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Abstract. With declining subsidies and tightening project margins, wind energy investments are increasingly exposed to a

wide range of technical, operational, market, and system-level risks. Understanding the combined economic and technical

relevance of these risks, and how they interact across project lifecycle phases, is essential for translating them into economic

impact metrics. This study combines expert elicitation, structured survey results, and targeted literature review to identify and

categorize the major risks affecting wind energy projects during both development and operation. These risks are clustered5

into four overarching sector challenges spanning long-term asset viability, component reliability, operation and maintenance

performance, and rapid technology upscaling. To illustrate the potential economic relevance of these challenges, simplified

scenario-based techno-economic impact assessments are conducted using a representative offshore wind farm case study. The

analysis offers order-of-magnitude insights into how different risk categories propagate into economic performance indicators

such as net present value and levelized cost of energy. The results demonstrate that different risks exhibit different economic10

signatures, including asymmetric downside risk, long-tailed loss distributions. Overall, this work does not propose a complete

solution for capturing the full complexity of wind energy risks. Instead, it demonstrates the limitations of fragmented risk

treatment and motivates the need for integrated, de-risking and decision-support frameworks capable of addressing interacting

uncertainties. The study provides a structured starting point for future research aimed at developing such tools and supporting

more robust investment, design, and operational decisions in the wind energy sector.15

1 Introduction

With decreasing or non-existent subsidy levels, continued wind energy project investments are conditional on securing project

profitability at low risk. The wind energy value chain often operates on small margins, and the economic feasibility of wind

power under such conditions is sensitive to risks leading to unexpected costs or other disruptions. Over the last year there have

been multiple failed auctions in Germany, France, the Netherlands, Denmark and Lithuania. At the same time many projects20

that won auctions over the last 3 years are now struggling to get the necessary investments approved (WindEurope (2025b)).

Recent industry assessments underscore the urgent need to de-risk the wind energy sector. The latest GWEC report highlights

growing exposure to market and system-level risks, including a sharp increase in hours with negative electricity prices and
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persistent supply chain disruptions (Global Wind Energy Council (GWEC) (2025)). Without appropriate market design and

effective de-risking instruments, these developments risk undermining investor confidence and increasing financing costs. The25

report further emphasizes the critical role of grid infrastructure in mitigating bottlenecks, reducing congestion and curtailment,

enhancing energy security, and improving the economic viability of new projects. In parallel, supply chain uncertainties are

identified as a major source of cost, schedule, and performance risk for wind energy projects (Council and Group (2023)).

It is therefore essential for investors to systematically identify and quantify the risks that can affect wind energy projects.

These risks span technical, regulatory, environmental, socio-economic, and financial dimensions and are characterized by30

multidisciplinary interactions and feedback involving multiple actors and decision layers (Abba et al. (2022)). While existing

studies have provided reviews of risk sources, there remains a gap in linking identified risk drivers to quantitative modeling

parameters that allow for a systematic assessment of their economic impacts. In this study, we move beyond risk identification

from literature by explicitly translating risk categories into modeling assumptions within a quantitative impact assessment tool

chain and by evaluating their implications through scenario-based economic indicators.35

The present study employs expert elicitation, structured polling, and analysis of publicly available data to identify, categorize,

and quantify the major risks affecting wind energy projects across both development and operational phases. The objectives of

this paper are:

– to identify and categorize the major risks currently facing the wind energy industry during the development and operation

of wind energy projects;40

– to review the identified risk categories and provide an overview of the most significant risks and their interdependencies;

– to quantify the economic impacts of these risks using a dedicated impact assessment tool chain.

Methodologically, this work combines expert-based risk categorization with quantitative cost and revenue modeling to illus-

trate the propagation of uncertainties into economic outcomes. Scenario definitions are informed by data and existing literature

to represent plausible developments under current market and technological conditions. The economic impacts of risk-induced45

uncertainties are illustrated through a representative offshore wind farm case study based on the 22MW IEA (Zahle et al.

(2024)) reference wind turbine.

Through this contribution, we aim to highlight the complex and interconnected nature of wind energy risk drivers across

research domains and project life-cycle phases. For example, supply chain risks may interact with technical aspects of turbine

design and propagate into construction, operation, and maintenance performance. By demonstrating how such interactions can50

be quantified, this study provides a first step toward developing de-risking tools that capture complex risk interdependencies

and support informed decision-making across the financing, design, operation, and end-of-life phases of wind energy projects.

2 Methodology

In this study, we adopt a mixed qualitative and quantitative methodology to identify, categorize, and assess the economic

relevance of major risks in wind farm development and operation. The approach combines a survey on major risks, expert55

2

https://doi.org/10.5194/wes-2026-31
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



elicitation, synthesis of sector challenges, literature review, and scenario-based quantitative impact assessment using the impact

assessment tool WINPACT (Gräfe et al. (2025)).

Risk identification is initiated through a structured survey targeting experts from industry and academia. The survey captures

perceptions of dominant risks for both currently operating and future wind farms, as well as perceived priorities for risk

mitigation and research. Responses are analyzed quantitatively to identify dominant risk drivers and qualitatively to understand60

emerging themes and shifts in risk relevance as we move from operating wind energy assets to developing new ones. Survey

results are complemented by expert judgment and targeted consultations to cluster individual risk drivers into four sector

challenges. These challenges reflect structural issues that affect wind energy projects across technologies, markets, and lifecycle

phases.

For each identified sector challenge, a literature review is conducted to summarize the current state of knowledge, data65

availability, and known sources of uncertainty. Building on this review, the economic relevance of each challenge is explored

through scenario-based impact assessments. These assessments are not intended to provide detailed, project-specific risk quan-

tification, but rather to estimate the order of magnitude of potential economic impacts and to illustrate how uncertainties, data

limitations, and knowledge gaps propagate into project-level economic metrics. Scenarios are designed to span plausible ranges

of uncertainty and structural change, grounded in literature, empirical evidence, and forward-looking assumptions.70

2.1 Quantitative impact assessment

For the quantification of risks in terms of aggregated economic metrics, we use the wind energy project impact assessment

tool WINPACT (Gräfe et al. (2025)). WINPACT is a modular, scenario-based impact assessment framework designed to

quantify how uncertainties and design or operational choices in wind energy projects propagate through the full project life

cycle to affect technical performance and economic value. The tool integrates interacting sub-models for wind farm operation,75

reliability-driven operation and maintenance, capital and operational cost structures, market conditions and price formation,

revenue generation, and financial valuation within a unified simulation environment. Alternative assumptions on technical

characteristics, cost parameters, market environments, or external constraints are introduced as scenario overrides and evaluated

across all modules, enabling coupled effects, such as reliability changes influencing operation and maintenance (O&M) costs,

revenues, and ultimately LCOE or NPV to be captured. Simulations can be executed as single cases or scenario ensembles with80

stochastic replicates.

Hereafter, we summarize the functionality of WINPACT modules used in this study.

The CAPEX module in WINPACT follows a bottom-up cost modeling approach in which total capital expenditure is assem-

bled from explicitly defined project phases, cost categories, subcategories, and individual cost items. Each cost item consists

of fixed cost terms and material-dependent cost terms and can be assigned at the turbine level or the project level. Material-85

dependent costs are calculated by combining prescribed material quantities with unit prices that are sampled stochastically

at the beginning of each simulation and then applied consistently across all CAPEX items. Unit prices are generated from

parametric stochastic price models, evaluated over a specified prediction horizon. A single vector of correlated random shocks

can be applied across materials using a user-defined correlation matrix, allowing joint price movements to be represented. All
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capital cost items are time stamped according to the project schedule and stored at item level, enabling transparent aggregation90

to turbine and project CAPEX and propagation of material price uncertainty into valuation results.

The WindFarm module provides the baseline electrical production time series that serves as input for downstream modules.

In this study, wind farm production is represented using the fixed-response option, in which a constant power output is generated

over the operational lifetime based on the installed capacity and an assumed capacity factor.

The OPEX module represents wind farm operation and maintenance at an aggregated, project-relevant level, linking com-95

ponent reliability and maintenance processes to availability losses and operational costs. Operation and maintenance activities

are modeled using an analytic continuous-time Markov chain (CTMC) formulation, in which turbine components transition

between an operational state and downtime states associated with corrective and preventive maintenance actions, capturing the

combined effects of failures, scheduled maintenance, access constraints, logistics delays, and repair activities. The steady-state

solution of the CTMC yields expected component and turbine availability, which is applied to energy production, while the100

implied maintenance intervention frequencies determine operational expenditures for labor, logistics, vessels, and spare parts.

Uncertainty in reliability and O&M process parameters is reflected through sampling from defined probability density func-

tions, allowing variability in failure behavior and maintenance processes to propagate into availability and cost outcomes. The

resulting availability and OPEX results feed into to energy yield, revenue, and financial valuation modules.

The End of Life module represents continued operation beyond the nominal design life as a scenario-based modification105

of production, reliability, and cost assumptions over an extended operating horizon. The module extends the baseline wind

farm production time series and applies an aggregated energy yield modifier to the extension period to represent performance

degradation and changing operating conditions. Ageing-related effects on operation and maintenance are captured through

deterministic mean-shift overrides to the analytic CTMC-based OPEX model, applied during the extended lifetime to reflect

changes in component reliability. In addition, the module introduces specific costs, such as inspection, analysis, and refur-110

bishment expenditures, at the start of the extension period. Uncertainty in production performance, refurbishment effort, and

selected reliability and process parameters is represented through sampling from defined probability density functions at the

scenario level.

The Curtailment module accounts for system-level production losses by modifying the wind farm power time series to

reflect market-driven, grid-related, or externally imposed curtailment. Curtailment is modeled as a fractional reduction of po-115

tential energy production applied at a monthly resolution. Curtailment fractions are drawn from prescribed probability density

functions and applied uniformly to all production values within each month. Epistemic uncertainty in long-term curtailment

conditions is represented through sampling of the distribution parameters at the simulation level, while aleatory variability in

short-term system conditions is captured through repeated sampling of monthly curtailment fractions. The resulting production

reductions are applied directly to the wind farm output and propagate to energy yield, revenue, and financial valuation modules.120

The FINEX and valuation modules translate technical and operational model outputs into project-level financial per-

formance and investment metrics. The FINEX module represents project financing, capital structure, and depreciation, debt

amortization schedules, equity cost, and depreciation cash flows. These outputs are combined with CAPEX, OPEX, revenue,

and lifetime extension cost records within the valuation module, which constructs cash-flow time series over the full project
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horizon. Cash flows are aggregated and discounted to derive valuation metrics, including net present value at the firm and eq-125

uity level, internal rate of return, debt service coverage ratios, and levelized cost of energy. This approach ensures that changes

in technical performance, operational strategies, financing assumptions, or lifetime extension scenarios are reflected in project

value metrics.

2.2 Wind farm definition & scenario definition

As a basis for the quantitative impact analysis in the individual Risk categories in section 4, we define a generic wind farm130

representing a large-scale next generation European offshore wind farm project. The wind farm is assumed to consist of 34

22MW wind turbines located in the North Sea. Table 1 summarizes the main characteristics of the wind farm.

Table 1. Description of the study case.

Wind farm

Location Offshore

Installed capacity Pfarm 880 MW

Turbine rating Punit 22 MW

Number of turbines Nturb 34

Base design life t0 25 years

Funding scheme Contract for Difference

Strike price 86 e/MWh

In the impact assessment subsections of Section 4, scenarios are defined to represent different parameter ranges governing

each modeled process. For each risk category, multiple scenarios are developed based on literature, available data, and the

judgment of the authors. The scenarios are evaluated in a Monte Carlo manner, with the tool chain run 3000 times for each135

experiment. To ensure comparability across risk categories, a common baseline scenario is defined, representing operation of

the reference wind farm under baseline assumptions and without stochastic variation of model parameters. Scenario labels are

defined within each risk category. For example, “SC1” denotes the first scenario within the supply chain risk category.

3 Risk identification and categorization

3.1 Survey results140

To identify the dominant risk drivers affecting wind energy projects across different lifecycle stages, a targeted survey was

conducted as part of this study. The survey was conducted during multiples conference events organized by the Electrical

Power Research Institute (EPRI) and included participants from both industry and academia. In total, approximately 100

respondents participated, primarily from the United States and Europe, with additional representation from South America,

Asia, and Australia, providing a snapshot of current expert judgments across different markets.145
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The survey was designed around three complementary questions addressing (i) risks affecting currently operational wind

projects, (ii) risks expected to affect future wind projects, and (iii) research directions and innovations perceived as most

effective for risk mitigation. Each participant was asked to select up to three predefined answers per question to avoid a bias

toward the single most important issue. Together, these questions allow the identification of dominant risk categories and an

assessment of how risk perceptions evolve when changing the perspective from operational to new projects and how these risks150

are expected to be addressed.

Figure 1 presents the distribution of responses to the first question, focusing on operational wind energy projects. The results

show a clear dominance of reliability-related concerns. In total, 49% of responses identify reliability as the primary economic

risk driver, comprising reliability of major non-redundant components (26%), reliability of replaceable components (8%), and

premature degradation of components (17%).155

Figure 1. Survey results: What are the biggest risks for the economy of operational wind energy projects?

An additional 12% of respondents cite immature technology leading to unexpected costs, a concern that is closely linked to

reliability and operational robustness. Other risk categories, including market and curtailment uncertainty, regulatory changes,

and financing conditions, receive noticeably lower shares. Notably, uncertainty in future production receives no votes, indicat-

ing that wind resource uncertainty is generally perceived as well understood and adequately managed for existing projects.

Taken together, these results indicate that for operational wind farms, economic risk is dominated by asset-level performance160

and reliability, rather than by external system or market factors. This finding motivates a detailed examination of reliability

modeling, failure-rate uncertainty, and O&M process inefficiencies in the subsequent sections of this paper.

Figure 2 shows the responses to the second question, addressing future wind energy projects. Reliability-related issues

remain the most prominent risk category, accounting for 34% of responses. Although the relative weight is lower than for
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operational projects, concerns about major component reliability, replaceable components, and premature degradation continue165

to dominate expert perceptions.

Figure 2. Survey results: What are the biggest risks for the economy of future wind energy projects?

However, in contrast to operational projects, the survey reveals a broader risk landscape for future developments. Unproven

or immature technology again accounts for 12% of responses, reflecting concerns about larger turbines, accelerated upscal-

ing, and reduced operational experience at the time of deployment. In addition, external and system-level risks gain substan-

tially more importance. Market uncertainty and curtailment (together accounting for approximately 17%), changing regulatory170

frameworks (14%), financing uncertainty (6%), and manufacturing and supply-chain constraints (12%) are all perceived as

significant contributors to future project risk.

This shift highlights an important temporal distinction: while operational projects are primarily exposed to technical and

O&M-related risks, future projects are increasingly affected by system integration, market evolution, regulatory stability, and

supply-chain robustness. These emerging risks are linked to longer planning horizons and reflect uncertainty about how power175

systems, markets, and policies will evolve as wind and renewables penetration continue to increase.

The responses to the third survey question, summarized in Figure 3, provide a direct link between the identified risks and

perceived mitigation pathways. The prioritization of research and innovation areas closely mirrors the challenges identified in

the first two questions.

Reliability-focused solutions dominate the responses. Advanced digital solutions for failure prediction (19%) and advanced180

sensing technologies for component health assessment (16%) underscore the perceived need for improved understanding and

prediction of degradation processes and remaining useful lifetime during operation. These technologies are seen as essen-

tial enablers for more effective maintenance planning and risk-informed O&M strategies. Closely related, advanced O&M
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decision-making tools (16%) are highlighted as a key priority, emphasizing the need to translate diagnostic and prognostic

information into economically optimal operational decisions.185

Beyond operational mitigation, respondents also highlight the importance of upstream interventions. Novel design method-

ologies for improved reliability (11%) point to the need to explicitly integrate reliability objectives into turbine and wind farm

design. Technology qualification and risk assessment frameworks (12%) are identified as critical tools for managing uncer-

tainty associated with rapid technology upscaling and deployment. Supply-chain modeling and risk assessment (6%) address

vulnerabilities identified for future projects, while market modeling, resource assessment, and policy innovation receive smaller190

but non-negligible attention.

Overall, the survey results reveal a pattern across project phases. Reliability emerges as a risk driver, influencing both

operational performance and long-term economic outcomes. At the same time, the relative importance of external, system-

level risks increases for future projects, reflecting longer planning horizons and greater exposure to market, regulatory, and

supply-chain uncertainty.195

Figure 3. Survey results: What research areas or innovations could most effectively help mitigate risks in wind energy projects?

3.2 Risk categorization

While the survey responses identify individual risk drivers and mitigation priorities, they also reveal consistent clusters of

challenges that affect wind energy projects across lifecycle stages. Building on the survey results, targeted consultations with

experts from industry and academia, and the judgment of the authors, we identify four overarching sector challenges. These

challenges are summarized in this section.200

Sector Challenge 1: Long-term asset viability under environmental and market dynamics This challenge arises pri-

marily from responses to future wind energy projects, where external and system-level risks become more important. While
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reliability remains a relevant concern, market uncertainty and curtailment, changing regulatory frameworks, financing uncer-

tainty, and supply-chain constraints are identified as key risk drivers. These factors are inherently long-term and interdependent,

influencing revenue stability, cost structures, and investment decisions over the project lifetime. The survey results indicate a205

shift from predominantly technical and physical uncertainties toward system-level uncertainties driven by external conditions

and institutional factors.

Sector Challenge 2: Reliability gaps in major non-redundant components The dominance of reliability-related responses

across both operational and future projects motivates this challenge. Reliability remains the single largest risk category for

both project phases. In particular, failures of major non-redundant components are critical due to their potential to cause long210

outages, high repair costs, and significant reductions in availability and revenue.

Sector Challenge 3: Inefficiencies in operation and maintenance (O&M) While reliability determines failure occur-

rence, the survey responses also highlight the importance of how failures are managed. The strong prioritization of advanced

sensing, failure prediction, and O&M decision-support tools indicates recognition that operational inefficiencies and limited

predictability in O&M processes materially affect project economics. This challenge captures issues that are not reflected in215

failure behavior alone, including uncertainty in repair times, logistics delays, access constraints, data availability for opera-

tional and end-of-life decisions, and the difficulty of translating condition-monitoring information into effective operational

actions.

Sector Challenge 4: Design and operational risks from rapid technology upscaling The identification of immature or

unproven technology as a risk across both operational and future projects motivates the fourth sector challenge. Risks associated220

with technology novelty include unexpected costs, reduced availability, delayed commissioning, and increased uncertainty in

performance and maintenance behavior. These risks are amplified by rapid upscaling trends, including increasing turbine size,

new drivetrain concepts, evolving grid-code requirements, and associated changes in turbine operating modes.

4 Review and quantification

In this section, each sector challenge is examined in more detail. For each challenge, existing literature on the underlying risk225

categories is reviewed, and the order of magnitude of economic impacts arising from uncertainty in modeling assumptions and

data availability is quantified.

4.1 Long-term asset viability- Supply chain uncertainty

4.1.1 Review

The growth of the wind energy industry has been enabled by a robust and globalized supply chain that supported the installation230

of around 100 GW of capacity per year from 2020 - 2024 (IRENA (2025)). However, this existing supply chain is inadequate

to support growth targets that require higher deployment rates, expansion into new markets, diversifying suppliers to mitigate

geopolitical risks, and meeting the needs of evolving technologies such as floating offshore wind (Costanzo et al. (2025)).
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Although many of these challenges could be mitigated by strengthening supply chain resilience through expanded networks

of manufacturers, infrastructure, and skilled labor, investors remain cautious due to heightened risk perceptions stemming235

from market volatility, inconsistent policy signals, and trade-offs between local capacity building and reliance on established

global suppliers (Shields et al. (2023); Council and Group (2023)). This uncertainty slows supply chain investment, which

subsequently limits the ability of future wind energy projects to source and install components in a timely, cost-effective, and

politically acceptable manner.

The elements of a global supply chain that are relevant for wind energy projects include raw materials, manufactured com-240

ponents, specialized infrastructure, and a skilled workforce (Shields et al. (2023)). These present themselves as risks to wind

energy projects primarily as:

– Material and component bottlenecks. Construction of a wind turbine requires specialized materials, products, and man-

ufacturing processes. Manufacturing facilities are designed only to produce components that are specific to the wind

industry (and often, specific to a single manufacturer) and can not easily diversify their production base. Installing wind245

turbines - particularly offshore - requires specialized logistics and facilities that have a limited global supply. Constrained

supply of these components or capabilities can drive higher costs and delays for wind projects that compete for a scarce

set of resources.

– Geopolitical and trade risks. In recent years, policy-makers have emphasized the need for supply chain localization to

increase reliability and stimulate economic growth (Shields et al. (2023); Council and Group (2023)). Strategically criti-250

cal materials, such as rare earth elements (used in generators) and balsa wood (used in blades), have highly concentrated

supplier networks and limited global manufacturing capacity. Governments have used industrial policy to create import

barriers (i.e. tariffs), limiting the availability of global supply chain components.

Supply chain uncertainties affect project design and decision-making through a complex network of interrelated factors,

which we summarize in Table 2.255
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Table 2. Key uncertainty dimensions in decision-making based on supply chain risk, mapped to uncertainty type, decision risk, and time

aspects.

Dimension Uncertainty source Type Risk Time horizon

Financing costs Financing parameters (i.e., cost

of debt, cost of equity, debt

share) under different supply

chain risk scenarios

E Higher LCOE, reduced banka-

bility

Pre-construction

Cost volatility Short- and long-term variations

in key commodities, including

shocks from externalities

E Higher LCOE Pre-construction

Supply uncertainty Component price equilibria at-

tributed to supply / demand dy-

namics

E Higher LCOE Pre-construction

Geopolitical pres-

sures

Changes in availability of criti-

cal materials or resources; mag-

nitude of subsidies, tariffs and

local content requirements

E Project delays, possibility for

higher costs

Pre-construction

Limited infrastruc-

ture

Uncertain availability of re-

sources such as ports and ves-

sels for offshore wind

E Project delays, increased financ-

ing costs

Pre-construction

through operation

Technology evolu-

tion

Readiness level of current sup-

ply chain to produce new tech-

nologies

E Higher LCOE Pre-construction

In this study, we provide a simple assessment of the first two uncertainty dimensions to demonstrate the potential impact

on LCOE driven by supply chain uncertainty. Further research is required to fill the knowledge gap of how future supply

chain risks impact project design and cost decisions, such as developing dynamic supply chain investment models, causal

relationships between perceived risks and financing costs, detailed accounting of industrial policies, and readiness levels of

existing supply chain infrastructure.260

4.1.2 Impact assessment

We define a two-part risk assessment to evaluate the impact of supply chain risks on the LCOE of representative wind projects.

First, we quantify uncertainty in key material prices and propagate this uncertainty through the CAPEX calculations of the
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wind project. Second, we vary the cost of capital to reflect changing levels of perceived risk from global and geopolitical

drivers. The LCOE scales with the product of these factors, showing how supply chain risks can create nonlinear impacts.265

The commodity prices that have the greatest impact on the variance of capital costs of a wind project are steel, copper, and

carbon fiber which contribute some of the highest mass fractions to onshore and offshore wind projects (Eberle et al. (2023)).

Although there are other key commodities that are notable supply chain risks for wind energy projects, such as rare earth

elements and iron ore, these commodities are a relatively minor part of the capital stack of a project and price fluctuations will

not greatly affect CAPEX (availability risk will be addressed through the cost of capital). Other commodities such as fiberglass270

used in blades have higher mass fractions but relatively low historic volatility, making them less relevant for stochastic modeling

(U.S. Bureau of Labor Statistics (2026a)). Therefore, we primarily assess stochastic CAPEX uncertainty due to the variability

in these primary cost drivers.

We obtain long-term price indices for these commodities from the U.S. Bureau of Labor Statistics (U.S. Bureau of Labor

Statistics (2026c, b, b, c)) and derive the following stochastic parameters from the historical data:275

– the drift (long-term trend) of commodity prices,

– the volatility (short-term uncertainty),

– the jump intensity (frequency of large, discrete price shocks).

We fit these parameters using a Merton jump-diffusion model as the frequency of short term shocks to commodity prices

results in large tails in the log returns, leading to poor Gaussian fits to the data. The resulting parameters are provided in Table 3.280

Log-likelihood assessments show reasonable fits to the underlying historic data and a clear improvement over Gaussian models.

The linear correlations between the parameters are low (under 0.1), but are still included in the Monte Carlo simulation.

Table 3. Stochastic commodity price parameters drift µhist, volatility σhist and jump intensity λhist derived from historic data.

Commodity Drift αµ
s Volatility ασ

s Jump intensity αλ
s

Steel 0.258 0.288 1.96

Copper 0.422 0.422 0.915

Carbon fiber 0.521 0.250 1.05

Financing risk is one of the most significant drivers of LCOE, although the magnitude of the impact of supply chain disrup-

tions and geopolitical risks on financial parameters is not well established in the public literature. We address this by selecting

values of the weighted average cost of capital (WACC) that correspond to different levels of project risk, but do not attempt285

to draw a causal link with factors such as regional dependencies, global concentrations of scarce elements, localization pref-

erences, trade barriers, or other risk factors that could impact the deliverability and costs of a wind project. Modeling these

dependencies is a promising direction for future research.

The WACC is calculated based on the debt-equity ratio, tax rate, and cost of debt and equity. We assume a constant value

for the first two parameters. We select values for the cost of debt and equity based on historical comparisons between these290
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project-specific financing terms and the risk-free rate of a 10 year bond; because historical wind project data are most readily

available for U.S. projects, we determine the spread between wind-specific financing terms and a U.S. Treasury bond, and

assume that this increment is broadly reflective of supply chain risk to the reference projects considered in this study.

Based on historical data between 2015 - 2024 from Mirletz et al. (2024), we calculate that the cost of debt is 1.73% higher

than the risk-free rate for the period between 2017 - 2020, corresponding to a relatively stable period of wind energy deployment295

in the U.S. (Wiser et al. (2024)). In 2023, when prices spiked due to global supply chain constraints, this premium jumped to

3.5%. From the same data, we estimate that the cost of equity is around 5 percentage points higher than the cost of debt for all

years. These estimates are relatively similar for both onshore and offshore wind projects, although in some markets we would

expect offshore wind projects to face an additional premium due to the immaturity of the technology. We select a value of 2,7%,

corresponding to the German 10-year bond yield, as the risk-free debt rate1 for the baseline scenario (Deutsche Finanzagentur300

(2026)), and add an equity premium of 5%. We increase the debt premium based on the historical spreads from Mirletz et al.

(2024) to reflect increasing risk profiles, keeping the equity premium at 5 percentage points above the cost of debt.

The values for the stochastic CAPEX parameters and WACC are provided in Table 4. We define these for three separate

scenarios with minimum, moderate, and substantial supply chain risk profiles. We also define a time horizon over which the

stochastic cost pathways evolve, effectively representing the project’s risk exposure to commodity price volatility (which has305

been identified as a major investment risk in some emerging markets (Ury et al. (2024))).

Table 4. Supply chain risk scenarios and associated financial and commodity price parameters. Values for drift µhist, volatility σhist and jump

intensity λhist are commodity-specific.

Scenario Interpretation WACC

[%]

Drift αµ
s Volatility

ασ
s

Jump in-

tensity αλ
s

Time

horizon

t[years]

Baseline Deterministic baseline assumptions 5.2 - - - -

SC 1 - Mini-

mum Risk

Risk free rates on debt; lower

bounds on stochastic commodity

parameters

3,8 0.8×µhist 0.8×σhist 0.8×λhist 1

SC 2 - Moder-

ate risk

Historic averages on debt and eq-

uity; no multipliers on stochastic

commodity parameters

5,2 1.0×µhist 1.0×σhist 1.0×λhist 2

SC 3 - Sub-

stantial risk

Debt rates from supply chain

shocks: higher bounds on stochas-

tic commodity parameters

6,7 1.2×µhist 1.2×σhist 1.2×λhist 3

1In reality, it is unlikely that a wind project would achieve a debt rate equal to a risk-free government bond rate. We use this value as a minimum threshold

for the impacts of supply chain risk-based financing costs on LCOE.
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Figure 4. NPV (left) and total CAPEX (right) distributions for different scenarios.

The NPV, total CAPEX, and LCOE simulation results for the scenarios in Table 4 are provided in Figs. 4 and 5, respectively.

The effects of the commodity price volatility and increasing time exposure increase the tails of the distribution while slightly

reducing the peak cost. A greater impact is noticeable in NPV, which shows a clear shift in the mean of the distribution driven

by favorable or unfavorable financing costs coupled with increasing negative tails for the SC3 scenario. When combined into310

the LCOE calculation, it is clear that increasing risk profiles drive a fundament shift in the cost structure of the project. The

median of the SC 2 scenario is near the (deterministic) baseline LCOE of e67.3/MWh with a mean value of e69.3/MWh. By

comparison, essentially the entire distribution of the higher risk SC 3 scenario is above the baseline value of LCOE, with the

mean now at e77.5/MWh. This increase of around 12% is on the lower end of the reported 10-50% cost increases faced by

offshore wind projects between 2021 - 2023 that directly led to cancellations of projects in Europe and the U.S. (and does not315

include effects from additional macroeconomic factors or the remaining uncertainty sources in Table 2) (Fuchs et al. (2024)).

The contribution of supply chain risk outlined in this section has the potential to create a step change in project feasibility and

delivery, and therefore represents a critical factor in project design and de-risking.
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Figure 5. LCOE distributions for different scenarios.

4.2 Long-term asset viability - Through-life decision making

Wind turbines are typically designed for a nominal lifetime of 20 years for onshore installations and 25 years for offshore320

installations, in accordance with IEC standards (International Electrotechnical Commission (2019a, b)). In Europe, a large

share of the installed onshore and offshore wind fleet is approaching or has reached its nominal design lifetime. Current

estimates indicate that between approximately 60 GW (WindEurope (2025c)) and 80 GW (WindEurope (2025a)) of installed

capacity will reach the end of design life in the coming years. The nominal design lifetime, however, does not necessarily

define the actual end of operational life. In many cases, continued operation beyond the certified lifetime is technically feasible.325

Decisions on lifetime extension or decommissioning, therefore, depend on a combination of regulatory, technical, and economic

considerations and constitute a complex, multidimensional decision problem under uncertainty. While this decision problem

is most visible toward the end of the life time, the underlying uncertainties and risks are relevant throughout the lifetime of a

wind energy asset.

Through-life decision-making is not a binary choice between continued operation and shutdown, but rather a set of interre-330

lated technical, regulatory, and economic decisions that determine whether operation beyond the design lifetime is permissible

and economically viable under uncertain future conditions. Depending on the outcome of this process, assets may be decom-

missioned, repowered, refurbished, or operated under a lifetime extension framework.

From a technical perspective, wind turbines are designed against standardized reference classes using conservative assump-

tions, while actual site-specific operating conditions are often less severe than those assumed in design. As a result, structural335

integrity frequently permits continued operation beyond the nominal design lifetime. Monitoring and evaluation of actual oper-

ational conditions and accumulated loads can reduce uncertainty in modeling assumptions and support the verification of safe

continued operation (Nielsen et al. (2019)).
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If structural integrity can be ensured, the reliability of wind turbine components becomes a key determinant of continued

operation. Many reliability modeling approaches assume increasing failure probabilities over time, commonly represented340

using Weibull-distributed failure models Carroll et al. (2016); Donnelly et al. (2024); Dinwoodie et al. (2013). This assump-

tion reflects physical ageing mechanisms such as wear, corrosion, and fatigue. As reliability directly affects maintenance

requirements, availability, and operational expenditure, estimating post-design-life reliability is critical for late-life phases,

and epistemic uncertainty in reliability characteristics can substantially influence economic outcomes. In addition, aerody-

namic performance may degrade due to blade erosion, which has been shown to cause non-negligible losses in annual energy345

production in ageing turbines (Malik and Bak (2025)).

Changing site conditions constitute an additional source of uncertainty in through-life decision-making, particularly due to

climate-change-induced modifications of the wind climate and intra- and inter-farm wake effects. Climate projections based

on ensembles of regional and global climate models indicate that, while annual mean wind speeds and capacity factors in

Northern Europe are expected to change only modestly, the direction and magnitude of change vary across models and regions,350

introducing uncertainty in long-term yield estimates. Reported median changes in future hub-height wind speeds are typically

on the order of±1–2%, corresponding to changes in wind power density and annual energy production (AEP) of approximately

-2% to -5%, with substantially larger seasonal effects, particularly summer AEP reductions reaching -5% to -10% in parts of

the North Sea, and a wide inter-model spread in projected outcomes (Hahmann et al. (2022)). Changes in wind direction

distributions and extreme wind statistics have also been reported, although their implications for turbine class requirements355

remain uncertain (Larsén et al. (2024)).

Wake effects represent a site- and layout-dependent source of uncertainty that becomes increasingly relevant for ageing

offshore wind farms embedded in dense clusters. Existing studies indicate that intra- and inter-farm wake losses can reduce

AEP by approximately 5–10% for current offshore wind farms, with projected losses increasing to 10–18% or more under

future high-deployment scenarios in regions such as the North Sea (van der Laan et al. (2023); Borgers et al. (2025)). Together,360

the non-stationarity of wind resources and the uncertainty in wake-induced production losses introduce variability in future

revenues, increase downside risk in cash-flow projections, and therefore affect the economic viability of operations, especially

when making decisions over long time horizons.

Regulatory conditions constitute a major source of uncertainty in through-life and end-of-life decision-making as permitting

conditions may evolve over timescales comparable to project life cycles. Lifetime extension is not governed by a harmonized365

regulatory framework in Europe, and continued operation beyond original design assumptions is subject to national or regional

regulations that differ in scope, stringency, and enforcement and may evolve over time (Ziegler et al. (2018)). Regulatory

requirements directly affect the technical feasibility of lifetime extension through permitting, inspection, certification, and

documentation obligations, and influence economic viability through additional compliance costs or operational constraints.

Uncertainty regarding end-of-life obligations, including decommissioning and removal requirements, introduces further eco-370

nomic risk, particularly for offshore assets. Regulatory uncertainty, therefore, represents a regime-level risk that can materially

influence lifetime extension decisions independently of the technical condition of the asset.
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Economic uncertainty in late-life phases is primarily driven by uncertainty in cost and revenue assumptions associated with

refurbishment and continued operation. Refurbishment scope and associated costs are typically identified only after detailed

inspections and condition assessments and vary widely across turbines, sites, and regulatory contexts (Ziegler et al. (2018)).375

The absence of standardized refurbishment pathways renders cost estimates highly project-specific and difficult to establish

ex ante. Operational expenditure during extended operation is further subject to uncertainty arising from ageing-related relia-

bility degradation, spare-part availability, and evolving maintenance and logistics conditions. Together, these factors introduce

substantial variability in projected economic outcomes and limit the applicability of deterministic cost assumptions in lifetime

extension assessments.380

IEC 61400-28 (International Electrotechnical Commission (2025)) provides a technical framework for through-life asset

assessment, with a primary focus on lifetime assessment, load and fatigue accumulation, inspection and monitoring strategies,

and certification requirements. The standard identifies a set of technically relevant risk factors to be considered in through-life

and end of life decision making, including changes to design requirements, local legislation, site and environmental conditions

relative to the turbine class, previously tolerated design or equipment aspects, and modifications to control software. While IEC385

61400-28 provides guidance on technical sufficiency and compliance, it does not prescribe an economic decision model, define

cost or performance multipliers, or specify methods for risk quantification, leaving the assessment of economic implications

and uncertainty largely to practitioners.

Several studies have addressed the quantification of risks associated with operation beyond the design life by focusing

on individual or selected subsets of the underlying technical and economic uncertainties. Bayesian decision frameworks have390

been proposed to support lifetime extension (LTE) decisions by explicitly accounting for inspections, analysis, and the expected

costs and benefits of continued operation (Nielsen et al. (2019)). While such approaches provide a structured decision logic

and highlight the value of inspections and monitoring, they rely on simplified or implicit assumptions regarding the evolution

of component reliability and do not fully quantify reliability-related uncertainty. Other studies combine probabilistic fatigue

modeling with economic optimization to assess LTE feasibility using net present value criteria, explicitly accounting for failure395

probabilities and consequences (Nielsen and Sørensen (2021)). These approaches suggest that moderate reductions in target

reliability may be economically acceptable for ageing assets, but remain focused on a limited set of technical risks. More

comprehensive techno-economic frameworks integrate structural degradation modeling, inspection strategies, and economic

evaluation under uncertainty, and acknowledge the strong sensitivity of LTE outcomes to assumptions on maintenance costs,

refurbishment scope, future revenues, discount rates, and certification requirements Yeter et al. (2022). However, the resulting400

assessments remain highly project-specific and dependent on boundary conditions.

Overall, existing frameworks address important elements of through-life decision-making, but lack an integrated treatment

of the full spectrum of uncertainties and their propagation to economic risk and decision variables. In particular, interactions be-

tween structural integrity, reliability and resulting O&M activities, energy yield, regulatory constraints, and market conditions

are typically treated in isolation, and temporal aspects of uncertainty accumulation across the asset lifetime are only partially405

captured. Late-life decision-making, therefore, represents a complex problem spanning multiple uncertainty classes, aleatory,

epistemic, and regulatory, and multiple time horizons, ranging from early-life design and fatigue accumulation to short-term
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operational decisions and long-term economic and financing risks. To support consistent and transparent decision-making, in-

tegrated decision-support approaches are required that jointly consider these dimensions. The key uncertainty domains, their

associated risks, and relevant time aspects are summarized in Table 5410

Table 5. Key uncertainty dimensions in through-life decision-making, becoming most relevant in late-life phases, mapped to uncertainty

type, decision risk, and time aspects. A: Aleatory, E: Epistemic, R: Regime.

Dimension Uncertainty source Type Risk Time horizon

Structural integrity /

remaining life

Remaining fatigue budget;

crack growth; site-specific loads

vs. design assumptions; effects

of past operational strategies

E Unsafe continued operation; un-

expected life-limiting findings;

unplanned refurbishment costs

through lifetime

Reliability and main-

tenance process

late-life phase failure rates; re-

pair times (MTTR); logistics

delays; spare-part availability

A, E Higher downtime and O&M ex-

penditure than expected; cas-

cading failures; availability

Late-life phases

Energy yield during

late-life operation

Performance degradation (e.g.

blade erosion); availability-

driven production loss; curtail-

ment impacts

A, E,

R

Revenue shortfall; inability to

meet financial or contractual

performance targets

Late-life phases

External conditions Long-term wind resource shifts

evolving wake interactions

A, E Biased energy yield projections Mid- to long-term

Regulatory and legal Requirements for continued op-

eration; inspection and certifi-

cation scope; decommissioning

and removal obligations; liabil-

ity allocation

R, E Project becomes non-

permissible; unexpected

compliance or decommission-

ing costs; schedule delays

Late-life decision

and end-of-life

Market and cost envi-

ronment

Electricity price and support-

scheme changes; inflation; con-

tract terms

A, R Revenue volatility; adverse eco-

nomics despite technical feasi-

bility; inability to secure ser-

vices or financing

Mid- to long-term

4.2.1 Impact assessment

Building on the uncertainty dimensions identified in the literature review and summarized in Table 5, the impact assessment

adopts a scenario-based approach to capture the aggregated uncertainty effects on energy yield, refurbishment effort, and

system reliability during extended operation. Here, lifetime extension is chosen as one representative through-life decision-
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making challenge. The analysis is intended to demonstrate how plausible variations in key assumptions propagate to economic415

performance metrics such as net present value and levelized cost of electricity. The assessment aims to provide insights into

the sensitivity of LTE economics to non-stationary operating conditions and ageing-related effects. To translate the identified

uncertainty dimensions into parameters for the WINPACT toolchain, the risk drivers are aggregated at the scenario level,

enabling assessment of their combined impact on production performance, refurbishment requirements, and system reliability

during the lifetime extension period.420

Each scenario defines:

– a stochastic production modifier applied uniformly across the LTE period,

– a stochastic refurbishment cost uplift applied as a one-off cost at the start of LTE,

– a deterministic shift in system reliability parameters during the extended lifetime.

Production and refurbishment uncertainties are modeled as aggregated normal distributions, representing scenario-level425

uncertainty rather than individual risk realizations. For a given scenario s:

X
(s)
AEP ∼N

(
µAEP

s ,σAEP
s

)
, (1)

X
(s)
Ref ∼N

(
µRef

s ,σRef
s

)
. (2)

The sampled modifiers are applied as:

Productionadj = Productionbase ·
(
1 +X

(s)
AEP

)
, (3)430

CRef = CRef, base + X
(s)
Ref . (4)

In each Monte Carlo iteration, one random draw from X
(s)
AEP and X

(s)
Ref is applied uniformly across all LTE years, reflect-

ing scenario-level uncertainty in energy yield and refurbishment costs. The corresponding assumptions for production loss,

refurbishment uplift, and extension duration are summarized in Table 7.

Uncertainty in future reliability is captured through scenario-dependent shifts of component failure rates during the lifetime435

extension period. Failure rates during the original design life remain unchanged. Reliability degradation is implemented as a

multiplicative factor on baseline component failure rates, applied only during the extended lifetime. This approach reflects the

expectation that ageing-related mechanisms, such as wear of mechanical components, accumulated fatigue damage, corrosion,

and blade erosion, become increasingly relevant beyond the original design life, while preserving the reliability characteristics

of the asset during its initial operation. Reliability degradation is treated deterministically to reflect epistemic uncertainty440

regarding long-term ageing behavior. Table 6 summarizes the applied reliability modifications.
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Table 6. Scenario-dependent reliability parameter modifications applied during the lifetime extension period.

Scenario Interpretation
Failure-rate

multiplier λLTE

Baseline (No LTE) No lifetime extension; baseline reliability applies throughout project

life

1.00

EOL 1 – Moderate degradation Moderate ageing effects and increased corrective maintenance fre-

quency during extended operation

1.5

EOL 2 – Substantial degradation Pronounced ageing effects, higher failure intensity, and reduced reli-

ability during extended operation

2.0

Table 7. Lifetime extension scenarios and associated quantitative assumptions.

Scenario Interpretation
AEP modifier

(µ,σ) [%]

Refurb uplift

(µ,σ) [/eturbine]

Extension

time [years]

Baseline (No LTE) Operation limited to original de-

sign life; no additional uncer-

tainty

(0.0, 0.0) (0, 0) 0

EOL 1 – Moderate degradation Conservative extension with

moderate production degrada-

tion and limited refurbishment

scope

(−2.0, 1.0) (1.5M, 0.5M) 8

EOL 2 – Substantial degradation Aggressive extension with pro-

nounced production loss and ma-

jor refurbishment effort

(−6.0, 2) (5M, 2M) 5

Figure 6 shows the distribution of total project NPV and LCOE for both the baseline case and the lifetime extension scenario.

As expected, extending the operational lifetime of a wind farm is a powerful lever to increase project value and reduce the

levelized cost of energy. Continued operation of an already depreciated asset allows additional production at comparatively

low marginal cost, thereby lowering LCOE and increasing cumulative revenues. In addition, the postponement of typically445

substantial decommissioning costs further improves project economics. This should not be interpreted as an absence of through-

life risk, but rather as an illustration of how late-life decisions can redistribute risk across time and uncertainty dimensions. The

results indicate that the economic outcome of an LTE project can vary substantially, with a spread on the order of C 100 M in

NPV or about C 4 /MWh in LCOE for the considered case. This shows that through life decisions can redistribute economic

project outcome and associated risks. It should be noted that this illustrative experiment does not account for several important450
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sources of uncertainty, including electricity price volatility, inflation, regulatory risk, or the risk of catastrophic failures. Future

work should therefore focus on integrated methods that support through-life decision-making under the combined uncertainty

dimensions summarized in Table 5.

Figure 6. NPV and LCoE for different EOL Scenarios

4.3 Long-term asset viability - Curtailment

4.3.1 Review455

With the increasing share of variable renewable energy in power systems, production peaks occur more frequently, for instance

during periods of high wind or/and sunny days (Global Wind Energy Council (GWEC) (2025)). These production peaks can

have both local and system-wide impacts. At the system level, high VRE production tends to lower wholesale electricity

prices, sometimes down to very low or even negative levels when production exceeds demand. In several European markets,

the number of hours with negative prices has increased in the last years, reducing revenues and creating lost opportunities for460

wind farm operators who may have to curtail generation to avoid paying to inject power into the grid (Tselika (2022); Bird

et al. (2016); Biber et al. (2022)).

At the local level, production peaks can create grid constraints when transmission infrastructure cannot accommodate the

power flows required to match generation to demand, or when local generation exceeds the capacity of the grid (Agbonaye

et al. (2022); EirGrid TSO and SONI TSO (2024)). In these cases, renewable generation must be curtailed to maintain system465

stability, leading to increasing volumes of constrained energy and, in many markets, constraint payments from system operators

to affected wind or solar farms. Curtailment of excess wind and solar energy is therefore a growing concern in systems with

high VRE penetration and limited demand flexibility or storage.

A further source of curtailment arises from constraints imposed to protect wildlife, particularly birds and bats. Indeed, wind

turbines can create collisions and deaths due to pressure changes. Mitigation measures such as increased cut-in speeds or470
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seasonal shutdowns can significantly reduce these risks but also reduce energy production and revenues for operators Hayes

et al. (2023); Whitby et al. (2021); Behr et al. (2017).

We distinguish three main types of curtailment in our review: market-driven, grid-constraint, and wildlife-related.

Transmission constraints

As the penetration of renewable energy sources increases in Europe following the ambitious decarbonization targets, elec-475

tricity grid design and capacity must develop accordingly. However, uncertainties in grid development and expansion remain

a critical challenge. A recent study by the Joint Research Centre (Thomaßen et al. (2024)) explores uncertainties in redispatch

volumes under different European grid expansion scenarios. The analysis considers three scenarios (Business-as-Usual, Am-

bitious Grid Expansion, and Extreme Grid Expansion) for 2030 and 2040, showing redispatch volumes increasing from 165 to

374 TWh by 2030 and from 274 to 809 TWh by 2040, depending on the level of grid reinforcement. These results highlight the480

growing risk of congestion and curtailment in the absence of targeted and timely grid investments. Such challenges are already

growing in several European countries. In the Netherlands, grid congestion has increased in recent years, with most sections of

the electricity grid considered congested since September 2024 (International Energy Agency (2025)). The resulting connection

waiting list includes approximately 10,000 large consumers or battery projects and 7,500 large-scale generation projects, sig-

nificantly constraining the country’s electrification efforts and economic activity. Similarly, in Germany, high wind generation485

in the northern regions combined with concentrated industrial demand in the southern states frequently leads to north-to-south

transfers that exceed transmission capacity, requiring redispatch and curtailment (c.f. SMARD – German Electricity Market

Data (2024)).

According to data collected by the Irish TSO EirGrid (EirGrid TSO and SONI TSO (2024)), the percentage of wind gen-

eration curtailed due to grid constraints (i.e. local network capacity limits) varies significantly from one region to another. In490

2023, wind energy production was reduced by only 0.3% in the South East of Ireland, while it was constrained by 11.4% in

the North West. These differences may be explained by variations in renewable energy penetration, the presence or absence

of energy-intensive industries, and the level of grid development in each region. Figure 7 displays the monthly variability of

constraint levels across Ireland from 2016 to 2024, showing overall increasing curtailment levels and wider interannual spreads.

Constrained wind farms are often compensated by system operators for lost revenues. However, the exact compensation495

system varies by country. In Germany, for instance, curtailment compensation follows a cost-based approach, ensuring that

wind farm operators receive the same income as if their generation had been fully dispatched. In contrast, countries such as

Ireland, until recently, was providing limited or no compensation for curtailed renewable generation. To compensate the energy

lost, gas-fired generators are paid to increase output at short notice, often charging a premium for this flexibility. While these

mechanisms maintain financial stability for operators, frequent curtailment of wind energy can lead to high balancing costs500

for the system operator and threaten public perception of renewable energy, as it may be perceived as wasted or underutilized

(Kerr (2025)).

Market-driven curtailment As the share of renewable power in the energy mix grows, careful planning of new renewable

energy production sites becomes increasingly important. Highly centralized generation can lead to overlapping peaks, which

are directly reflected in day-ahead markets as increased electricity price volatility. Negative price episodes are no longer rare505

22

https://doi.org/10.5194/wes-2026-31
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



events but a common mechanism in systems where inflexible supply and limited demand-side flexibility clash with high wind

penetration. Global Wind Energy Council (GWEC) (2025) highlights, on top of acknowledging the recent drastic increase in

the negative power prices, the potential impact on investor confidence if no de-risking approaches are suggested.

When prices turn negative, continuing to generate implies paying the system to take the electricity, making curtailment an

economically rational, though value-reducing, decision. Negative prices typically occur during periods of high wind or solar510

generation, low demand, and limited flexibility from conventional plants or interconnectors, resulting in oversupply. In such

conditions, wind farms are increasingly curtailed for economic rather than technical reasons. Over the years, the frequency

of negative prices has increased in countries with high wind or solar PV penetration, such as Germany, Denmark, and the

Netherlands. Figure Figure 7 shows the annual distribution of monthly negative electricity price hours for different European

countries base on data extracted from Ember (2025).515

Market-driven curtailment can significantly impact a project’s net present value, bankability, and operational reliability due

to reduced availability. Gonzalez-Aparicio et al. (2022) analyzes the feasibility of offshore wind in the Dutch energy market by

2030 and conclude that new offshore wind farms may not always be profitable, particularly under low-electrification scenarios,

mainly due to potential generation surpluses. The expected frequency of negative electricity prices should be considered during

the design and planning phase of a wind farm, as they may affect the ability to secure PPAs, CfDs, or other contractual520

agreements.

Figure 7. (Left) Distribution of monthly fraction of negative electricity prices per country (Ember (2025)); (Right) Distribution of monthly

constraint levels in all Ireland (Republic of Ireland and Northern Ireland) per year.

Curtailment - Wildlife Constraints In some regions, wind energy development has been demonstrated to pose significant

threats to bat populations (Cryan and Barclay (2009); Friedenberg and Frick (2021)), raising conservation concerns (Kunz

et al. (2007); Rydell et al. (2010)). Fatalities are due to collision with turbine blades and barotrauma caused by air pressure
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changes near the rotating blades. These impacts are particularly evident during seasonal migration periods and under specific525

meteorological conditions such as low wind speeds and warm nights, when bats are the most active. As a mitigation measure,

operators are often required to curtail turbines at night during low wind periods, a practice known as blanket curtailment.

However, this approach directly conflicts with revenue optimization, since low wind speeds typically correspond to periods

when turbines could still operate profitably without risk of being curtailed by the generation excess mentioned earlier.

To mitigate this problem and reduce the curtailed time, smart or dynamic curtailment strategies have been proposed (Hayes530

et al. (2023); Gottlieb et al. (2024)). These methods rely on real-time or forecast indicators of bat activity, meteorological data,

and, sometimes, acoustic monitoring to identify when bats are likely to be present near turbines, enabling selective shutdowns

only under high-risk conditions. Such approaches have shown promise in reducing bat mortality while minimizing energy loss

(Hayes et al. (2023)), but their general applicability remains uncertain. Differences in local bat species behavior, habitat type,

and atmospheric conditions mean that site-specific calibration is often necessary, and the effectiveness of smart curtailment535

may vary across geographic and climatic contexts.

EU regulations for bat conservation in new wind farm projects (European Commission, Directorate-General for Environ-

ment (2010)), mandate pre-construction surveys, avoidance of high-risk sites, operational curtailment (meaning higher cut-in

speeds or shutdowns during peak bat activity), and post-construction monitoring, as detailed in the 2010 EU Guidance docu-

ment and EUROBATS guidelines, with national implementations varying across Member States like Germany and Denmark.540

This ecologically driven curtailment contrasts with market-driven curtailment, where power output is reduced in response to

negative electricity prices or grid congestion, typically occurring at higher wind speeds. Consequently, the two forms of curtail-

ment affect different operational regimes, ecological curtailment emphasizing biodiversity protection, and market curtailment

aligning with economic system integration, creating complex trade-offs for operators balancing conservation compliance with

energy production and financial performance. Reported AEP losses due to bat curtailment are typically limited to the order of545

< 1%–3%, depending on turbine type, site conditions, and curtailment strategy, with smart curtailment consistently reducing

losses relative to blanket shutdowns (Hayes et al. (2023); Whitby et al. (2021); Behr et al. (2017)). Table 8 shows an overview

of curtailment uncertainty dimensions discussed.
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Table 8. Key uncertainty dimensions in wind energy curtailment, mapped to uncertainty type, decision risk, and time aspects. A: Aleatory,

E: Epistemic, R: Regime.

Dimension Uncertainty source Type Risk Time horizon

Transmission con-

straints

Grid capacity relative to renew-

able deployment; timing and

scope of grid reinforcement; re-

gional bottlenecks; interconnec-

tion availability

E, R Loss of production; biased rev-

enue projections;

Mid- to long-term

Market-driven cur-

tailment

Frequency and duration of neg-

ative electricity prices; price

volatility under high VRE pen-

etration; demand flexibility and

storage deployment

A, E Revenue erosion; reduced

project returns and bankability

Short- to mid-

term

Short-term curtail-

ment variability

Month-to-month or hour-to-

hour variability in curtailment

driven by weather conditions,

and demand fluctuations

A Cash-flow volatility; mismatch

between expected and realized

revenues; increased downside

risk

Short-term

Regulatory and com-

pensation schemes

Rules for redispatch com-

pensation; cost-based versus

market-based compensation;

policy changes

R, E Sudden revenue loss; stranded

assets; increased regulatory risk

premium

Policy cycles /

lifetime

Wildlife-related cur-

tailment

Seasonal shutdown require-

ments; cut-in speed constraints;

effectiveness of smart curtail-

ment strategies; site-specific

ecological conditions

A, R,

E

Systematic AEP reduction; un-

certainty in compliance costs;

Seasonal to long-

term

Spatial heterogeneity Location-specific exposure to

congestion, price zones, and

ecological constraints; interac-

tion with neighboring renew-

able projects

E suboptimal siting and design of

projects

Design and siting

phase
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4.3.2 Impact assessment

Curtailment is modeled as a system-level loss mechanism that reflects both persistent structural conditions of the power system550

and short-term operational variability.

Curtailment is represented through a multiplicative reduction of potential energy production. For a given month m, curtailed

production P curt
m is computed as

P curt
m = cm Pm, (5)

where Pm is the uncurtailed production and cm ∈ [0,1] denotes the fraction of energy curtailed during month m. Depending on555

the case, cm either represents the transmission constraint level or the ratio of hours with negative electricity prices per month.

The curtailment fraction is modeled using a hierarchical stochastic formulation:

cm | α,θ ∼Gamma(α,θ), (6)

α,θ ∼ p(α,θ). (7)

Two distinct sources of uncertainty are represented and mapped to different levels of the model. Epistemic uncertainty560

reflects limited knowledge about the long-term curtailment regime applicable to a given project and is represented through

uncertainty in the Gamma distribution parameters. For each simulation, the shape parameter α and scale parameter θ are

sampled from predefined ranges and remain fixed over the project lifetime. Variation ranges of 10% around the defined value

are assumed to illustrate the uncertainty within the distribution. Conditional on this regime, aleatory uncertainty is represented

by sampling monthly curtailment fractions cm from the resulting Gamma distribution, capturing irreducible month-to-month565

variability due to fluctuating system conditions.

The Gamma distribution is chosen for its ability to represent positively skewed loss processes. Variation in the parameters

(α,θ) across scenarios reflects uncertainty in system-level drivers such as transmission adequacy, system flexibility, market

conditions, and regulatory constraints.

Five curtailment regimes are defined to represent epistemic uncertainty in system-level curtailment conditions. Within each570

regime, monthly curtailment fractions are generated according to Equation (6).

The definition of the regimes is informed by two empirical drivers observed in European power systems: (i) geographically

heterogeneous transmission constraints and (ii) increasing frequency and variability of negative electricity prices under high

renewable penetration. For the sake of simplicity, curtailment due to wildlife constraints has not been accounted for in the

definition of the scenarios.575

Transmission-driven curtailment regimes are derived from observed spatial variation in redispatch and constraint levels

within Ireland, where regional differences in renewable penetration, demand location, and grid development lead to different

curtailment outcomes. Monthly data reported by the Irish transmission system operators for the period 2021–2024 (EirGrid

TSO and SONI TSO (2024)) indicate a wide spread of curtailment levels across zones, motivating the definition of three

regimes representing low, medium, and high transmission constraints.580
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Market-driven curtailment regimes are motivated by cross-country variability in the frequency of negative electricity prices

observed across Europe. Monthly counts of negative-price hours in 2024 were converted to fractions of time and used to

estimate representative ranges of Gamma distribution parameters based on their mean and variance. Two regimes are defined

to reflect contrasting market conditions: one characterized by high variability and frequent negative prices, and one representing

moderated price volatility under higher system flexibility and storage deployment.585

Together, these five regimes span a plausible range of long-term curtailment conditions relevant for current and near-future

wind energy projects. The resulting scenario definitions and corresponding parameter ranges are summarized in Table 9.

Table 9. Curtailment regimes representing epistemic uncertainty in system-level curtailment conditions. Distribution parameters were derived

from data detailed on Figure 7, where monthly number of hours has been converted in monthly % of time, and monthly curtailment level is

expressed in %.

Scenario Interpretation Shape parameter range (α) Scale parameter range (θ)

C0 – Reference No curtailment. [-,-] [-,-]

C1 – Low transmission con-

straints

Successful grid development

and high flexibility.

[0.4, 0.5] [1.5, 1.8]

C2 – Medium transmission

constraints

Successful grid development

with important geographi-

cal mismatch between pro-

duction and demand, which

requires extensive transmis-

sion.

[0.7, 0.9] [4.0, 4.9]

C3 – High transmission con-

straints

Renewable deployment

outpaces grid reinforcement

and flexibility. Geographical

constraints.

[1.4, 1.7] [6.0, 7.3]

C4 – High variability in mar-

ket curtailment

Increasing renewable share

causes weather-driven gen-

eration peaks, with no stor-

age solutions.

[1.4, 1.8] [4.6, 5.7]

C5 – Medium variability in

market curtailment

Deployment of storage

technologies reduces price

volatility and the frequency

of negative electricity prices.

[2.3, 2.9] [1.6, 2.0]
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Figure 8. NPV (left) and Lost Energy (right) distributions for scenarios.

Figure 8 shows the distribution of project NPV and total lost energy for each curtailment scenario. The results are based

on the assumption that curtailed energy leads to lost revenue for the project owner, with no compensation scheme considered.

As such, the analysis primarily reflects the economic loss, which in practice would not necessarily be carried by the operator590

alone.

The results indicate that curtailment introduces substantial economic risk. Project NPVs are shifted by several hundred mil-

lion euros across scenarios and exhibit a wide spread within individual scenarios. This confirms that curtailment represents

a major threat to the economic value of wind energy projects and can, depending on the compensation mechanisms, render

projects economically unviable. From an energy system perspective, curtailed production also represents a significant inef-595

ficiency, as this energy could have been generated at near-zero marginal cost and used productively. Future research should

therefore aim to assess curtailment risk jointly from the perspectives of project operators, grid operators, and the broader energy

system in order to identify effective mitigation measures.

4.4 Reliability gaps in major non-redundant components

4.4.1 Review600

The reliability of a turbine is defined as the probability that a turbine will function according to its intended purpose over its

lifetime. Understanding wind turbine reliability is crucial to optimize performance and minimize operational costs. Various

indicators are used in the literature to assess the reliability of both the system and its components (Walgern et al. (2025)).

Despite efforts to develop consistent data collection practices, methodologies, and taxonomies (Hahn et al. (2017)), there is
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still no uniform standardization in the definition of reliability indicators, failure events, analysis of field data, or components605

failures that would apply across turbine types (van Kuik et al. (2016); Cevasco et al. (2021)).

Among the reliability indicators used in wind turbine studies, the average annual failure rate per turbine is the most widely

reported, due to its simplicity and direct applicability in O&M analyzes. However, reliance on this parameter may hide sub-

stantial epistemic uncertainty associated with its estimation. Identical average failure rates can arise from datasets of different

sizes. For example, an annual failure rate of 0.5 may be derived from 500 failures observed over 1,000 turbine-years or from610

15,000 failures over 30,000 turbine-years. While the mean is the same in both cases, the statistical confidence in the esti-

mate differs. Methods to quantify this uncertainty through confidence intervals or similar measures have been proposed in the

literature (Fischer et al. (2018); Walgern et al. (2025), yet such information is rarely reported in publicly available reliability

databases. As a result, failure rates are often treated as deterministic inputs in O&M models, despite being derived from limited

or heterogeneous datasets. Table 12 summarizes the average failure rates (failures per turbine per year) reported in 12 publicly615

available databases. Most studies include both variable and fixed-speed turbines, as well as geared and gearless drive trains. The

studies differ in turbine count, technology type, power rating, age, and observation period. Additional dataset characteristics,

including observation time, wind farm location, and mean rating, are also provided. The reported failure rates span from 0.434

to 46.856 failures/WT/year, with the highest value likely representing an outlier due to SCADA alarm usage or a very short

survey period. Following the approach of Dao et al. (2019), the datasets were clustered to highlight the variability of failure620

rates based on wind farm location, observation period, and mean rating. The resulting coefficients of variation are shown in

Table 13, illustrating how differences in technology, location, and observation period contribute to variability (the value from

University of Nanjing was excluded to avoid the influence of the high outlier). The impact of varying failure rates on oper-

ational expenditures has been shown in several studies (Gräfe et al. (2025); Donnelly et al. (2024)). This lack of uncertainty

characterization introduces epistemic uncertainty into failure-rate assumptions, which can propagate into biased estimates of625

intervention frequency, downtime, and overall O&M costs.

Beyond statistical uncertainty in failure-rate estimation, a major source of epistemic uncertainty arises from heterogeneity

across turbine fleets and study contexts. Reported failure behavior has been shown to depend systematically on turbine technol-

ogy, drivetrain concept, rated power, manufacturer, and site conditions. Walgern et al. (2025) analyses large multi-fleet datasets

and demonstrate OEM-specific differences in average annual failure frequencies normalized by installed capacity. Reported630

values range from approximately∼ 1.5 to∼ 2.5 failures/MW/yr for onshore turbines, and from∼ 0.7 to∼ 1.6 failures/MW/yr

for offshore installations, highlighting substantial differences even after capacity normalization. These differences are attributed

to a combination of design characteristics, component selection, operational environment, and maintenance strategy rather than

random variation. Similarly, Reder et al. (2016) report systematic variations in failure rates at both system and component lev-

els as a function of turbine power rating (Table 14), while Tavner et al. (2013) show that turbines of identical design installed635

at different sites can show different failure behavior. Despite this evidence, O&M modeling, especially in research contexts,

in practice often relies on publicly available datasets that aggregate observations across manufacturers, sites, and operational

contexts, due to the limited availability of homogeneous fleet-specific data. Due to the commercial sensitivity of reliability

data, few recent large-scale datasets are publicly available, and many studies continue to rely on data collected prior to 2015,
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such as Carroll et al. (2016). The transfer of such aggregated failure-rate assumptions to a specific project therefore introduces640

epistemic uncertainty. This can lead to misaligned maintenance strategies and biased O&M cost estimates.

In addition to uncertainty in the overall frequency of failure events, substantial epistemic uncertainty exists in how failures

are distributed across major wind turbine assemblies. Artigao et al. (2018) conducted a comparative analysis of 13 reliabil-

ity studies and failure databases and developed a unified turbine taxonomy to enable consistent comparison across datasets.

Large discrepancies were observed in the relative contribution of individual components to total failure counts. For example,645

the reported share of generator-related failures varies from approximately 3 % to 23 % across the analyzed studies. Similar

variability is reported for other major assemblies, indicating that the component-level failure distribution is highly sensitive to

dataset composition and study context. This uncertainty is particularly relevant for O&M decision-making, as different compo-

nents are connected to different repair times, logistics requirements, and costs. Consequently, two systems with similar overall

failure rates may exhibit substantially different OPEX and availability outcomes depending on how failures are distributed650

across components.

The bathtub curve is frequently used as a conceptual model for the temporal evolution of failure rates. This concept is

motivated by theoretical considerations of degradation processes such as wear, fatigue, and ageing, which suggest that failure

rates may decrease during an initial run-in phase, remain approximately constant during a useful-life period, and increase again

as components approach wear-out. While this framework is well established in reliability theory (Kapur and Pecht (2014)),655

empirical observations from real wind fleets do not confirm a clearly defined bathtub-shaped evolution of failure rates.

Analyses of field data indicate that system-level failure rates rarely exhibit a pronounced bathtub shape. However, aspects

of bathtub-like behavior can be observed for certain individual components or subsystems, particularly in the form of elevated

early-life failure frequencies or age-dependent trends. Walgern et al. (2025), for example, demonstrate non-stationary failure

behavior over turbine lifetime phases and report component-specific age dependencies. Similar conclusions can be drawn from660

Faulstich et al. (2011) and analyses of the Wind Network for Enhanced Reliability (WinNER) database (see Figure 9)(Electric

Power Research Institute (EPRI) (2024)), where major assemblies exhibit component-specific trends that deviate from the

idealized bathtub assumption and differ substantially between subsystems.
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Figure 9. Key components failure rates from the WiNNER database (Pulikollu et al. (2023, 2024); Pulikollu and Han. (2021).

In O&M modeling, failure occurrence is typically represented using assumed statistical distributions, most commonly

Weibull formulations, which implicitly impose assumptions on the temporal structure of failures. As shown by Scheu et al.665

(2017), these distributional choices can have a significant impact on model outcomes: even when average failure rates are iden-

tical, different failure-time distributions lead to substantial differences in simulated wind farm availability. This demonstrates

that such models should be interpreted as simplifying representations under uncertainty rather than as empirically validated

descriptions of failure mechanisms. Consequently, assumptions regarding the temporal distribution of failures constitute an

important source of epistemic uncertainty in O&M simulations.670

In addition to epistemic uncertainty, wind turbine operation is subject to aleatory variability in the occurrence of failure

events. Even if the underlying failure-rate process were perfectly known, the number and timing of failures realized in a

specific wind farm over a given period would remain stochastic. As a result, otherwise identical projects may experience

substantially different maintenance histories, downtime, and O&M costs purely due to random variation in failure occurrences.

Consequently, reliability-driven O&M assessments must be interpreted in probabilistic terms, rather than as deterministic675

forecasts of operational outcomes.
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Table 10. Key uncertainty dimensions in wind turbine reliability, mapped to uncertainty type, decision risk, and time aspects. A: Aleatory,

E: Epistemic.

Dimension Uncertainty source Type Risk Time horizon

Failure-rate estima-

tion

Limited observation periods;

small sample sizes; incom-

plete failure reporting; lack of

confidence intervals in public

datasets

E Biased O&M cost estimates;

under- or overestimation of in-

tervention frequency

Throughout life-

time

Cross-study and fleet

heterogeneity

Differences in turbine tech-

nology, OEM, drivetrain con-

cept, power rating, site condi-

tions, and maintenance strate-

gies across datasets

E Transferability errors when

calibrating models to specific

projects; misaligned O&M

strategies

Throughout life-

time

Component-level

failure distribution

Uncertain allocation of failures

across major assemblies; vari-

ability in component contribu-

tion to total failures

E Misidentification of cost- and

downtime-critical components;

inefficient spares and logistics

planning

Throughout life-

time

Temporal evolution

of reliability

Non-stationary failure be-

haviour (infant mortality,

ageing, wear-out); unclear

component-level trends over

time

A, E Mismatch between assumed and

actual failure timing; distorted

availability projections

Early and late life

Data taxonomy and

definitions

Inconsistent definitions of fail-

ure events, components, and as-

semblies across databases

E Systematic bias in model cal-

ibration; limited comparability

of studies

At model calibra-

tion

Failure occurrence

variability

Stochastic variability in the tim-

ing and number of failure events

for a given project, even under

identical failure-rate assump-

tions

A Project-specific deviations in

O&M costs and downtime;

residual economic risk despite

accurate parameter estimation

Throughout life-

time

The review highlights that wind turbine reliability is affected by multiple, interrelated sources of uncertainty, as summa-

rized in Table 10. A substantial share of these uncertainties is epistemic in nature, arising from limitations in available data,

heterogeneity across fleets, and modeling assumptions regarding failure behavior.
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One key implication is that uncertainty in reliability assumptions directly propagates into economic risk: variations in failure680

rates, failure allocation across components, and temporal failure structure translate into uncertainty in intervention frequency,

downtime, and O&M expenditures. Improved understanding, data quality, and uncertainty characterization can therefore reduce

decision risk and improve the robustness of O&M planning.

Reliability itself remains a central driver of wind farm performance and cost, independent of how well it can be described.

Even with perfect knowledge of failure processes, failure events still occur, resulting in downtime and costs. Consequently,685

technical solutions that increase component and system reliability are a complementary pathway to risk reduction. By lowering

the underlying failure intensity, such improvements not only reduce expected O&M costs but also mitigate the impact of

aleatory variability on project outcomes.

4.4.2 Impact assessment

We model the impact of uncertainty around reliability of wind turbine components using the Markov chain based OPEX mod-690

ule of WINPACT. Failure occurrence is modeled using a two-level uncertainty framework that explicitly separates aleatory

variability in the timing of failures from epistemic uncertainty in the underlying failure rates. Aleatory uncertainty reflects the

inherently random nature of failure events given a fixed failure rate, while epistemic uncertainty captures imperfect knowledge

of the true mean failure rate arising from limited observation periods, inconsistent failure definitions and reporting, and the

transfer of reliability evidence across turbine generations, sites, and operational contexts. In the model, this epistemic uncer-695

tainty is represented by treating failure rates as random variables rather than fixed parameters, with uncertainty described using

Gamma distributions, which provide a flexible and non-negative representation commonly used for rate parameters.

At the methodological level, epistemic uncertainty in failure rates is implemented through a structured decomposition of the

coefficient of variation that distinguishes between system-level and component-level effects. A target coefficient of variation

is first specified at the turbine level for each scenario, representing the intended overall uncertainty in the aggregate failure700

behavior. This uncertainty is then divided into a shared component and an independent component. The shared component

represents coherent epistemic effects that affect all components simultaneously, such as systematic biases in data sources,

modeling assumptions, or the limited transferability of evidence across fleets. It is implemented through a single multiplica-

tive factor, sampled once per simulation realization and held constant over the simulated lifetime. The remaining portion of

the uncertainty budget is allocated to independent, component-specific variability, representing residual heterogeneity between705

components beyond the shared effects. Through this construction, the combined effect of shared and independent terms repro-

duces the intended coefficient of variation at system level.

The scenarios presented in table 11 represent different levels of uncertainty about failure rate assumptions. Scenarios rep-

resent different assumptions about epistemic uncertainty, not properties of a specific turbine or project. We define three main

scenarios based on evidence from literature:710

– Scenario 1 [Low variability]: Mature wind turbine model with well-known weaknesses, deployed in a large and ho-

mogeneous fleet, supported by fully established O&M logistics and processes. The remaining variability reflects the

33

https://doi.org/10.5194/wes-2026-31
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



heterogeneity typically observed within a fleet of identical technologies. The level of variability reported by Tavner et al.

(2013) is adopted here to represent this low-variability scenario. In that study, the authors report differences in aver-

age failure rates (failures/WT/year) across three German wind farms operating Enercon E-33 and E-32/300 turbines,715

primarily stemming from weather variability.

– Scenario 2 [Medium variability]: Representative of analyses based on public or mixed-source reliability data. Variability

arises from heterogeneous site conditions, differences in O&M contracting practices, and non-uniform failure definitions

and reporting across studies. The coefficient of variation adopted for this scenario is informed by the variability observed

in the CIRCE database (Reder et al. (2016)) and is reported in Table 14.720

– Scenario 3 [High variability]: Representative of new wind turbine models in early deployment phases. At this stage,

limited operational experience, rapidly evolving O&M practices, and incomplete harmonization of failure definitions

and reporting lead to important variability across available studies. The coefficient of variation adopted for this scenario

is informed by the spread observed in datasets with short observation periods (less than five years) and turbine ratings

above 1 MW, as summarized in Table 12 and Table 13.725

Table 11. Failure-rate uncertainty scenarios grounded in offshore wind reliability literature and implemented as Gamma uncertainty on λ.

Scenario Interpretation Failure rate λ (αλ, CVλ)

Baseline Baseline failure rates (no epistemic uncertainty) (1.00,0.00)

R1 – Low epistemic uncertainty Large homogeneous fleet with mature wind turbine model,

and fully established O&M logistics and processes.

(1.00,0.30)

R2 – Mid epistemic uncertainty Typical public-data with mixed-sources: epistemic spread

reflects cross-study differences, reporting and taxonomy

variation.

(1.00,0.50)

R3 – High epistemic uncertainty Poorly observed turbines or contexts. Next-generation tur-

bines without enough observation history or new technol-

ogy.

(1.00,0.90)

Figure 10 illustrates the distributions of net present value and operational expenditure obtained for the different failure-rate

uncertainty scenarios. The results demonstrate that epistemic uncertainty in the specification of failure rates has a pronounced

impact on project economics. Even under the low-uncertainty scenario (SC1), the spread of economic outcomes remains sub-

stantial, with a range on the order of C 400 M. With increasing epistemic uncertainty, the spread of outcomes grows and the

distributions exhibit pronounced long tails. Although such adverse outcomes are unlikely, they imply that unfavorable combi-730

nations of assumptions can lead to very low or even negative project values. Ignoring epistemic uncertainty would therefore

lead to a systematic underestimation of downside risk in investment decision-making and an overly optimistic assessment of

project robustness.
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Table 12. Failure rates of several previous studies compared (data from Reder (2018); Pfaffel et al. (2017); Ma et al. (2015)).

Initiative Location Mean rating Observation years Failures per WT and

year

WindstatsGermany Germany 1.3 9 1.796

WindstatsDenmark Denmark 1.3 9 0.434

LWK Germany 1.0125 13 1.855

WMEP Germany 0.915 17 2.606

VTT Finland 1.5375 12 1.45

Vindstat Sweden 1.5275 8 0.403

CIRCE Spain 1.65 3 0.481

EPRI USA 0.32 2 10.195

Muppandal India 0.225 5 1.013

CWEA China 3.75 3 7.167

Huandian China NA 0.5 0.846

University of Nanjing China 1.75 5 46.856

Table 13. Coefficient of variation of failure rates by category

Category Subgroup CV

Location
Europe 0.6

Outside Europe 1.8

Observation years
≤ 5 years 1.0

> 5 years 0.6

Mean rating
≤ 1 MW 0.9

> 1 MW 1.2

Figure 11 shows the corresponding distributions of farm availability and the number of corrective maintenance activities.

These results indicate that uncertainty in reliability assumptions propagates beyond economic metrics to technical performance735

indicators. In higher-uncertainty scenarios, availability may decrease substantially, while the number of corrective maintenance

actions can increase sharply in extreme cases. This reflects a system-level impact, combining lost energy production with

potentially stress on maintenance resources and supporting infrastructure.

Given the strong sensitivity of both economic and technical outcomes to reliability assumptions, uncertainty in component

failure behavior emerges as a key driver of overall project risk. The presence of uncertainty-driven long-tail risks is particularly740

relevant for financing, insurance, and contractual risk allocation, for example in the context of O&M guarantees or availability-

based contracts. Consequently, efforts to reduce epistemic uncertainty, for example through standardized failure classification
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Table 14. Data used for the SCADA Alarms and Failure Analysis (Reder et al. (2016))

SCADA System WT Make Technology Rated Capacity (kW) Nb of Turbines Failures per Turbine

1 A Geared 1500 55 0.709

2 B, C Dir. Drive 2000 57 0.632

3 D Geared 850 77 2.208

4 E Geared 2000 168 1.780

5 F, G Geared 1800–2000 83 1.313

Figure 10. NPV (left) and total OPEX (right) distributions for scenarios

and reporting, longer and more representative datasets, and closer links between reliability parameters and actual operating and

loading conditions, can reduce the perceived risk profile of projects. This may translate into lower risk premiums and reduced

cost of capital, contributing to the overall de-risking of wind energy investments.745
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Figure 11. Availability (left) and absolute number of corrective maintenance interventions for scenarios.

4.5 Inefficiencies in operations & maintenance

O&M costs and downtime are fundamentally driven by two coupled factors: the reliability and maintenance requirements of

the physical asset, and the effectiveness of the organizational processes responsible for detecting failures, planning interven-

tions, and restoring operation. The reliability characteristics of wind turbine components and their associated uncertainties

were introduced in the previous section. In the following, we focus on inefficiencies within the O&M process itself and the750

uncertainties that arise from them.

For offshore wind turbines, a generic corrective maintenance process can be described as a sequence of partly overlapping

steps. Following the occurrence of a failure, the turbine transitions from normal operation to a down state. This event initiates

a chain of activities including fault detection and diagnosis (performed remotely or manually), identification and procurement

of spare parts and specialized equipment, waiting for suitable weather windows, mobilization of crews and logistics, transport755

to site, execution of the repair, and finally the return of the turbine to normal operation. Each step introduces delays and

uncertainty, and the overall downtime is typically dominated by access, logistics, and organizational constraints rather than by

the repair action itself.

Technological and process-oriented advances have been developed to reduce the time between failure and return to operation.

These include advanced monitoring, diagnostics, prognostics, and, more recently, preventive and prescriptive maintenance760

concepts. While such approaches have the potential to improve O&M performance (Jardine et al. (2006)), their impact is not

uniform across the maintenance process. We therefore review the uncertainties and risks associated with these approaches from

a system-level O&M perspective. Table 15 provides an overview of these risks.

Several types of monitoring and diagnostic systems are used to assess the condition of wind turbine components or the turbine

as a whole. These include SCADA-based approaches, which infer system health from supervisory and operational data (Tautz-765
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Weinert and Watson (2017); Wang et al. (2026); Chesterman et al. (2023)), as well as dedicated condition monitoring systems

(CMS) that rely on high-frequency measurements. CMS typically include vibration-based drivetrain monitoring, oil debris

and oil condition monitoring, and electrical signature analysis (Kestel et al. (2025)). In addition, blade and structural health

monitoring (SHM) methods aim to detect damage using load-based, modal-based, acoustic, or strain-based measurements

(Haseeb and Krawczuk (2025)). Across all these system types, the main goal is to represent the true health state of the turbine770

or its components, either in real time through monitoring and diagnostics or in advance through prognostics. The practical

value of these systems depends not only on diagnostic accuracy but also on how uncertainty propagates from data collection

and modeling to decision-making and operational actions.

Uncertainty in monitoring and diagnostic systems arises at several levels, including sensing, modeling, and operational inte-

gration. Measurement-related uncertainties stem from sensor noise, calibration errors, and environmental effects, while limited775

sensor coverage leads to partial observability of turbine components (Haseeb and Krawczuk (2025)). Additional uncertainty

is caused by data availability and synchronization issues, such as missing data and the use of aggregated measurements like

10-minute SCADA data (Wang et al. (2026)), which may not capture transient events or rapidly developing faults (Kestel et al.

(2025)). Furthermore, sensor degradation, system ageing, and control software updates can reduce diagnostic performance over

time if models are not actively maintained.780

Model-based approaches, including digital twin concepts, may introduce uncertainty through modeling simplifications,

threshold definitions, and limited model fidelity. Data-driven and machine-learning approaches are typically trained on data

representing specific turbines, sites, or control configurations, which makes transferability across fleets and technologies chal-

lenging (Gräfe et al. (2024)). Turbine- and technology-agnostic models, therefore, remain an active area of research. At the

operational level, algorithmic detection latency arising from data processing and conservative thresholds compounds with785

system-level latency driven by weather windows, vessel availability, spare-part lead times, and contractual decision delays, so

that improvements in information timeliness do not translate linearly into reduced downtime.

Failure Detection uncertainty affects process performance in two ways: false positives lead to unnecessary inspections, stop-

pages, or technician dispatch, and thus immediate availability losses, whereas false negatives or delayed detections increase

risk by enabling secondary damage or catastrophic failures. Overall, economically relevant risk arises not only from residual790

uncertainty in monitoring and prognostic systems but also from misalignment with decision-making processes and the contin-

ued dominance of logistics and access constraints. Consequently, diagnostics constitute a necessary but not sufficient condition

for reducing O&M downtime. Effective impact requires decision layers that integrate diagnostic information across models,

logistics, and operational planning.

Despite substantial advances in monitoring, diagnostics, and prognostics, diagnostic information is often not expressed in795

a form that directly supports economically optimal maintenance decisions. Outputs are typically provided as alarms, health

indices, degradation states, or remaining useful life (RUL) estimates, rather than as decision-relevant risk metrics that explic-

itly link fault probabilities to consequence severity and optimal actions. Consequently, uncertainty associated with diagnostic

outputs is frequently implicit, with confidence bounds rarely propagated into the decision layer, leading decision-making to

rely on static thresholds and heuristic rules. Recent reviews of offshore wind O&M decision-making emphasize that diagnostic800
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and prognostic information remains largely confined to the operational horizon, while strategic and tactical planning continues

to rely on aggregated failure assumptions and fixed maintenance rules, with limited feedback between decision layers (Borsotti

et al. (2026)). Decision-theoretic frameworks that address this translation gap have been proposed. Risk-based O&M models

grounded in Bayesian pre-posterior decision theory, which formally link probabilistic descriptions of component condition,

inspection reliability, repair decisions, and life-cycle cost through explicit decision rules and have been demonstrated for off-805

shore wind turbine components in simplified settings (Nielsen and Sørensen (2011)). However, these approaches are typically

applied to idealized cases, often considering single components or turbines with known damage models and near-perfect infor-

mation integration, and their extension to full wind farms, multiple interacting components, realistic logistics constraints, and

organizational decision boundaries remains challenging, limiting their direct applicability in operational O&M practice despite

their strong conceptual foundations.810

Beyond monitoring and decision-making, maintenance execution and weather-dependent accessibility are sources of aleatory

uncertainty in offshore wind O&M and determine actual downtimes and costs. Empirical studies show that offshore repair dura-

tions exhibit strongly right-skewed, heavy-tailed distributions (Dao et al. (2019)), in which a small number of events dominated

by weather lock-in, vessel unavailability, and campaign interference account for a disproportionate share of total downtime

(Faulstich et al. (2011)). Logistics and accessibility delays behave as stochastic, state-dependent processes rather than fixed815

lead times, with vessel mobilization periods ranging from days to several months depending on market situation, seasonality,

and concurrent fleet demand. Weather accessibility further acts as a gating mechanism. Waiting-for-access frequently exceeds

actual repair time (Kolios et al. (2023)). Repair duration and waiting times interact nonlinearly with weather windows, vessel

availability, and concurrent campaign scheduling. This results in heavy-tailed downtime distributions that cannot be captured

by mean process parameters, such as mean time to repair. Process maturity, standardization, and advanced access concepts can820

reduce mean delays and partially compress the tails of downtime distributions. Nevertheless, residual variability remains due to

the inherent stochasticity of weather conditions and maintenance execution, implying that even best-practice O&M strategies

cannot fully eliminate execution, and access-related uncertainty (Kolios et al. (2023)). Consequently, modeling approaches that

explicitly represent this stochasticity and translate it into economically relevant risk indicators are required.

Organizational coordination constitutes a significant source of epistemic uncertainty in offshore wind O&M, as it determines825

how diagnostic information is translated into operational action across multiple actors, including owners/operators, OEMs,

and service providers. Even when technical fault detection and diagnosis are correct, fragmented responsibilities, unclear

decision authority, and restricted data access can lead to coordination delays, repeated site visits, and prolonged diagnosis-to-fix

cycles. Multi-party interfaces introduce handover and coordination efforts (Borsotti et al. (2026); Hadjoudj and Pandit (2023)).

Contractual arrangements may misalign incentives through availability guarantees, warranty risk allocation, or fixed-price830

service agreements. Organizational fragmentation can additionally increase system-level downtime when turbines, balance-

of-plant components, and marine operations are managed by different contractors operating under separate schedules and

priorities (Hawker and McMillan (2015)). Thus, operational performance is not only a question of technical performance but

is strongly influenced by organizational efficiency.
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The absence of widely adopted industry standards and taxonomies for documenting failure behavior and maintenance pro-835

cesses limits cross-farm learning and benchmarking (Hahn et al. (2017)). This limitation is further exacerbated by restricted data

access and information asymmetries between OEMs, owners, and service providers, as diagnostic data and analytical insights

are often contractually constrained and not shared across organizational boundaries (Paquette et al. (2024)). As highlighted by

Shafiee and Sørensen (2019), effective maintenance management requires comprehensive failure databases complemented by

supplementary operational and cost data, yet such integrated datasets are rarely available in practice. Consequently, epistemic840

process uncertainty persists, as empirical evidence on best-practice O&M strategies cannot be systematically consolidated or

transferred across projects.

4.5.1 Impact assessment

To evaluate the uncertainty arising from inefficiencies in O&M processes, we use the OPEX module of the WINPACT.

This Experiment isolates inefficiencies in wind farm O&M execution while holding component reliability constant. The845

aim is to quantify how operational processes, rather than failure behavior, drive availability, OPEX and thus the economic

project performance. The scenarios represent (i) variability in repair execution (MTTR), (ii) logistics and spare-part delays

(MTTW), and (iii) access limitations driven by sea-state operability and weather-window decision making. Failure rates are

fixed at baseline values across all scenarios. In the model these parameters determine the transition rates between the states of

the underlying Markov model.850

Baseline process parameters are read from the O&M input data and modified per scenario using a multiplicative mean-shift

factor α and a lognormal uncertainty term with standard deviation σ:

θ = θ0 ·αθ ·Xθ, Xθ ∼ Lognormal(0,σθ), (8)

where θ ∈ {MTTR,MTTWL}. Accessibility is represented by an hourly access probability paccess and modified via a scenario

factor αp:855

paccess = paccess,0 ·αp. (9)

Scenario assumptions are summarized in Table 16. The P0 scenario represents the baseline scenario without variation of

O&M process parameters.

The P1 (High process uncertainty) scenario reflects immature or highly volatile offshore operations where repair execution

and logistics are strongly weather- and market-driven. Empirical downtime data show highly right-skewed distributions with860

many short repairs but a small number of very long events that dominate average downtime (Faulstich et al. (2011)), while

vessel mobilization times of 30–60 days for offshore support and jack-up vessels indicate that logistics waiting can be extremely

variable (Donnelly et al. (2024)). The reduced access factor in P1 represents conservative access strategies dominated by CTV

limits (1.5 m significant wave height), which constrain operability to these conditions.

The P2 (Typical offshore operations) scenario reflects industry-average practice in which mean repair and logistics times865

remain unchanged but stochastic variability persists due to weather, coordination delays and campaign interference.
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Table 15. Sources of inefficiency in wind farm O&M processes, mapped to dominant uncertainty types and economic impacts. A: Aleatory,

E: Epistemic.

Dimension Uncertainty source Type Risk Time horizon

Monitoring and diag-

nostics

Limited sensor coverage, data

quality degradation, false alarms,

missed detections, model transfer-

ability across fleets

E Unnecessary interventions, delayed

fault detection, increased diagnostic

effort

Short-term to

medium-term

Decision-making and

planning

Uncertainty in failure prediction

and RUL estimates, conservative

thresholds, misalignment between

diagnostics and maintenance plan-

ning

E Suboptimal maintenance timing, in-

creased corrective maintenance, re-

duced availability

Medium-term

Maintenance execution Variability in repair duration

(MTTR), spare-part availability,

vessel mobilization delays, cam-

paign interference

A Long-tail downtime distributions,

high OPEX variability, revenue loss

Short-term

Weather and accessibil-

ity

Uncertain weather windows, con-

servative access limits, imperfect

decision rules for go/no-go condi-

tions

A Extended waiting times, lost pro-

duction during outages

Short-term

Organizational coordi-

nation

Fragmented responsibilities be-

tween operators, OEMs, and

service providers; limited learning

and benchmarking

E Prolonged diagnosis-to-fix cycles,

repeated site visits, balance-of-

plant downtime

Medium-term to

long-term

Technology adoption TRL-to-field gap, integration chal-

lenges with legacy systems, limited

validation data, cybersecurity and

compliance constraints

E Sunk costs, stranded digital tools,

operational friction, insurance and

warranty impacts

Long-term

The P3 (Mature O&M processes) scenario represents learning effects, standardization and contractual maturity, leading to

modest reductions in mean repair and logistics delays and lower variability. Such improvements are consistent with the gap

identified by Carroll et al. (2016) between conservative expert-assumed repair times and more efficient data-informed practices,

and with reduced exposure to high mobilization delays.870

Finally, the P4 (Best practice O&M) scenario reflects optimized logistics, campaign planning, condition-based maintenance

and advanced access concepts. Literature shows that moving from CTV-based access to FSV or jack-up supported strategies

41

https://doi.org/10.5194/wes-2026-31
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Table 16. Process-focused O&M inefficiency scenarios. Failure rates are fixed at baseline values.

Scenario Interpretation MTTR (α, σ) MTTWL (α, σ) Access factor αp

Reference Deterministic baseline (mean values only) (1.00,0.00) (1.00,0.00) 1.00

I1 – High process uncertainty Volatile offshore execution, immature lo-

gistics, conservative access strategy

(1.00,0.55) (1.00,0.85) 0.90

I2 – Typical offshore operations Industry-average execution with stochastic

delays

(1.00,0.35) (1.00,0.50) 1.00

I3 – Mature O&M processes Learning effects, framework contracts, im-

proved planning and access

(0.95,0.25) (0.90,0.30) 1.05

I4 – Best practice O&M Optimized logistics, campaign planning,

condition-based maintenance, advanced

access

(0.80,0.18) (0.75,0.25) 1.10

expands the operability envelope through higher allowable wave heights (3–4 m versus 1.5 m), justifying a moderate increase

in access probability (Donnelly et al. (2024)).

Figure 12 shows the NPV distributions for the different O&M efficiency scenarios and demonstrates that economic risk is875

driven not only by mean O&M performance but, to a large extent, by variability in operational execution. Projects with similar

expected repair and waiting times can exhibit markedly different risk profiles when downtime distributions differ in shape. In

particular, heavier-tailed distributions lead to substantially higher downside risk, even if mean performance is comparable. This

highlights that variance reduction in O&M processes is at least as important as reducing mean repair or logistics times.

Figure 12. NPV distributions for scenarios

Scenarios characterized by high process uncertainty display pronounced right-skewed NPV distributions with long downside880

tails. These tails arise from rare but severe events such as extended logistics delays, prolonged weather inaccessibility, or

coordination failures, which dominate cumulative downtime and revenue loss. While such events are infrequent, their economic
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impact is large and not symmetrically compensated by shorter-than-average interventions. As a result, downside deviations are

not offset by upside outcomes to the same degree, leading to an asymmetry in economic risk.

The results show that operational execution risk can dominate technical reliability risk. Even with identical component fail-885

ure rates across scenarios, differences in O&M process uncertainty result in substantial differences in NPV. This implies that

improving component reliability alone is insufficient to stabilize project economics unless accompanied by parallel improve-

ments in organizational coordination, logistics planning, and access strategies.

Figure 13. Availability (left), and downtime (right) distribution.

Figure 13 illustrates the corresponding technical effects. Increased process uncertainty directly reduces farm availability and

increases downtime hours. These technical impacts translate directly into economic risk through lost production and increased890

OPEX. Finally, the results underline the limits of digitalisation and advanced diagnostics when not embedded in end-to-end

O&M processes. Improved monitoring, fault detection, and remaining useful lifetime estimation reduce informational uncer-

tainty but, by themselves, do not eliminate economic risk unless they translate into faster, more predictable repair execution.

Effective risk reduction, therefore, requires coupling technologies with process integration and formalized decision-making.

4.6 Operational risk from rapid technology upscaling895

The wind energy sector is undergoing a period of rapid technology upscaling, characterized by unprecedented increases in

turbine rated power, rotor diameter, hub height, and system complexity. Offshore wind has been at the forefront of this trend,

with commercial turbines exceeding 15 MW and rotor diameters approaching or surpassing 230 m, while onshore turbines

have also seen steady increases in size and complexity. Upscaling is primarily driven by the objective of reducing LCOE, as

larger turbines increase energy capture per unit and reduce the number of turbines required for a given plant capacity, lowering900

balance-of-system costs such as substructures/foundations and electrical infrastructure (Shields et al. (2021)). However, the

acceleration of turbine scaling has introduced a distinct class of operational risk, rooted in technology novelty and limited
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empirical operating experience. These uncertainties are increasingly surfaced during technical due diligence, where turbine

novelty, compressed development cycles, and limited operational track record are identified as key threats to asset reliability,

investment security, and long-term project viability (Moverley Smith et al. (2022)).905

Rapid upscaling differs from incremental technological evolution in that multiple design parameters are pushed simultane-

ously beyond previously validated ranges. These include structural dimensions, drivetrain torque levels, blade flexibility, power

electronic ratings, and control-system complexity. New materials (e.g. high-modulus composites), drivetrain concepts (e.g.

direct-drive or hybrid medium-speed systems), and advanced grid-support functionalities are often introduced concurrently.

As a result, new turbine platforms enter service with limited field data, compressed prototype testing cycles, and restricted910

opportunities for iterative design refinement (Siddiqui et al. (2023)). This creates a dominance of epistemic uncertainty, as the

true long-term behavior of critical components and systems is not yet well understood.

Operational risk from rapid upscaling propagates through several interconnected pathways, and a primary concern is reli-

ability. Industry surveys and field observations indicate that newer turbine generations frequently exhibit elevated early-life

failure rates and unexpected failure modes, particularly in blades, main bearings, power electronics, and auxiliary systems915

(Mishnaevsky (2022); Pelka and Fischer (2023)). This also includes high-voltage export and array cable systems and asso-

ciated joints, where scaling effects and installation tolerances have led to technically complex and high-consequence failure

modes (Strang-Moran (2020)). The interaction between increased structural loads, higher component utilization, and tighter

design margins can lead to failure mechanisms that are not well represented in historical reliability datasets. Importantly, such

failures tend to be systemic rather than isolated, as design or manufacturing deficiencies may affect entire turbine fleets, leading920

to serial failures and large-scale retrofit or replacement campaigns (Veers et al. (2023)). This challenges conventional reliability

modeling approaches, which typically assume stationarity and independence of failures calibrated from mature fleets.

Upscaling also amplifies operational risk through its impact on O&M logistics. Larger turbines require heavier lifting

equipment, specialized vessels, and extended weather windows for offshore interventions (Stålhane et al. (2019)). For next-

generation offshore turbines, the availability of suitable jack-up vessels and heavy-lift cranes is limited, and competition for925

these assets is increasing. Consequently, corrective maintenance actions for major components may experience prolonged

waiting times, significantly increasing downtime and revenue loss. The operational consequence of a single turbine outage also

increases with turbine size, as fewer turbines represent a larger fraction of farm capacity (Mehta et al. (2024)). These effects

introduce heavy-tailed downtime distributions and increase the sensitivity of project economics to rare but high-impact events,

which are difficult to capture with standard O&M process models.930

Supply-chain considerations further compound upscaling-related operational risk (Carrara et al. (2023)). Manufacturing and

transporting ultra-large blades, nacelles, towers, and subsea cables requires specialized facilities, infrastructure, and skilled

labor, often concentrated among a small number of suppliers and regions (Shields et al. (2023)). Quality control challenges

scale nonlinearly with component size, and latent manufacturing defects may only become apparent after extended operation

or under extreme loading conditions (Kong et al. (2023)). The limited redundancy in supplier networks increases the likelihood935

that defects or bottlenecks propagate across multiple projects. From an operational perspective, long lead times for replacement

components can substantially extend repair durations, particularly for bespoke or first-of-a-kind designs.
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Financial and insurance dimensions reflect the systemic nature of upscaling risk. Larger turbines imply higher repair and

replacement costs per failure event, increasing the potential severity of losses (Mikindani et al. (2025)). From an insurer’s

perspective, larger turbine ratings and novel technology increase single-loss exposure. As a result, insurers raise premiums,940

increase deductibles, and tighten coverage conditions for projects deploying first-of-a-kind or early-generation turbine plat-

forms (Ioannou et al. (2019)). OEMs, in turn, have reported increasing warranty provisions associated with quality issues

and performance uncertainty in recent turbine generations. Recent financial disclosures indicate that warranty-related costs

for major OEMs have risen to the order of 5–6% of revenues, underscoring the economic materiality of technology novelty

and early-life performance risk (Vestas Wind Systems A/S (2024)). For project developers and financiers, technology novelty945

translates into higher perceived risk during due diligence, potentially affecting bankability, financing terms, and required con-

tingencies (Guillet (2022)). These financial responses do not directly reduce operational risk but represent its monetization

under uncertainty.

Table 17 summarizes the key uncertainty dimensions associated with rapid technology upscaling, their dominant uncertainty

types, principal operational risk implications, and relevant time horizons.950

Table 17. Key uncertainty domains introduced by rapid turbine upscaling, mapped to uncertainty type (A: aleatory, E: epistemic, R: regula-

tory/external).

Dimension Uncertainty source Type Risk implication Time horizon

Design and engineering Load scaling beyond validated

ranges; novel blade and drivetrain

concepts

E Design deficiencies, early failures,

retrofit needs

Design and early

operation

Manufacturing and sup-

ply

Quality control at extreme com-

ponent scale; concentrated supplier

base

E, R Delivery delays, defects, project

cost and schedule overruns

Development and

construction

Reliability and perfor-

mance

Limited field data for new turbine

models; non-stationary failure be-

haviour

A, E Elevated downtime, serial failures,

availability losses

Early–mid opera-

tion

O&M logistics Limited availability of vessels and

lifting assets; weather sensitivity

E,R Prolonged repairs, extended out-

ages, revenue loss

Operation

Financial and insurance Lack of actuarial data; increased

loss severity per failure

E, R Higher premiums and deductibles;

reduced bankability

Development and

operation

Regulatory and stan-

dards

Evolving certification and grid

compliance requirements

R, E Redesign, additional testing, per-

mitting or curtailment risk

Design, commis-

sioning, EoL
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4.6.1 Impact assessment

A key challenge in addressing operational risk from rapid upscaling is the limited applicability of traditional quantitative risk

models. Reliability and O&M frameworks commonly rely on historical failure statistics and calibrated stochastic processes,

which are not readily transferable to novel turbine designs operating outside established envelopes (Dao et al. (2019)). Many

upscaling-related risks are epistemic and path-dependent, influenced by design choices, manufacturing quality, learning effects,955

and organizational maturity. While several aspects of upscaling risk are implicitly reflected in other sections of this paper, their

coupled and reinforcing nature is not fully captured when these risks are treated independently (Dao et al. (2020)). Rapid

technology upscaling acts as a risk multiplier, simultaneously increasing uncertainty across multiple domains.

Given these limitations, a fully quantitative impact assessment of upscaling risk is currently not feasible without introducing

speculative assumptions. Instead, this risk category is best addressed through structured qualitative analysis and scenario-based960

reasoning (Scheu et al. (2019); Lopez and Kolios (2022)). Addressing the gaps in modeling capabilities and causal relationships

between aspects of technology, up scaling operational performance parameters, and their propagation to economic risk is

identified as a research priority area.

5 Discussion and conclusions

This study reviewed, structured, and quantified major risks affecting wind energy projects across development and operational965

phases, with a focus on how these risks propagate into project-level economic performance. By combining expert elicitation,

structured survey results, targeted literature review, and scenario-based techno-economic impact assessments, the analysis

moves beyond risk identification and illustrates how different classes of uncertainty translate into distinct economic signatures

in terms of net present value and levelized cost of energy. Across all risk categories, a central finding is that wind energy projects

are increasingly exposed not to isolated uncertainties, but to interacting risk dimensions spanning technical performance,970

operational processes, market conditions, and system-level constraints.

The scenario-based impact assessments show that many economically consequential risks exhibit long-tailed and asymmetric

loss distributions rather than symmetric uncertainty around a mean outcome. This is particularly evident for supply chain

impacts, component reliability, and inefficiencies in O&M processes. Such characteristics are poorly captured by deterministic

or narrowly scoped sensitivity analyses and help explain why projects that appear robust under conventional assumptions may975

nevertheless experience severe value erosion under adverse conditions.

The scenario-based impact assessments demonstrate that many economically consequential risks in wind energy projects

exhibit long-tailed and asymmetric loss distributions, rather than symmetric uncertainty around a mean outcome. This behavior

is particularly evident for supply-chain disruptions, component reliability, and inefficiencies in O&M processes. Such risk

characteristics are poorly captured by deterministic assessments or narrowly scoped sensitivity analyses and help explain why980

projects that appear robust under conventional assumptions may nevertheless experience severe value erosion under adverse

conditions.
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Across impact categories, risks do not affect economic outcomes uniformly. Some risks, such as financing conditions driven

by supply-chain uncertainty, primarily induce a systematic shift in mean outcomes, while others predominantly widen outcome

distributions and generate pronounced downside tails, as observed for reliability- and O&M-related risks. Comparison of risk985

categories, therefore, requires evaluating how they distort the range of possible economic outcomes, rather than focusing on

changes in expected values.

Supply-chain risk, including increased financing costs, produces a substantial downward shift in project value. In the assessed

scenarios, the mean net present value decreases by approximately 70% between the baseline and the substantial-risk case. This

effect reflects a structural cost inflation driven by a higher weighted average cost of capital, rather than increased variability990

alone. As a result, supply-chain and financing risks are among the most severe, as they directly threaten project feasibility.

Curtailment risk introduces large downside exposure at the scenario level. The investigated curtailment regimes result in a

35% change in mean NPV between the baseline and high transmission-constraint scenarios. While compensation mechanisms

may redistribute these losses among system stakeholders, they do not eliminate the underlying economic and energy-system in-

efficiencies. Curtailment, therefore, represents a severe risk for both project operators and the broader power system, combining995

significant economic losses with lost electricity production.

Uncertainty in component reliability and O&M process parameters primarily manifests as tail risk rather than mean shifts.

Elevated failure rates of individual non-redundant components, prolonged repair times, or logistical inefficiencies can lead to

extreme increases in downtime and costs, resulting in availability-driven revenue losses. Although reliability and O&M risks

exhibit a smaller impact on average economic indicators than system-level risks, they are critical contributors to long-tailed1000

downside outcomes that can threaten the profitability of individual projects.

Through-life decision-making, exemplified by a lifetime extension experiment in our study, acts as a powerful value lever

but redistributes risk across time. The assessment shows substantial potential for cumulative NPV gains relative to the baseline,

but also highlights large variability between scenarios. The observed spread in the order of C 100 M in NPV and approximately

C 4 /MWh in LCOE underscores the sensitivity of outcomes to assumptions regarding degradation, refurbishment effort, and1005

reliability evolution. Through-life risk is therefore less about loss avoidance and more about managing uncertainty in value

creation.

Overall, the results indicate that supply-chain, financing, and curtailment risks are the dominant systematic drivers of project

feasibility, while reliability and O&M inefficiencies are the primary drivers of downside tail risk affecting project profitability.

Through-life decisions represent a high-impact but uncertain value lever.1010

The results also highlight the limitations of fragmented risk treatment. Many risk categories span multiple interdependent

dimensions and involve different types of uncertainty. For example, end-of-life decisions interact strongly with reliability and

O&M process uncertainty, which in turn includes both epistemic and aleatory elements. Treating these dimensions in isolation

risks systematic underestimation of economic exposure and may lead to suboptimal decisions.

The findings point to several directions for further research and methodological development to support risk-informed1015

decision-making in wind energy. There is a need for integrated decision-support frameworks that capture interacting uncertain-

ties across the full project lifecycle. Such frameworks should reflect feedback among technical performance, O&M strategies,
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market conditions, financing terms, and regulatory constraints, rather than treating these elements independently. The ability

to represent correlated risk dimensions and regime shifts is particularly important. Improved data availability and transparency

are critical, especially for reliability and ageing-related processes. Publicly available failure databases often lack uncertainty1020

quantification, consistent definitions, and sufficient detail to support probabilistic modeling of major component reliability and

post-design-life behavior. Enhanced sharing of reliability data and insights into the relationship between operating conditions

and failure occurrence would significantly improve the robustness of reliability-driven economic assessments. Curtailment

risk requires further investigation from a system-integrated perspective. Future work should assess curtailment jointly from

the viewpoints of project owners, grid operators, and the wider energy system, accounting for compensation schemes, market1025

design, and system flexibility. This is essential to distinguish between risks specific to individual projects and inefficiencies at

the system level. Lifetime extension and end-of-life decision-making will become increasingly important as a growing share of

the wind fleet approaches nominal design life. Integrated approaches are needed that combine structural integrity assessment,

reliability modeling, inspection and monitoring strategies, regulatory compliance, and economic evaluation under uncertainty.

Finally, ongoing trends toward larger turbines, accelerated deployment, and higher renewable penetration underscore the im-1030

portance of risk-aware design and qualification processes.

Overall, this work does not propose a complete solution for capturing the full complexity of wind energy risks. Instead, it

demonstrates the limitations of fragmented risk treatment and provides a structured starting point for developing integrated,

quantitative de-risking and decision-support tools. Such tools will be essential for supporting robust investment, design, and

operational decisions in an increasingly constrained and risk-exposed wind energy sector.1035
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