in Table 3. After filtering out gaps and

non–power-production periods, approximately 49h of clean free-stream data were retained. This dataset was split into two

subsets: the first 38h (about 77%) were used to train the correction approaches described in Sect. 2.4, while the remaining 11h

were kept for validation and correspond to one representative day of clean inflow.365

Furthermore, as indicated in Table 3, data from selected days with complex inflow were used to evaluate the digital shadow

under more challenging conditions. Importantly, no data from complex inflow scenarios were used in tuning the correction

terms presented in Sect. 2.4.1.

Wind speed and shear estimators for these turbines were developed and validated in previous studies (Schreiber et al., 2020a;

Bertelè et al., 2021).370
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Figure 8. Layout of the test site, showing the turbine locations. The digital shadow is tested for the response of WT3. The sectors highlighted

in red and yellow indicate the wind direction range during the testing period, which are characterized by clean freestream and waked

conditions, respectively.

Table 3. Inflow conditions during the testing period.

Inflow conditions Specific conditions Wind direction [◦] Time period Total hours Data split [hrs]

Clean freestream Normal 145–335 17-31 Oct. 2020 49 38 (training) / 11 (testing)

Complex inflow

Extreme vertical shear 145–335 26 Oct. 2020 3 3 (testing)

Wake steering via yaw control 200–230 23 Feb. 2021 2.5 2.5 (testing)

Waked 40–70 15 Oct. 2020 2 2 (testing)

Table 4. Technical specifications of the WT3 and WT4 turbines at the test site.

Wind turbine
Turbine specifications

Turbine model Rotor diameter [m] Hub height [m] Rated power [MW] Cut-in, rated, cut-out speeds [m s−1]

WT3 eno126 126 117 3.5 3.0, 12.5, 25.0

WT4 eno126 126 137 3.5 3.0, 12.5, 25.0
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3.2.2 Digital shadow performance without correction

First, we assess the ability of the digital shadow to estimate quantities of interest when no physical sensors are available. To

this end, the digital shadow is fed with SCADA data, blade root load measurements, and the inflow quantities produced by

the wind observers, but not with the tower-base and 25%-span blade measurements. These withheld measurements are instead

used to evaluate the quality of the corresponding estimates.375

Figure 9a and 9b show the normalized measured (dashed blue line) and estimated (solid red line) tower-base bending moment

resultant and blade bending moment resultant at 25% blade span, respectively, over 11h on a sample day (20 October 2020)

under clean freestream conditions, characterized by an average TI of 13.5% (met mast). The zoomed insets reveal that the digital

shadow captures both low- and high-frequency variations well, although a clear offset is present due to the plant/internal-model

mismatch between the real turbine and the approximate aeroelastic model –an effect not observed in the simulated study of380

Sect. 3.1.4, where the same OpenFAST model served as both plant and filter-internal model.

For this sample day, the average absolute errors are 5.9% for the tower-base bending moment resultant and 21.3% for the

25%-span blade bending moment resultant. Over the full training dataset, the tower-base error averages 12.4% (min: 9.7%,

max: 19.7%), while the 25%-span blade error averages 18.7% (range: 13.7%–23.7%).

3.2.3 Virtual sensing (bias correction)385

Second, to remove the observed offset, the correction of both outputs and states is performed using the BC approach described

in Sect. 2.4.1 and based on Eqs. (10). The tuning of the correction terms followed the procedure of Sect. 3.1.3, relying on

tower-top and blade-root measurements collected during the testing period.

First, the static force term f0 was adjusted through an iterative tuning process until no further improvement was obtained.

This term was found to depend mainly on wind speed, whereas the other scheduling variables s had negligible influence390

under clean freestream conditions. While a manual tuning strategy was adopted in this work, more systematic or automated

optimization approaches (e.g., gradient-based, Bayesian, or heuristic methods (Nocedal and Wright, 2006)) could be employed

and represent a promising direction for future development. Next, the bias term b was activated, and its driving process noise

was tuned to further reduce measurement errors. As with the process noise affecting the dynamic equilibrium equations, no

significant dependency on wind speed or turbulence intensity was observed. After tuning, the average absolute errors over the395

training dataset were 3.1% for the tower-top acceleration resultant and 3.5% for the blade-root bending moment resultant.

Table 5 summarizes the average absolute errors and output DELs for the full dataset, grouped by the inflow classes defined

in Table 3. For the same sample day shown in Fig. 10, the bias correction reduces the average absolute errors for MTB and

MB−25% to 4.2% and 2.7%, respectively, indicating that the offset has been effectively removed. The corresponding DEL

estimation errors are 4.3% for MTB and 9.1% for MB−25%. Overall, the BC approach accurately tracks both low- and high-400

frequency fluctuations, providing reliable DEL estimates for the quantities of interest.
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Figure 9. Time histories of tower-base bending moment (a) and blade bending moment at 25% blade span (b), as measured (dashed blue

line) and estimated by the digital shadow (solid red line) for 11 h on a sample day (20 October 2020) in the available dataset under clean

freestream conditions. All values have been normalized using the same factor to preserve the confidentiality of the turbine data.
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Figure 10. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b) for 11 h on a sample

day (20 October 2020) in the available dataset under clean freestream conditions. Measurements: dashed blue line; corrected estimates of

the digital shadow using BC: solid yellow line. All values have been normalized using the same factor to preserve the confidentiality of the

measured turbine data.

It is worth noting that the BC method proves more effective in the field than in the simulation environment. This may

stem from the higher TI and the tenfold faster sampling rate used in simulations, which introduces additional high-frequency

fluctuations that are harder to estimate accurately.

Given the strong and generalizable performance of the BC approach, all remaining results for complex inflow conditions405

are obtained using this method. This choice also aligns with a key application of the digital shadow as a virtual sensor for

quantities that cannot be directly measured for technical or economic reasons. For brevity, time-history plots are shown only
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for the waked inflow case (Fig. 11), as this scenario is particularly informative regarding model behavior under complex

aerodynamic interactions. Figures for the other inflow classes are omitted for conciseness.

– Extreme vertical shear:410

The BC correction –tuned exclusively on the training dataset defined in Table 3– was developed without using any complex-

inflow data. Even so, the average absolute errors for MTB and MB−25% are 6.0% and 2.4%, respectively, for the extreme

vertical shear dataset. The corresponding DEL estimation errors are 6.7% and 7.3%. These results confirm that the BC approach

maintains errors below 10% even under severe shear conditions, where the power law exponent ranges from 0.15 to 0.72

(average 0.42).415

– Wake steering via yaw control:

For the wake-steering scenario, the average absolute errors for MTB and MB−25% are 6.2% and 2.3%, respectively, while

the DEL estimation errors are 0.9% and 8.0%. Yaw misalignment varies between −16◦ and 11◦. Despite the inherently more

complex dynamics associated with wake steering, the digital shadow continues to perform robustly under these conditions.

– Waked:420

Figures 11(a) through 11(d) show the tower-base bending moment, the 25%-span blade bending moment resultant, and

the vertical and horizontal shears for the waked dataset. Measurements are shown as dashed blue lines, and BC-corrected

estimates as solid yellow lines. The power law vertical shear has an average value of −0.15 (dark red dashed line), attributed

to the higher hub height of WT4 and its wake influence on WT3. The horizontal shear averages −0.12 (light red dashed line),

further confirming strongly waked conditions.425

For this dataset, the average absolute errors for MTB and MB−25% are 11.4% and 5.1%, respectively, while the DEL

estimation errors are 0.9% and 13.3%. Although the BC approach generally performs well, the complex turbine dynamics

and large variations in vertical and horizontal shear under wake conditions result in slightly higher errors, with some values

exceeding 10%.

Overall, the range of average estimation errors is consistent with the findings of previous studies (Abdallah et al., 2017;430

Branlard et al., 2020a, b, 2024a), which relied on fewer DOFs, neglected blade dynamics, and were not validated under

complex inflow.

While the digital shadow remains effective under all tested conditions, the slightly higher errors in complex inflow indicate

that further refinement could be achieved with a larger dataset. In particular, the tuning of the BC correction terms may benefit

from explicitly incorporating variations in vertical and horizontal shear, as well as yaw misalignment, in addition to wind435

speed.

3.2.4 Condition monitoring

Next, measurements of the tower-base and 25%-span blade bending moments were used to implement and validate a data-

driven a posteriori correction of the corresponding output equations, following Eq. (11), to obtain high-quality predictions
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Table 5. Overview of average absolute errors and estimated output DELs under various inflow conditions.

Inflow conditions Time duration [hrs]
Estimation error [%]

MTB Avg. Abs. MB−25% Avg. Abs. MTB DELs MB−25% DELs

Clean freestream 11 4.2 2.7 4.3 9.1

Extreme vertical shear 3 6.0 2.4 6.7 7.3

Wake steering via yaw control 2.5 6.2 2.3 0.9 8.0

Waked 2 11.4 5.1 0.9 13.3

of these quantities. In this configuration, the turbine is permanently instrumented, and the digital shadow provides expected440

values under the current operating conditions. A CM activity (not further discussed here) may then compare predictions and

measurements to detect anomalies. Prediction quality is quantified using the Root Mean Squared Percentage Error (RMSPE),

commonly adopted in CM (Liu et al., 2023).

The same dataset used in Sect. 3.2.2 was employed, with a sample day reserved for validation. The NN-based correction

term was implemented using the MATLAB Deep Learning Toolbox (The MathWorks, Inc., 2022). A basic trial-and-error study445

led to a neural network with one hidden layer of 16 neurons. During training, the Polak-Ribiére Conjugate Gradient algorithm

(traincgp) and BFGS quasi-Newton backpropagation (trainbfg) yielded the best performance for the tower-base and 25%-span

blade bending moment, respectively. The resulting RMSPEs during training were approximately 0.8% for the tower-base and

0.9% for the 25%-span blade bending moment.

Figures 12(a) and 12(b) report time histories of the tower-base and 25%-span blade bending moment resultants, respectively.450

Measurements are shown with a dashed blue line and the corrected estimates with a solid green line. Before implementing

the a posteriori error correction, the RMSPE for MTB and MB−25% were 6.1% and 21.6%, respectively. After data-driven

correction, these values dropped to 1.3% and 1.5%, respectively.

A closer inspection of the time series also shows that the NN-corrected model captures most of the short-term intermittency

present in the measured loads, including the majority of fast fluctuations driven by turbulent inflow. The sharpest intermittent455

spikes observed in real turbine data are only partially reproduced, reflecting the inherent smoothing of the underlying linear

model. Nevertheless, the dominant variability and overall intermittency level are matched well enough for the CM application

considered here. Overall, it appears that the proposed data-driven approach is highly effective in correcting the output equations,

as both slow and fast fluctuations of the two quantities of interest are tracked with remarkable accuracy, although it cannot

improve the state model.460

4 Conclusions

We have presented, verified, and validated a digital shadow of a wind turbine, first in a simulation environment under freestream,

waked, and wake-steering scenarios, and then against a field dataset. Building on a classical Kalman filtering framework, the
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approach linearizes an existing and trusted aeroservoelastic model to derive the filter-internal linear model. Reusing such

models reduces development time, leverages prior tuning and validation efforts, increases confidence in results, and avoids465

duplication of work.

Departing from existing studies, tower side-side and rotor blade DOFs were included to support more general operating

conditions, such as sheared inflow, waked flow, and yaw misalignment. Since the linearization must now span a broader

solution space, the filter-internal model is scheduled with respect to parameters representing the main drivers of the turbine

response. These scheduling parameters are estimated in real time using the rotor as a sensor technology from SCADA and470

blade load measurements.

Simulation testing showed state-estimation errors generally below 10% across all conditions. DEL errors ranged from 5%–

15%, with higher values under elevated turbulence and waked inflow, as expected. Slightly larger errors (16.1%) occurred

under yaw misalignment, reflecting limits of the linearized model. Field results were remarkably similar to those in simulation,

even without ad hoc tuning, although clear biases indicated limitations of the underlying filter-internal model.475

A key limitation of a digital shadow is its dependence on a white state-space model, which is inevitably affected by modelling

errors. To address this, two alternative data-driven correction strategies were examined, yielding grey models with substantially

improved prediction accuracy.

The BC approach performed robustly under complex inflow conditions, including extreme vertical shear, waked flow, and

wake-steering control. Errors remained small in all cases, demonstrating strong reliability and adaptability. Overall, the BC480

method reduced average absolute errors from roughly 20% to 2%–11%, and DEL estimation errors to 1%–13%, representing

a significant improvement over recent literature and underscoring its potential for fatigue analysis, lifetime estimation, and

load-aware control. In parallel, the NN-based a posteriori output correction proved highly effective, reducing load RMSPE

from 10%–15% to about 1%, which is particularly promising for CM applications.

Several improvements are possible. Additional inflow quantities may further enhance scheduling of the filter-internal model;485

for instance, veer could be included and estimated using rotor as a sensor technology by extending the harmonic content to

2P (Bertelè et al., 2024). Validation should also be expanded to larger field datasets covering broader inflow and operating

conditions, as well as different turbine types. Moreover, the tuning of the BC correction term could be refined by accounting

for variations in vertical and horizontal shear, as well as yaw misalignment, which would require more extensive data. We also

note that the wind speed and shear observers smooth some high-frequency content; however, since these quantities are used490

solely for model scheduling, this limitation has limited practical impact.
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Figure 11. Time histories of the tower-base bending moment (a), blade bending moment at 25% blade span (b), vertical shear (c), and

horizontal shears (d). Measurements: dashed blue line; corrected estimates of the digital shadow using BC: solid yellow line. The shears are

shown with solid red lines, with an average value marked by red dashed lines. All values have been normalized using the same factor to

preserve the confidentiality of the measured turbine data.
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Figure 12. Time histories of the tower-base bending moment (a) and blade bending moment at 25% blade span (b). Measurements: dashed

blue line; corrected estimates of the digital shadow using NN: solid green line. All values have been normalized using the same factor to

preserve the confidentiality of the measured turbine data.
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Appendix A: Nomenclature

b Vector of sensor biases

f0 Static correction force

i Input vector of the inflow estimator495

p Vector of free network parameters

q Vector of generalized displacements

s Vector of scheduling parameters

u Input vector

v Vector of generalized velocities500

y Vector of outputs for Kalman innovation

z Vector of other outputs of interest

ν Measurement noise vector

ω Process noise vector505

A Rotor swept area

c Generic output of the wind inflow characteristic observer

Cp Power coefficient

d Displacement510

J Rotor inertia

κh Horizontal shear

M Bending moment resultant

m Bending moment component

Q Torque515

R Rotor radius

V Wind speed

α Vertical power-law shear exponent

γ Misalignment angle520

ϵ Output correction term

θ Blade pitch angle

λ Tip speed ratio

ρ Air density

ψ Rotor azimuthal position525
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Ω Rotor rotational speed

(·)E Edgewise component

(·)F Flapwise component

(·)FA Fore-aft component530

(·)SS Side-side component

(·)IP In-plane component

(·)OP Out-of-plane component

(·)NN Quantity corrected by a neural network

(·)1c 1P cosine component535

(·)1s 1P sine component

(·)Bi Quantity referred to the ith blade

(·)B−s% Quantity referred to the s% spanwise location

(·)TB Quantity referred to the base of the tower

(·)E Estimated quantity540

(·)M Measured quantity

(·)0 Reference equilibrium condition

δ(·) Perturbation about a reference equilibrium condition

BEM Blade element momentum545

CFD Computational fluid dynamics

CM Condition monitoring

DEL Damage-equivalent load

DOF Degree of freedom

FA Fore-aft550

FEM Finite element method

FFT Fast Fourier transform

LUT Look-up table

NN Neural network

BC Bias correction555

PSD Power spectral density

RMSPE Root mean squared percentage error

ROM Reduced order model

RWT Reference wind turbine

SCADA Supervisory control and data acquisition560
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SS Side-side

TI Turbulence intensity

WT Wind turbine
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