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Abstract. Wind turbine wakes reduce the generated power and increase loads on downstream turbines. Their characteristics

depend strongly on the atmospheric conditions in the boundary layer. This study addresses the complex turbine-atmosphere

interaction specifically in the near wake region up to four rotor diameters downstream of a utility-scale wind turbine. We utilize

an exceptionally large database of concise measurements of inflow conditions and wake characteristics collected from Novem-

ber 2023 to June 2024 at the WiValdi research wind farm in northern Germany. The dataset comprises measurements from a5

downstream-looking Doppler wind lidar mounted on the nacelle, a meteorological inflow mast and wind turbine operational

data. Wake characteristics and near wake lengths are deduced from the lidar scanning at multiple horizontal planes and are an-

alyzed across a wide range of atmospheric conditions, including stability, wind shear, veer and turbulence. The wake velocity

deficit is observed to be reduced with stronger turbulence and enhanced under stable conditions. Stronger wind veering across

the rotor layer, in the absence of yaw misalignment, correlates to intensified wake deflection and to stronger vertical tilting. A10

high shear exponent and potential temperature gradient are associated with increased lateral asymmetry of the velocity deficit’s

double Gaussian peaks at one rotor diameter downstream. We find that the near wake extends on average 2.01 rotor diameters

downstream, with a standard deviation of 0.41 rotor diameters. The near wake length exhibits greater sensitivity to atmospheric

conditions than to turbine operational parameters, with the strongest correlations found for turbulence intensity and static sta-

bility. Under strongly stable conditions and weak turbulence, near wake lengths are particularly long reaching up to 3.8 rotor15

diameters downstream. This study highlights the importance of considering diverse meteorological inflow conditions when

refining and validating wind turbine wake models.

1 Introduction

The wake of a wind turbine is a region characterized by reduced wind speed and increased turbulence that forms behind the

rotor as the wind turbine extracts energy from the flow. Wind turbine wakes impact the efficiency of wind farms by not only20

reducing energy production due to lower wind speeds in the farm but also by increasing the loads on downwind turbines,

which can lead to fatigue and a reduced lifespan. To mitigate these effects, research has focused on understanding the wake

dynamics and integrating the knowledge into wake models which serve as useful tools for layout optimization, wind resource

assessment and wind farm control. To maintain computational efficiency, these models are often of low order complexity.
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However, this leads to a simplification of complex real-world characteristics, including the near wake region and the variability25

of atmospheric inflow conditions.

Wind turbines operate within the atmospheric boundary layer (ABL), where wake characteristics are affected by stability-

dependent flow parameters such as turbulence, wind shear and wind veer. In a stable ABL, wind veers clockwise (Northern

Hemisphere), wind speed increases with height and turbulence is typically low. By contrast, in a convective boundary layer,

both wind veer and shear are close to zero and turbulence shows large variations due to buoyancy. In a neutral ABL, wind30

shear generally follows the logarithmic wind profile and turbulence is primarily shear-driven (Stull, 1988). The impact of ABL

stability on wakes under veered and sheared inflow has been investigated through large-eddy simulations (LESs) (Bhaganagar

and Debnath, 2015; Vollmer et al., 2016; Abkar and Porté-Agel, 2015; Englberger et al., 2020) and field measurements (Iungo

and Porté-Agel, 2014; Bodini et al., 2017; Brugger et al., 2019; Zhan et al., 2019). Under stable conditions, longer wakes

with stronger velocity deficits (Iungo and Porté-Agel, 2014) and higher wake-added turbulence (Klemmer and Howland, 2024)35

emerge. Stronger veer induces a stretching of the wake from a circular into an elliptical shape in the vertical plane. Nacelle

lidar measurements (Brugger et al., 2019; Sengers et al., 2023) as well as ground-based lidar data (Bodini et al., 2017) confirm

stronger vertical tilting with higher veer, although demonstrating that wake stretching approaches but does not fully correspond

to the magnitude of inflow veer.

A LES study by Zhou et al. (2015) demonstrates that inflow shear induces an asymmetric velocity deficit. This asymmetry40

can be observed in field data as well (Bromm et al., 2018; Carbajo Fuertes et al., 2018). A more recent study by Onnen et al.

(2025) indicates a more asymmetric wake with higher shear exponents. Additionally, interactions between the turbine tower

and wake contribute to the asymmetry in the wake deficit. Wind tunnel and LES studies by Pierella and Sætran (2017) and

De Cillis et al. (2020), respectively, present the impact of the wind turbine tower on the near wake. They show that the tower

causes asymmetry in the wake deficit, resulting in increased loads and reduced efficiency for downstream turbines. Despite45

these findings, the precise mechanisms causing the wake flow asymmetry remain unclear, and the relative contributions of

wind shear, turbine-induced vortices and their dynamics continue to be the subject of ongoing research.

Apart from meteorological quantities, turbine operation conditions impact the evolution and dispersion of the wake. Yaw

misalignment receives increasing attention due to its potential to enhance wind farm performance by steering wakes away from

downstream turbines. Experimental studies by Bromm et al. (2018) and Brugger et al. (2020) demonstrate the lateral deflection50

of the wake with a yawed wind turbine, although the observations are affected by wind veer as well. Furthermore, a curl-shaped

velocity deficit in the vertical plane of the wake is consistently reported in numerical simulations (Vollmer et al., 2016), wind

tunnel experiments (Howland et al., 2016; Bartl et al., 2018; Zong and Porté-Agel, 2020) and in field measurements (Sengers

et al., 2023).

The downstream region of the wake is often divided into the near wake and the far wake (Porté-Agel et al., 2019). The near55

wake is defined as the region immediately behind the turbine, where tip, hub and root vortices impact the wake structure. In

the far wake, the impact of the turbine itself becomes weaker and the velocity deficit resembles a Gaussian shape as the wake

recovers. The transition between the two regions is often vaguely defined as typically occurring within a distance of 1 to 4 rotor

diameters D downstream. Several studies define the transition based on the point at which the mean velocity profile resembles
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a Gaussian (Vahidi and Porté-Agel, 2022b; Robey and Lundquist, 2024), while other definitions are based on turbulent kinetic60

energy content (Wu and Porté-Agel, 2012; De Cillis et al., 2020; Gambuzza and Ganapathisubramani, 2023) or the decay of

the tip vortices’ strength (Biswas and Buxton, 2024). The factors influencing the length of the near wake include the number

of rotor blades, tip speed ratio and thrust coefficient (Sørensen et al., 2015) as well as the background turbulence intensity (Wu

and Porté-Agel, 2012; Trujillo et al., 2016). However, the influence of atmospheric conditions on the length of the near wake

remains unclear, particularly with regard to the impact of stability, wind veer and shear. The accurate estimation of the near65

wake length is crucial for the optimization of turbine spacing and the development of wake mitigation strategies.

Field experiments conducted in and around wind farms improve our understanding of wake dynamics and their interaction

with the ABL, thereby contributing to the improvement and validation of numerical and analytical wake models. Wind lidars,

both ground-based and nacelle-mounted, capture wind fields over large areas with high spatial and temporal resolution. These

lidars have demonstrated to provide detailed information on wind and turbulence, and measure wake dynamics of single (Aitken70

and Lundquist, 2014), multiple and interacting wakes. Studies by Trujillo et al. (2016), Brugger et al. (2020) and Bromm et al.

(2018) demonstrate the lateral deflection of the wake in a neutral ABL using nacelle lidar measurements during wake steering

with yaw misalignment of up to 20◦, and Sengers et al. (2023) use nacelle lidar data as validation of a data-driven wake model

considering wake steering. Trujillo et al. (2016) investigated the relationship of the near wake length and turbulence intensity

and provided a calibration for analytical near wake length estimation. Other studies explore wake meandering (Machefaux75

et al., 2014; Brugger et al., 2022), calibrate models (Trabucchi et al., 2017; Reinwardt et al., 2020) or validate analytical wake

models (Carbajo Fuertes et al., 2018; Brugger et al., 2019). Additionally, uncrewed aerial systems (UAS) are emerging as an

alternative measurement tool for measuring wakes with comparatively higher resolution than lidar (Wildmann et al., 2014;

Mauz et al., 2019; Wetz and Wildmann, 2023; Wildmann and Kistner, 2024, 2025).

However, nacelle lidar measurements typically focus on the far wake region, which some studies attribute to the limited80

opening angle of the lidar that makes it extremely difficult to capture the entire wake close to the turbine (Bromm et al.,

2018; Angelou et al., 2023). Other studies primarily focus on wake steering experiments or are limited to a small number of

cases which make a detailed investigation of the impact of the ABL on the wake challenging. Therefore, in this study, we will

investigate the near wake and its transition to far wake downstream of a wind turbine using a rearward-facing nacelle lidar,

addressing the following research questions:85

– What is the impact of stability and turbulence on wake characteristics derived from a nacelle lidar, with a focus on the

near wake region?

– Can we observe lateral asymmetry in the near wake? And how does the ABL affect this asymmetry?

– How far downstream does the near wake extend? And how does its length depend on atmospheric and turbine variables?

Wake characteristics will be studied under various atmospheric and turbine operating conditions by applying a wake de-90

tection algorithm to lidar scans from a nacelle-mounted lidar on a utility-scale turbine at the research wind farm WiValdi in

Germany. The focus will be on the wake characteristics such as velocity deficit, wake width, lateral wake deflection and vertical
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Figure 1. Layout of WiValdi, adapted from Thayer et al. (2025), showing the locations of the wind turbines, meteorological masts, nacelle-

mounted lidar and the black arrow indicating the primary west-southwesterly wind direction. Background map: © OpenStreetMap contribu-

tors 2025. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

curl and slope in the near wake (≤ 4 D), including examination of the lateral wake asymmetry in the proximity of the western-

most turbine. The near wake length will be determined and its relation to atmospheric stability and inflow turbulence will be

statistically investigated. The measurement site and the wind farm are described in Sect. 2. The data processing, including the95

wake detection of the nacelle lidar data and the determination of the near wake length, are given in Sect. 3. Wake characteristics

including near wake length and their relation to atmospheric and turbine parameters are described in Sect. 4 and discussed in

Sect. 5. We provide a summary and propose future work in Sect. 6.

2 Experimental setup

The research wind farm WiValdi in northern Germany features two 4.2-MW Enercon E115 wind turbines with rotor diameter,100

D, of 116 m and hub height of 92 m. One of them (OPUS2) is located 4.3 D downstream of the first turbine (OPUS1) in the

primary west-southwest wind direction (Wildmann et al., 2022), as shown in Fig. 1. High frequency data are available from

the two turbines at 100 Hz, which are aggregated to 10-minute periods for this analysis. The data includes measurements of

power P , rotor speed ω, yaw angle ψ, turbine status and power limitation information. The last two are used to filter normal

operations without power curtailment of OPUS1.105

The two wind turbines are accompanied by a meteorological mast of 150 m height 2 D upstream of the first turbine, which

provides the atmospheric inflow conditions. A set of three measurement masts is located between the two wind turbines at

about 3.3 D downstream of the first turbine taking measurements in the wind turbine wake. All masts are equipped with wind-

measuring sensors at different heights across the rotor layer and the inflow mast (conforming to IEC-61400) additionally has

sensors to measure further atmospheric parameters, like temperature, humidity, and rainfall.110
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2.1 Inflow mast and turbine data

This study uses 10-minute averages of the inflow mast data to describe the atmospheric state of the flow experienced by

OPUS1. Wind direction δ and wind speed U are provided by a sonic anemometer installed at 85 m. However, its measurements

are affected by the wake of the mast structure itself for wind directions between 145 and 185◦. From the sonic measurements

at 85 m, turbulence intensity TI and turbulent kinetic energy e are derived. Further sonic anemometers are installed at 33 m,115

62 m, 120 m and 149 m. Wind veer ∆δ, wind shear ∆U and wind shear exponent α across the rotor layer are calculated from

the measurements taken at 33 m and 149 m. While wind shear is a common metric in meteorology, the shear exponent is more

frequently used in wind energy applications. In this study, we therefore use both vertical wind shear and the shear exponent to

capture comprehensive information about the ABL state. To minimize potential obstruction from the mast structure, two sonic

anemometers are installed at 33 m on two separate booms, allowing for combined wind measurements that are not affected by120

the mast. The sonic at 149 m is installed at the top of the mast, where no impact from the mast is expected.

Static stability is quantified based on vertical gradients of potential temperature θ. Temperature sensors are installed at 2 m,

11 m, 34 m, 63 m, 85 m, 121 m, and 144 m on the inflow mast and extrapolating pressure to these heights from a pressure

sensor at 10 m using the hypsometric equation yields potential temperature values. In our study, we use the gradient closest

to the rotor layer, i.e. 34 to 144 m. As a measure of dynamic stability of the atmosphere, the bulk Richardson number Ri is125

estimated using θ at 34 m and 144 m and wind speed measurements from sonic measurements at 33 m and 149 m from the

inflow mast.

The turbine’s operational parameters are determined using a combination of measured meteorological quantities and turbine

data. The yaw misalignment ϕ of the turbine is defined as the angular deviation between the incoming wind direction and the

turbine’s yaw angle. This value is considered positive when the turbine is rotated clockwise relative to the inflow wind direction,130

i.e. ϕ= ψ− δ. The tip speed ratio λ is the ratio between the speed of the blade tip, calculated from ω, and the incoming wind

speed from the inflow mast. The power coefficient cP of the turbine is calculated through

cP =
P

0.5AρU3
(1)

with P the actual produced power of the turbine, A the rotor area, and ρ the density of the air (calculated using temperature

and humidity values from sensors at 85 m). Then the induction factor a is calculated through solving135

cP = 4a(1− a)2 (2)

and finally the thrust coefficient cT is approximated through

cT =
T

0.5AρU2
= 4a(1− a) . (3)

2.2 Nacelle-mounted lidar

A Doppler wind lidar of the type Leosphere Windcube 200S is mounted on the nacelle of OPUS1 and measures the wind140

field behind the rotor, which is affected by the turbine wake. Plan position indicator (PPI) scans are performed as the scanning
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Figure 2. Scan pattern of the nacelle-mounted lidar. View from the top on the 0◦ elevation angle scan (a) and from the side on the 89◦

azimuth scans (b). Lines are lidar beams with range gates as points. The wind turbine is located at the origin. The rotor area is shown through

gray dashed lines. The ground indicated through thick black line in (b).

strategy since November 2023 to capture the main wake properties. Three elevation angles of -7◦, 0◦ and 7◦ have been selected

in order to cover the vertical extent of the wake across the rotor area at 4 D downstream (Fig. 2b). The azimuth angle has

a total opening angle of 90◦ and a resolution of 2◦, as illustrated for the horizontal PPI in Fig. 2a. The lidar measurements

are acquired with an accumulation time of 200 ms and for range gates from 100 m to 4080 m at a separation of 20 m and a145

physical resolution of 50 m. The scan with an elevation of -7◦ ends at approximately 700 m at the intersection with the ground.

This strategy does a full scan cycle with three different elevation angles every 27 s. Until 31 December 2024, a total of 20098

10-minute periods with a turbine wake have been collected with this scanning pattern. The data used in this study is restricted

to conditions with winds from the main wind direction sector (225-315◦), resulting in 6099 periods, of which 1375 include data

from the inflow mast at various heights. This wind direction filter ensures that the wind fields measured by the nacelle lidar on150

OPUS1 are not affected by the wake of OPUS2. Another advantage is that the measured data of the inflow mast represents the

state of the free-stream atmosphere for this wind sector. Statistics of the dataset are presented in Sect. 4.

The movement of the turbine influences the precision of the lidar beam, making accurate motion measurement necessary.

To account for this, an inertial measurement unit (IMU) is installed accompanying the nacelle lidar. The IMU uses GPS data

to record the pitch, roll and yaw angles of the lidar, thereby providing a comprehensive assessment of its movement. IMU155

data aggregated to one minute from 09 November 2023 until 29 February 2024 for periods when OPUS1 is operating and

the wind direction is between 185◦ and 360◦ is used to calculate average roll and pitch orientation angles. The turbine’s

movement, particularly its pitch, is highly dependent on the hub height wind speed.Additionally, a systematic roll angle is

observed over the measurement period. Therefore, the average roll and pitch values are used to quantify the corresponding

lidar beam displacement for the horizontal scan in the streamwise (x), lateral (y) and vertical (z) (Fig. 3). The displacement160

in the x direction shows values up to -0.009 m within the area of up to 4 D in x and ±2 D in y, while in the y direction the

displacement ranges up to 0.05 m. In the z direction, the roll and pitch causes the largest displacements of up to -6 m. The
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Figure 3. The displacement errors in x (a), y (b) and z (c) for an average roll of 0.73◦ and pitch of 0.36◦.

observed displacements are relatively small compared to the rotor diameter of the turbine and the corresponding wake features.

This indicates that turbine motion has a minimal impact on the lidar wake measurements for this study.

3 Methods165

3.1 Nacelle lidar data filtering and processing

To reduce noisy and erroneous measurements, the nacelle lidar data is filtered to retain only data with carrier-to-noise ratio

(CNR) values between -25 and 5 dB. For enhanced robustness, a 2D median filter is applied to both CNR values and radial

velocities. This filter evaluates each data point by computing the median of CNR or radial-velocity values within its local

neighborhood, then excludes any measurements that deviate beyond a predefined threshold from the local median, effectively170

removing outliers.

The scans are averaged over 10 minutes and for each point on the azimuth/range-gate grid, the data points are removed

where 20% or more of the single scan data points are invalid.

The horizontal velocity is estimated from the line-of-sight velocity observed by the lidar under the assumption of perfect

yaw alignment of the turbine and the bulk incoming wind direction through175

vh =
vLOS

sin(γ)
(4)
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Figure 4. Example of wake detection on 20 February 2024 03:00 UTC (wind direction: 298◦), indicating the best fitting function in (a) with

downstream distance x. vh/U of 0◦elevation scan (colors and 0.1 contourlines gray dashed) with the wake center line (orange solid), and

the wake edges (orange dashed-dotted) resulting from the wake detection algorithm are shown in (b). Lateral cross-sections of vh/U (black

lines), the Gaussian fit (gray dashed), vertical lines indicating the wake center (orange solid) and wake width (orange dashed-dotted) at 1 (f),

2 (e), 4 (d) and 8 D (c) downstream. Wake center points (orange crosses) for the three different elevation scans at 1 D downstream with the

polynomial fit through the wake centers (orange line) with scatter points colored according to vh/U are shown in (g).

where vLOS is the line-of-sight velocity measured by the lidar and γ the azimuth angle of the beam, with 90◦ pointing down-

stream of the turbine.

3.2 Wake detection algorithm

A robust algorithm for detecting and describing wakes is essential for investigating wake characteristics under different atmo-180

spheric conditions. As has been shown before (Aitken et al., 2014; Aitken and Lundquist, 2014), the horizontal structure of a

wake can be described by a Gaussian function in the far wake, where the impact of the rotor is less relevant for the shape of

the wake, by
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vh(y) =Aexp
(
− (y− b)2

2σ2

)
+ d. (5)

vh(y) is the function of horizontal wind speeds in dependency of the lateral position y,A the amplitude, b the center position,185

σ the standard deviation yielding the wake width σw = 4σ and d an additional offset. The velocity deficit V D is then given

through 1− vmin/U where vmin is the minimum horizontal wind speed in the wake region (wake center ±2σ).

Closer to the wind turbine, in the near wake, the rotor shape is important for the structure of the wake and it can typically be

approximated by a double Gaussian shape as

vh(y) =A

[
exp

(
− (y− b1)2

2σ2

)
+ exp

(
− (y− b2)2

2σ2

)]
+ d, (6)190

where b1 and b2 are the respective center positions and σ is the standard deviation for both overlapping functions. Then the

wake center is at (b1+b2)/2 and the wake width is given by |b2−b1|+4σ, while the V D is defined as for the single Gaussian

(Eq. 5).

Observations suggest that the wake deficits have different intensities to the left and right of the hub in the near wake,

resulting in an asymmetric shape (Onnen et al., 2025). To account for this asymmetry, we modify the double Gaussian shape195

by introducing a double Gaussian with two distinct amplitudes A1 and A2, thus expanding Eq. 6 to

vh(y) =A1 exp
(
− (y− b1)2

2σ2

)
+A2 exp

(
− (y− b2)2

2σ2

)
+ d. (7)

The wake center is the center point weighted by the amplitudes, i.e. (A1b1 +A2b2)/(A1 +A2). The other wake characteristics

are calculated the same as for the double Gaussian. Additionally, the asymmetry parameter ∆A is computed as the difference

between the two amplitudes relative to the inflow wind speed, specifically, if b1 < b2, then ∆A=A1−A2 otherwise ∆A=200

A2−A1.

The 10-minute averaged vh scans are interpolated to a Cartesian grid spanning from -500 to 500 m in the y-direction and

from the minimum range gate of 100 m to 2000 m in the x-direction with a resolution of 10 m in both directions. For each

downstream location (x), all three functions are fitted to the gridded velocity data. To decide which function best fits the wake

structure, an extra-sum-of-squares F-test is used comparing the fits in order from the least complex to highest complex function.205

At the first downstream position, the initial guess of the wake center location is set to be at the wind turbine position itself,

and for subsequent distances, the wake center from the prior distance is used (Wildmann et al., 2018). The wake detection

terminates once fitting to Equations 5, 6 and 7 fails or one of the following conditions is met:

• the detected wake center plus its width exceeds the grid in y-direction,

• the difference between two consecutive wake centers is greater than 3 times the grid distance (30 m),210

• the amplitude A is greater than -0.1U ,

• σ is greater than 2 D or becomes negative.
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Figure 5. Double Gaussian curves (Eq. 6) in the near wake region (brown), at the transition point to far wake (black) and in the far wake

(green) for A = -0.5, σ = 0.3, d = 0 and reducing b1 =−b2 from 0.4 to 0.26.

The first wake detection must be valid close to the wind turbine (x≤ 200 m), and cases with invalid wake detection up

to this distance are discarded from further analysis. To ensure sufficient wake length, a wake must be detected at least at 20

locations in x-direction per timestamp. If the wake detection becomes invalid at a distance of 200 m or further downstream, all215

subsequent wake detections are also considered invalid, thereby preventing the downstream propagation of unreliable fitting.

To investigate vertical wake characteristics, we followed the recommendations of Sengers et al. (2020) and performed wake

detection at each elevation angle separately at downstream distances of 1, 2, 3 and 4 D. The scan data is first interpolated along

the beam to the required downstream distance and then to a vertical plane with y ranging from -500 to 500 m with 10 m spacing

with z calculated for each point in y for the different elevations resulting in a pattern as shown in Fig. 4. Interpolation on the220

vertical plane produced a curved line for the -7 and 7◦ elevation scans. Points on this plane are vertically further away viewed

from the nacelle with increasing and decreasing lateral distance. However, since the maximum difference in z across -1 D to

1 D in lateral direction is 5.9 m at 1 D, 3.36 m at 2 D, and even less further downstream, we assume this curvature can be

neglected for determining the wake center position. For the 7 and -7◦ elevation scans, an initial estimation for the wake center

position is provided by the wake center of the 0◦ elevation fit, resulting from the wake detection described above. Otherwise,225

the fitting procedure applied to the horizontal elevation scan is followed as well. The wake center positions at different heights

µ(z) are then fitted to a 2nd order polynomial µ(z) = Cz2 +Sz+ c yielding the curl C and slope S of the wake in the vertical

(Sengers et al., 2020).

3.3 Determination of near wake length

The transition point from the near to far wake is the distance where no coherent tip and root vortices can be detected and the230

flow resembles a self-similar Gaussian shape. This near wake length is an important quantity for wake model fitting (Neunaber

et al., 2024) and estimating the velocity deficit and turbulence characteristics within the wake.
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The nacelle lidar scans provide high resolution measurements at hub height and are therefore used in this study to determine

the length of the near wake. However, assuming the closest distance where a single Gaussian fits the velocity profile of the

nacelle lidar better would tend to overestimate the near wake length. The increased degrees of freedom of the double Gaussian235

allow for better fits to the data even when b1 and b2 converge, resulting in two barely distinguishable minima. Therefore, we

introduce an additional criterion for determining the near wake length: the transition occurs where 105 % of the velocity ratio

at the wake center is lower than the local minimum of the fitted double Gaussian. This concept is illustrated in Fig. 5 for a

theoretical example, where only b1 and b2 in Eq. 6 are successively moved closer together, and eventually the threshold for

the transition from near to far wake is reached (black line). This threshold is established based through manual testing across240

multiple cases. It captures the moment when the two velocity peaks begin to merge, indicating significant overlap and the loss

of clear separation between the two regions of reduced wind speed. Hence, this criterion is based on physical behavior rather

than statistical model preference. This approach is an alternative to other formulations, such as that proposed by Robey and

Lundquist (2024), who defined the near wake length based on the distance of b1 and b2 (|b2− b1|/σ < 2.2) in RHI scans of a

turbine wake. Additionally, our approach considers that if the best fit switches to a single Gaussian at a closer distance, then245

this distance will be considered as near wake length. If the near wake length is detected at the first distance where a wake is

identified for this 10 minute period, the case is discarded because the transition may have occurred before. Such undetected

early transitions can result either from failed detection near the turbine or from the lidar’s minimum measurement distance

being too far downstream. Another reason for a failed determination of the near wake length is the termination of the wake

detection inside the near wake region.250

4 Results

Following the described data processing and the determination of wake characteristics (Sect. 3), the results of the analysis are

presented in this section. The analysis includes data from 10 minute averaged lidar scans, measured as described in Sect. 2.2,

from 15 November 2023 to 9 June 2024. Only cases with westerly wind conditions and turbine operation without power

curtailment are considered. The dataset is limited by the availability of meteorological data from the inflow mast, reducing the255

number of measured wake periods to 1375. The characterization of the meteorological and turbine parameters of the dataset is

presented in Fig. 6. The data covers a wind speed range between 2.9 and 18.9 ms−1, turbulence intensities between 0.017 and

0.3, and a wide range of shear, veer and stability conditions. Turbine operational parameters show typical variations covering

different regions of the power curve, which are displayed in median-centered histograms (Fig. 6i-l) to highlight deviations

without disclosing absolute values. Yaw misalignment exhibits a small systematic offset from zero, while thrust coefficient,260

power coefficient and tip speed ratio fluctuate around their respective typical operating points.

First, an overview of the mean characteristics of the measured wakes is given. Then, the impact of all turbine and mete-

orological variables is investigated, using correlations as a basis, and the dataset is reduced to better focus the analysis on

meteorological conditions. Afterwards, the near wake length and its dependence on meteorological and turbine conditions are

studied using the full dataset.265
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Figure 6. Histograms for the selected 1375 10 minute periods of vertical veer ∆δ (a), shear ∆U (b) and shear exponent α (c) across the

rotor-layer, hub height wind speed U (d), turbulence intensity TI (e) and turbulent kinetic energy e (f), bulk Richardson number Ri (g) and

vertical potential temperature gradient dθ/dz (h) across the rotor-layer. Histograms of turbine operational parameters yaw misalignment ϕ

(i), thrust coefficient cT (j), power coefficient cP (k) and tip speed ratio λ (l) are shown relative to their median values.

4.1 Mean wake characteristics

Fig. 7 shows the mean values and standard deviations of the velocity deficits V D, defined as the ratio of the difference between

U and the minimum velocity in the wake to U , lateral deflections µ and wake widths σw, both derived from Gaussian fitting,

for all 1375 cases from 1 to 10 D downstream. It should be noted that each detected wake is not necessarily present at all

downstream distances, as they could end before 10 D. The mean velocity deficit is strongest at 1 D downstream (0.57) and270

decreases to an average of 0.25 at 10 D. Around the location of the second turbine (approx. 4 D depending slightly on the

wind direction), the velocity deficit increases again. At this distance, the wakes of the two turbines start to overlap and the

velocity deficit weakens further downstream. The induction zone of the second turbine impacts the wake dynamics of the first

turbine additionally. According to (Kidambi Sekar et al., 2024) this zone extends 0.6 D upstream of the second turbine, with

its effects being most pronounced when the wind direction aligns with the primary wind direction of 260◦. The wake width,275

representing lateral wake expansion, increases with downstream distance as the wake expands from a mean of 174 m at 1 D to

almost double (321 m) at 10 D. Furthermore, the wake is deflected on average towards the right side behind the rotor (µ < 0)
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Figure 7. Mean (lines) and region of ± 1 standard deviation (shades) of the velocity deficit V D (a), wake center deflection µ (b) and wake

width σw (c) from 1 to 10 D downstream. Histograms of asymmetry ∆A (d), vertical slope S (e) and vertical curl C (f) at 1 D. In (a)-(c) the

vertical black dashed line indicates the location of OPUS2 at 4.3 D.

with a maximum average deflection of 73 m at 10 D. For the estimation of lateral asymmetry ∆A, two different amplitudes

from the Gaussian fit are required. As described in Sect. 3, only the best fitting function is evaluated and for asymmetry only

cases where this is the double Gaussian with two amplitudes (Eq. 7) can be considered. This covers 67% of cases at 1 D, 32%280

at 2 D, 19% at 3 D, and 17% at 4 D, indicating insufficient data for a comprehensive analysis further downstream. Therefore,

the analysis of wake asymmetry is restricted to the distance of 1 D. The distribution of asymmetry ∆A at 1 D downstream

shows predominantly positive values, indicating a more pronounced wake deficit on the right-hand side (facing downstream)

on average (0.1091). The vertical wake parameters slope and curl are evaluated at 1 D and 2 D. The slope at 1 D downstream

varies from negative to positive, with a slight negative average of -0.09. Thus, on average the wake center is shifted aloft to285

the right and down to the left. The values of the curl are mainly positive at 1 D downstream, i.e. 0.006 m−1. To investigate

near wake features and consider the wake of the first turbine solely, the following analysis will cover distances up to 4 D

downstream.

4.2 Correlation with turbine conditions

The correlations of the wake characteristics to the inflow and turbine conditions are displayed in Fig. 8 for downstream dis-290

tances from 1 to 4 D for V D, µ and σw, 1 D for ∆A, and 1 to 2 D for slope and curl. The velocity deficit shows a strong
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Figure 8. Heatmap showing correlations of wake characteristics (columns) against meteorological and turbine variables (rows) for down-

stream distances 1-4 D, correlations for ∆A solely at 1 D, and S and C at 1-2 D.

negative correlation with wind speed, which can primarily be attributed to the reduced energy extraction above rated power.

Consequently, velocity deficits are lower at higher wind speeds. Above rated wind speed, the turbine operational parameters

cP , cT as well as λ are reduced, leading to overall strong positive correlations with V D. It is important to note that these tur-

bine operational parameters are related to the inflow wind speed to optimize power production of the wind turbine. Therefore,295

it is likely that only one of these parameters has a dominant impact on the wake characteristics due to their intercorrelations.

Similar patterns are observed for the wake width, which is highest correlated with wind speed and turbine conditions cT , cP

and λ as the wake width decreases significantly above rated power as well. Overall, the correlations get weaker with increasing

distance from the turbine illustrating that the impact of the turbine features is highest close to the turbine in the near wake.

The wake deflection µ is most strongly correlated with yaw misalignment for 1 to 4 D downstream. However, even when300

yaw misalignment is positive, the wake is still deflected to the right of the rotor in almost all cases (96.05%), indicating that

yaw misalignment alone does not explain wake deflection and interaction with the ABL becomes determinant.

The asymmetry of the velocity deficit in the near wake is positively correlated to cT , cP and λ mainly due to cases with

negative amplitude which distort the correlations here. Yaw misalignment shows a negative correlation, i.e. asymmetry is

weaker for a clockwise rotated turbine.305

The correlations of turbine parameters to the vertical shape of the wake, i.e. slope and curl, are overall weak. Only tip speed

ratio and slope are slightly negative correlated. In particular, this negative correlation is due to more positive slopes (inclined

to the left at the top) for low tip speed ratios which correspond to high wind speeds above rated power.
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Figure 10. Same as Fig. 8, but filtered for turbine operation conditions and showing only meteorological parameters.

4.3 Correlation with meteorological conditions

To minimize the influence of turbine parameters, which significantly impact wake characteristics (Sect. 4.2), and to allow310

a clearer examination of the effects of atmospheric parameters, the wake dataset is refined. We filter our dataset to include

only turbine operation between cut-in and rated power, where turbines maintain an optimal tip-speed ratio under varying

wind speeds to maximize power output. Accordingly, the filtering conditions are med(cT )− 0.05< cT <med(cT ) + 0.25

and med(λ)− 0.5< λ <med(λ) + 1. Under these operating conditions, wake effects are strongest due to the highest energy

extraction from the wind. This effect is illustrated in Fig. 9, showing V D as a measure of wake strength versus wind speed,315

where energy extraction between Umin and Umax is largest. These limits are used as filter criteria as well. Additionally, only

conditions with near-perfect turbine alignment with the incoming wind are considered, i.e. −2◦ < ϕ < 2◦.
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Correlations are calculated for meteorological parameters with wake characteristics for this filtered dataset and shown in

Fig. 10. Velocity deficit is more strongly pronounced during more stable conditions (higher Ri and dθ/dz). This pattern is

primarily visible at 1 D, with correlations to Ri and dθ/dz becoming weaker further downstream. Negative correlations of320

V D with turbulent characteristics TI and e are observed as the atmosphere is usually less turbulent during a stable ABL.

These negative correlations are particularly strong at 1 D downstream. Positive correlations are observed with characteristics

associated with stability like veer, shear and shear exponent, but only the correlations with shear and shear exponent remain

significantly positive further downstream. Overall, the correlation values between shear and shear exponent may differ. Shear is

closely related to the inflow wind speed, as higher gradients typically occur at higher wind speeds. Thus, shear is an indicator of325

the velocity change experienced by the rotating blades, providing a link to asymmetric turbine loading and fatigue. In contrast,

α is less dependent on the inflow wind speed and yields information about the shape of the vertical wind profile and thus

to some extent about ABL stability. Notably, α is well-defined in a neutral ABL, where a logarithmic wind profile usually

prevails.

The wake is deflected further to the right downstream with increasing veer, shear, shear exponent and dθ/dz (negative330

correlations) for all four downstream distances analyzed. These four parameters are strongly connected to the stability of the

ABL. With yaw misalignment close to zero, this behavior strongly indicates the effect of varying atmospheric stability on the

wake center position. This implies that the wake center is more greatly deflected towards the right under stable conditions

than under neutral and unstable conditions. However, no significant correlations are observed with Ri, which remain near

zero except at 1 D with 0.18. The strongest correlations appear with the veer of the inflow, suggesting that higher veering, a335

feature commonly linked to a stable ABL, is a primary cause of the wake deflection. On the other hand, quantities representing

turbulence and wind speed exhibit positive correlations, implying reduced deflection under stronger turbulence in the inflow

usually associated with rather unstable conditions. Conversely, higher deflection is associated with less turbulent conditions

generally linked to stable, turbulence suppressing conditions.

For the wake width, correlations with characteristics of more stable conditions are negative like shear, veer,Ri and dθ/dz and340

with turbulence parameters positive, i.e. narrower wakes during stable conditions and wider wakes during unstable conditions.

Only for shear and shear exponent are significantly high correlation values (≥0.1) observed from 1 D to 4 D. The correlation

values for wake width and atmospheric parameters are rather low in total and other wake characteristics depend more strongly

on the ABL.

The lateral asymmetry in the near wake, a phenomenon that has received limited attention in the literature, exhibits a complex345

relationship with atmospheric stability and turbulence characteristics. After filtering for turbine operation conditions, only

positive asymmetry values are observed in the data. Thus the correlation values here are not distorted by negative cases. The

asymmetry is most strongly correlated with dθ/dz and the shear exponent, both indicators for atmospheric stability, showing

more pronounced asymmetry under stronger static stability. Shear, veer and Richardson number are also positively correlated

because they are linked to the stability of the ABL as well. Conversely, asymmetry is negatively correlated with turbulence350

quantities, including TI and e, as turbulence is generally weaker in stable atmospheres, and similarly negatively correlated to

wind speed.
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Figure 11. Histogram of detected near wake lengths (a) and heatmap indicating correlations of near wake length against meteorological and

turbine variables (b).

A strong correlation is observed between the wake slope and stability quantities, such as the Richardson number, dθ/dz, and

veer. Specifically, the correlations are negative as the slope is negative when the wake center at the upper levels is displaced

to the right and at the lower heights to the left. The correlations with veer and dθ/dz are particularly high (-0.77 and -0.65355

respectively at 1 D), indicating that stronger veering during a more stable ABL directly leads to stronger tilting of the wake

in the vertical. Further, the slope of the wake is therefore positively correlated with turbulence values, as stable conditions are

typically characterized by lower turbulence levels.

By contrast, the curl of the wake shows a weaker correlation with atmospheric conditions and is only significantly correlated

with meteorological parameters at 1 D. Shear, shear exponent and veer are positively correlated, while wind speed, TI and e360

show a negative correlation with curl. This suggests stronger curl with more stable conditions. However, this is not confirmed

by correlations with stability measures Ri (negative correlation) or dθ/dz (correlation < 0.1), eventually due to less data

availability (n=184 at 1 D, n=244 at 2 D for slope and curl).

4.4 Near wake length

The near wake length is determined using the approach described in Sect. 3.3 for all 1375 cases, without filtering the dataset365

for specific turbine operation. Particularly, the near wake length is either defined as the downstream location at which the wake

center velocity ratio multiplied by 105% falls below the local minimum of the double Gaussian fit or at the onset where the

single Gaussian provides a better fit to the wake velocity profile. In this way, the near wake length is determined for 1238 of

the 1375 cases. In the remaining cases, the far wake has either already evolved at the first wake detection point (129 cases),

or the wake detection is too short, not reaching into the far wake (8 cases). Overall, the transition from near to far wake is370
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detected in 95.32 % of the cases using the 105 % rule of the velocity ratio rather than the single Gaussian fit onset. This shows

the importance of including additional conditions beyond relying solely on changes in the best-fitting functions.

The histogram of all valid cases shows a range of near wake lengths from 110 m to 440 m with a mean of 232.86 m (2.01 D)

and a standard deviation of 48.03 m (0.41 D) (Fig. 11). The distribution is approximately normal. Generally, shorter near wake

lengths correspond to conditions that feature faster wake recovery. This is reflected in the strongest negative correlations with375

turbulence quantities TI and e, indicating that higher turbulence levels enhance wake mixing and consequently result in shorter

near wake lengths. Additionally, wind speed shows a moderate negative correlation, as it is generally associated with higher

turbulence. In contrast, characteristics related to atmospheric stability show positive correlations to the near wake length. The

vertical potential temperature gradient shows the strongest positive correlation, followed by wind veer, Ri and α, suggesting

the near wake length persists over longer distances under stable ABL conditions with weaker mixing and stronger stratification.380

The distinction between α and shear is important here as their correlations with near wake length differ significantly. From

our data, shear shows almost no correlation, while shear exponent exhibits a slight positive correlation. Shear is sensitive to

absolute wind speed and can vary substantially under similar stability conditions. In contrast, the shear exponent is more robust

across different stability regimes, since it is normalized by wind speed and thus dimensionless. Therefore, it better reflects the

shape of the wind profile and thus is to some extent linked to atmospheric stability. As such, higher values of α are associated385

with a more stable ABL and reduced mixing, which in turn prolongs the near wake region.

Correlations with turbine operating parameters are generally weak and close to zero. The tip speed ratio shows a slight

positive correlation, while yaw misalignment, thrust coefficient, and power coefficient exhibit negligible correlations with near

wake length.

In summary, the strongest correlations with near wake length are observed for TI , e, dθ/dz and ∆δ, highlighting that390

meteorological conditions are the dominant factors in determining the near wake extent. Turbine parameters show minimal

influence, with all correlations remaining below 0.15.

5 Discussion

5.1 Impact of stability and veer on wake characteristics

In this study, we observe that apart from traditional parameters used in analytical wake models, such as turbulence intensity395

and shear exponent, ABL characteristics like wind veer and the vertical potential temperature gradient exhibit high or even

stronger correlation with wake characteristics.

Specifically, vertical wind veer shows a strong correlation with wake deflection, exceeding that of α and TI . This effect is

particularly pronounced in a stable ABL, where vertical wind shear and wind veer across the rotor-layer develop and turbulence

is reduced, resulting in low mixing of the wake with the environment. While yaw misalignment has been shown to significantly400

impact the wake center position in previous studies, including LES by Vollmer et al. (2016), a combination of LES and

observations by Bromm et al. (2018), and an observational study by Brugger et al. (2020), our results show that even when yaw

misalignment is positive, the wake is still deflected to the right of the rotor in almost all cases (96.05%). This indicates that yaw
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misalignment alone cannot explain the majority of observed wake deflection, as positive yaw misalignment would typically

result in a wake deflection to the left. Instead, the dominant mechanism appears to be the interaction between the turbine and405

the veering flow in the stable ABL. This is shown by the negative correlation of veer and deflection for the full dataset in

Fig. 8 and for the refined dataset in Fig. 10. This mechanism is supported by the LES study from Vollmer et al. (2016), which

demonstrate that in a stable ABL with strong veering across the rotor layer, wake deflection to the right occurs without yaw

misalignment or even with yaw misalignment up to 10◦, whereas in a neutral ABL with weak veering there is no significant

wake deflection observed without yaw misalignment and leftwards deflection occurs with 10◦ yaw misalignment. This effect410

has implications for wind farm control, like wake steering, where accurate predictions of wake center positions are essential

for optimizing wake-turbine interactions. Therefore, incorporating veering into such a wake model could significantly improve

the accuracy.

According to our study, veer is not only the primary meteorological factor for lateral deflection of the wake, but also for its

tilt in the vertical. Strong correlations are observed between the vertical slope of the wake and veer as well as dθ/dz, while the415

correlations to turbulence and shear exponent are significantly lower. Experimental studies by Bodini et al. (2017) and Sengers

et al. (2023) provide support for this relation, reporting a correlation coefficient of approximately 0.75 between wake tilt and

veer. Notably, Bodini et al. (2017) further demonstrated that the angular change of the wake centerlines across different heights

almost mirrors that of the wind veer, though remains slightly smaller. Nevertheless, vertical wind veer is not considered in

simple engineering models, such as those proposed by Bastankhah and Porté-Agel (2014), King et al. (2021) and Keane (2021)420

and advancements thereof. The inclusion of veer in wake models has been shown to significantly improve accuracy, reducing

prediction errors to levels comparable to that of circular wakes (Brugger et al., 2019).

The simple wake models assume a constant wind direction across the rotor layer and calculate wake deflection only depen-

dent on yaw misalignment or turbulence. Therefore, they are insufficiently depicting the deflection of the wake under veering

conditions. This would have an impact on the wind resource estimation at downstream positions for wind farm assessment,425

especially at locations with strong diurnal veer cycles and strong stable boundary layer evolution during nighttime, such as

in continental regions and flat terrain. We suggest that wake deflection and wake tilting due to veer represent a significant

mechanism that should be incorporated into wake modeling, particularly in a stable or transitional ABL. Future wake model

developments could benefit from including deflection and tilting terms dependent on veer, e.g. through (semi-)empirical ad-

justments or by extending vortex-based approaches to account for the rotational effects of veering flow. These improvements430

could enhance the accuracy of wake predictions in scenarios where veer is a prominent factor, leading to more robust wind

farm simulations for layout optimization and wake control during turbine operation.

5.2 Lateral asymmetry of velocity deficit in near wake

The asymmetry of the double Gaussian velocity deficit in the near wake of the turbine is observed to be most strongly and

positively correlated to the shear exponent and the potential temperature gradient, indicating that the difference between the435

two velocity minima is higher in a stable ABL, i.e. positive dθ/dz and higher α.
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Lateral asymmetry can be attributed to the counter-clockwise rotation of the wake induced by the clockwise rotation of

the turbine. This motion transports slower wind velocities from below hub-height upward towards the right and higher wind

speeds from aloft toward the left side, resulting in a stronger velocity deficit on the right-hand side. Recent field experiments,

including those by Onnen et al. (2025), confirm this wake behavior under sheared inflow, supporting the relationship between440

the shear exponent and wake asymmetry. Drone-based observations (Wildmann and Kistner, 2025) further demonstrate that tip

vortices are stronger and remain coherent for a longer distance on the right side, indicating that vortex dynamics significantly

contribute to sustaining the asymmetry. This suggests an interplay between stability of the ABL and vortex dynamics which

impact the evolution and persistence of a stronger velocity deficit on the right side. The asymmetry is mainly observed close to

the turbine, at 1 D, whereas at 2 D the wake structure mainly fits better to a simple double Gaussian with the same amplitude445

magnitudes or a single Gaussian, suggesting that the asymmetry decreases quickly downstream in the velocity signal. Most

simple analytical models neither employ a double Gaussian representation in the near wake nor account for lateral asymmetry.

Future models for wind farm layout and control optimization could profit from accounting for this asymmetry under stable

conditions.

These findings highlight the need for future observational studies that resolve near wake dynamics including tip vortices450

and the wake swirl, such as by drone measurements, to investigate the interaction between the stability of the inflow and

vortex dynamics around utility-scale wind turbines. Consequently, measurements across a range of atmospheric conditions,

particularly under varying atmospheric stability regimes, are essential. Apart from vortex-resolved and three-dimensional wind

velocity observations, measuring and investigating turbulence in the near wake and its potential asymmetries as well as its

development further downstream would enable a more accurate understanding and modeling of wake-added turbulence.455

5.3 Near wake length

In this study, we observe an average near wake length of 2.01 D and its dependence on meteorological and turbine conditions.

The range of near wake lengths aligns with findings from prior studies. Vermeer et al. (2003) reported the near wake extending

up to 2-4 D downstream, while Zhan et al. (2020) observed a near wake length of 1.75 D downstream.

Meteorological conditions show a partly strong correlation to the near wake length, while turbine operating conditions show460

weaker correlations. It is essential to note that the influence of turbine operating conditions including the thrust coefficient,

which is often considered in engineering models such as that of Vahidi and Porté-Agel (2022a), on the near wake length cannot

be conclusively determined from this study. To isolate the dependency on cT , it would be necessary to conduct a controlled

analysis where inflow parameters are kept constant while varying cT . Furthermore, the minimum detectable near wake length

of 110 m may limit the sensitivity to differences in near wake length in general, as shorter near wake lengths may not be465

captured. Thereby, the wake deficit may already transition from a double Gaussian shape to a single Gaussian close to the

turbine (<1 D) in cases where the wake is not as strong and mixed out more rapidly.

Prolonged near wake lengths are observed under a stable ABL, where turbulence is suppressed, while higher turbulence is

linked to an earlier transition to the far wake through turbulent mixing from outside the wake. Parinam et al. (2023) demonstrate

that increasing shear values lead to a more rapid breakdown of tip vortices, which tilt, roll up and pair before dissipating into470
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smaller scales. However, this effect appears to be secondary compared to the influence of higher static stability, stronger

veer and lower turbulence during stable conditions which usually coexists with higher shear. Notably, our analysis reveals no

correlation between shear and near wake length, which initially seems to contradict the findings of Parinam et al. (2023). This

discrepancy is resolved when considering shear as a dependent parameter of atmospheric stability. In a dynamically stable ABL,

the suppression of turbulent mixing appears to have a more significant stabilizing impact on tip vortices than the destabilizing475

effect of shear-induced instabilities. Additionally, veering of the wind is usually associated with a stable atmosphere, which

is positively correlated to the near wake length. More simulations and measurements of different veering of the inflow wind

while resolving the tip vortices would be useful to better understand the interplay in the near wake. Therefore it is necessary to

adapt current wake models to treat shear, veer and turbulence as variables that are also dependent on atmospheric stability, and

not as independent drivers of near wake evolution. Capturing these interactions can help predict the wake behavior accurately480

in diverse atmospheric regimes.

We compare our near wake length determination to the method proposed by Robey and Lundquist (2024). Their method

identifies the near wake length as the point where the distance between the two Gaussian minima normalized by the wake

width falls below 2.2 (|b2− b1|/σ < 2.2), assuming the two peaks of reduced velocities merge there. We assume this criterion

is applicable in the same way in the horizontal as in the vertical direction. This methods yields a mean near wake length of485

251.99 m (median: 250 m), which is on average 19.13 m or 0.16D longer than our approach. This difference shows only minor

sensitivity of the near wake length determination to the specific implementation of the merging criterion for the two Gaussian

peaks.

Moreover, the near wake length is compared to the analytical formulation by Bastankhah and Porté-Agel (2016) (Eq. 6.16

with 4α= 3.6 from Carbajo Fuertes et al. 2018 and 2β = 0.154 from Bastankhah and Porté-Agel 2016) which yields an average490

near wake length of 3.00D (standard deviation: 1.41D). The observed near wake length is about 1D shorter than proposed by

Bastankhah and Porté-Agel (2016) and Carbajo Fuertes et al. (2018), showing that their analytical formula overestimates the

actual length of the near wake. The largest overestimation occurs under stable atmospheric conditions and low TI , whereas the

analytical result aligns more closely with observed near wake lengths for high TI . This suggests that the formulation should

be carefully used and interpreted as it is not designed to locate the breakdown of the tip vortices, but instead provides an495

estimate of the hypothetical potential core length employed in far-wake modeling (Bastankhah and Porté-Agel, 2016) which

could explain the discrepancies.

Therefore, comparisons of near wake length estimations should be performed carefully and multiple determination methods,

such as those based on velocity deficit profiles, wake turbulence evolution or the decay of tip vortices, should be evaluated in

a future study using field measurements to ensure robust and consistent interpretation. Alternatively, data-driven approaches500

could be applied to this extensive wake dataset to enhance the characterization and prediction of near wake behavior.
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6 Conclusions

This study presents a comprehensive statistical analysis of the impact of observed atmospheric conditions on wind turbine

wake dynamics. The wake dataset analyzed herein includes measurements from a rearward-facing nacelle lidar as well as

a meteorological mast and wind turbine operational data at the WiValdi research wind farm, spanning approximately seven505

months of field observations. Previous studies focused on single seasons, i.e., summer for Bodini et al. (2017) and spring

for Sengers et al. (2023), while we utilize a significantly larger database covering multiple seasons. The data captures wake

characteristics across a broad range of atmospheric states, from stable to unstable conditions, and under varying levels of wind

shear, veer and turbulence. The findings demonstrate that wind turbine wake dynamics, especially in the near wake region, are

influenced not only by turbine operation parameters but fundamentally shaped by the atmospheric inflow.510

We analyzed the wake characteristics derived from nacelle lidar data and their relationships with atmospheric parameters.

Velocity deficits in the wake are reduced under high turbulence and enhanced under stable conditions, particularly when the

shear exponent is high. This effect is caused by suppressed turbulent mixing, which decelerates wake recovery. Additionally

to the well-studied effect of yaw misalignment, inflow wind veer significantly affects the deflection of the wake center, con-

sistently steering the wake to the right facing downstream. Wake width exhibits only moderate sensitivity to meteorological515

factors, with higher wind shear correlating with narrower wakes. Though, for other meteorological parameters, no consistent

trend is observed across the 1-4 D downstream distances. The vertical tilt of the wake is linked to both the veer and stability

of the atmospheric inflow. Under stable conditions with strong veer, the wake develops a more pronounced slope, shifting the

wake center towards the right at the top and towards the left at the bottom.

Lateral asymmetry in the near wake (at 1 D), observed as an asymmetric double Gaussian velocity deficit, is strongly520

linked to the interaction between vortex dynamics and atmospheric stability, in terms of vertical potential temperature gradient

and shear exponent. In conditions of high shear exponent and a strong potential temperature gradient, asymmetry is more

pronounced, suggesting that stratification stabilizes the two velocity deficits that are characteristic for the distribution of axial

induction along the blade. This asymmetry can have practical implications for downstream turbines, potentially increasing

mechanical loads and reducing power output, particularly in closely spaced wind farms.525

The near wake length is affected more strongly by turbulence intensity and atmospheric stability with longer near wakes un-

der stable and less turbulent conditions than by turbine operation specific quantities, such as thrust coefficient or tip speed ratio.

This indicates that near wake length is not a fixed property of the turbine and that wake models should incorporate atmospheric

parameters for more accurate depictions. Comparing near wake lengths among various approaches remains challenging due to

different definitions of the far wake onset, e.g. deducing it from the shape of velocity deficit, amount of turbulence in the wake530

or the decay of the coherence of tip vortices.

Future work will extend these derived wake characteristics to include wake-added turbulence from the nacelle lidar data

to further investigate the turbulent structure of the near wake and refine the criteria for the transition to the far wake. In

Spring 2025, a drone fleet was deployed at WiValdi to capture tip vortices and measure wake deficits and turbulence in situ at

several downstream distances up to 4 D. Complementary data from a ground-based lidar, performing vertical cross sections535

22

https://doi.org/10.5194/wes-2026-8
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



in the wake, will further enhance the three-dimensional characterization of the wake, enabling a more detailed analysis of

the circular double Gaussian shape in the near wake and its dependence on atmospheric conditions. Meanwhile, our wake

database is continuously growing, extending its potential for deriving data-driven wake models in the future. These additional

measurements will contribute to a more thorough understanding of wake dynamics under real-world atmospheric conditions

and will be used to validate and improve engineering models and large-eddy simulations of wind turbine wakes.540
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