Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1887-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1887-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Developing an atlas of rain-induced leading edge erosion for wind turbine blades in the Dutch North Sea
TNO, Wind Energy Technology, Westerduinweg 3, 1755 LE Petten, the Netherlands
Gerwin van Dalum
Whiffle, Molengraaffsingel 8, 2629 JD Delft, the Netherlands
Related authors
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci., 10, 1123–1136, https://doi.org/10.5194/wes-10-1123-2025, https://doi.org/10.5194/wes-10-1123-2025, 2025
Short summary
Short summary
In this study, we assessed the total quantity of microplastics emitted by wind turbines currently operating in the Dutch North Sea. The estimates of microplastics currently emitted from offshore wind turbines in the Netherlands account for a very small portion of the total microplastics released offshore in the Netherlands, specifically less than 1 ‰.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci., 10, 1123–1136, https://doi.org/10.5194/wes-10-1123-2025, https://doi.org/10.5194/wes-10-1123-2025, 2025
Short summary
Short summary
In this study, we assessed the total quantity of microplastics emitted by wind turbines currently operating in the Dutch North Sea. The estimates of microplastics currently emitted from offshore wind turbines in the Netherlands account for a very small portion of the total microplastics released offshore in the Netherlands, specifically less than 1 ‰.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
Baas, P., Verzijlbergh, R., van Dorp, P., and Jonker, H.: Investigating energy production and wake losses of multi-gigawatt offshore wind farms with atmospheric large-eddy simulation, Wind Energ. Sci., 8, 787–805, https://doi.org/10.5194/wes-8-787-2023, 2023. a
Bak, C., Forsting, A. M., and Sorensen, N. N.: The influence of leading edge roughness, rotor control and wind climate on the loss in energy production, J. Phys. Conf. Ser., 1618, 052050, https://doi.org/10.1088/1742-6596/1618/5/052050, 2020. a
Barfknecht, N. and von Terzi, D.: Aerodynamic interaction of rain and wind turbine blades: the significance of droplet slowdown and deformation for leading-edge erosion, Wind Energ. Sci., 9, 2333–2357, https://doi.org/10.5194/wes-9-2333-2024, 2024. a
Barfknecht, N. and von Terzi, D.: Drop-size-dependent effects in leading-edge rain erosion and their impact on erosion-safe mode operation, Wind Energ. Sci., 10, 315–346, https://doi.org/10.5194/wes-10-315-2025, 2025. a
Caboni, M., Slot, H. M., Bergman, G., Wouters, D. A. J., and Meijer, H. J. V. D. M.: Evaluation of wind turbine blades’ rain-induced leading edge erosion using rainfall measurements at offshore, coastal and onshore locations in the Netherlands, J. Phys. Conf. Ser., 2767, 062003, https://doi.org/10.1088/1742-6596/2767/6/062003, 2024. a, b, c, d, e, f, g, h
Caboni, M., Schwarz, A. E., Slot, H., and van der Mijle Meijer, H.: Estimating microplastic emissions from offshore wind turbine blades in the Dutch North Sea, Wind Energ. Sci., 10, 1123–1136, https://doi.org/10.5194/wes-10-1123-2025, 2025. a
Castorrini, A., Ortolani, A., and Campobasso, M. S.: Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations, Renew. Energ., 218, 119256, https://doi.org/10.1016/j.renene.2023.119256, 2023. a
Copernicus-Climate-Change-Service: Copernicus Interactive Climate Atlas, https://atlas.climate.copernicus.eu/atlas, last access: 2 December 2024. a
Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O., Mortensen, N. G., Kelly, M., Larsén, X. G., Olsen, B. T., Floors, R., Lizcano, G., Casso, P., Lacave, O., Bosch, A., Bauwens, I., Knight, O. J., van Loon, A. P., Fox, R., Parvanyan, T., Hansen, S. B. K., Heathfield, D., Onninen, M., and Drummond, R.: The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application, Bull. Am. Meteorol. Soc., 104, E1507–E1525, https://doi.org/10.1175/BAMS-D-21-0075.1, 2023. a
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. Rep. NREL/TP-5000-75698, National Renewable Energy Laboratory (NREL), Golden, CO, USA, https://doi.org/10.2172/1603478, 2020. a
Grabowski, W. W.: Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization, J. Atmos. Sci., 55, 3283–3298, https://doi.org/10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2, 1998. a, b
Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas – Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020. a
Hasager, C., Vejen, F., Bech, J., Skrzypiński, W., Tilg, A.-M., and Nielsen, M.: Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas, Renew. Energ., 149, 91–102, https://doi.org/10.1016/j.renene.2019.12.043, 2020. a, b
Hasager, C. B., Vejen, F., Skrzypiński, W. R., and Tilg, A.-M.: Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea, Energies, 14, 1959, https://doi.org/10.3390/en14071959, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a
Heymann, F. J.: Conclusions from the ASTM interlaboratory test program with liquid impact erosion facilities, in: International Conference on Erosion by Liquid and Solid Impact, 1–10, https://ui.adsabs.harvard.edu/abs/1979elsi.conf...20H, 1979. a
Larsén, X. G., Davis, N., Hannesdóttir, A., Kelly, M., Svenningsen, L., Slot, R., Imberger, M., Olsen, B. T., and Floors, R.: The Global Atlas for Siting Parameters project: Extreme wind, turbulence, and turbine classes, Wind Energy, 25, 1841–1859, https://doi.org/10.1002/we.2771, 2022. a
Letson, F. and Pryor, S. C.: From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion, Energies, 16, 3906, https://doi.org/10.3390/en16093906, 2023. a, b
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the Snow Field in a Cloud Model, J. Appl. Meteorol. Climatol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983. a, b, c, d
Maniaci, D. C., Westergaard, C., Hsieh, A., and Paquette, J. A.: Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance, J. Phys. Conf. Ser., 1618, 052082, https://doi.org/10.1088/1742-6596/1618/5/052082, 2020. a
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with size, J. Atmos. Sci., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2, 1948. a
Méndez, B., Saenz, E., Pires, Ó., Cantero, E., Bech, J., Polls, F., Peinó, E., Udina, M., and Garcia-Benadí, A.: Experimental campaign for the characterization of precipitation in a complex terrain site using high resolution observations, J. Phys.: Conf. Ser., 2767, 042016, https://doi.org/10.1088/1742-6596/2767/4/042016, 2024. a
Mishnaevsky, L.: Repair of wind turbine blades: Review of methods and related computational mechanics problems, Renew. Energ., 140, 828–839, https://doi.org/10.1016/j.renene.2019.03.113, 2019. a
Mishnaevsky, L., Hasager, C. B., Bak, C., Tilg, A.-M., Bech, J. I., Doagou Rad, S., and Fæster, S.: Leading edge erosion of wind turbine blades: Understanding, prevention and protection, Renew. Energ., 169, 953–969, https://doi.org/10.1016/j.renene.2021.01.044, 2021. a
Montero-Martínez, G. and García-García, F.: On the behaviour of raindrop fall speed due to wind, Q. J. Roy. Meteorol. Soc., 142, 2013–2020, https://doi.org/10.1002/qj.2794, 2016. a
Mortensen, N., Hansen, J., Kelly, M., Prinsloo, E., Mabille, E., and Szewczuk, S.: Wind Atlas for South Africa (WASA) Station and Site Description Report, no. 0242(EN) in DTU Wind Energy I, DTU Wind Energy, Denmark, for an electronic copy please contact the first author, Published as DTU Wind Energy E-0071 in 2014., 2014. a
Nawri, N., Petersen, G. N., Bjornsson, H., Hahmann, A. N., Jónasson, K., Hasager, C. B., and Clausen, N.-E.: The wind energy potential of Iceland, Renew. Energ., 69, 290–299, https://doi.org/10.1016/j.renene.2014.03.040, 2014. a
Noordzeeloket: Energy Transition in the North Sea, https://www.noordzeeloket.nl/en/functions-and-use/offshore-wind-energy/energy-transition-north-sea/, last access: 6 December 2024. a
North-Sea-Energy: Offshore Renewables - Offshore Wind Visibility, https://northseaenergy.projectatlas.app/atlas/, last access: 30 November 2024. a
Pryor, S. C., Letson, F., Shepherd, T., and Barthelmie, R. J.: Evaluation of WRF Simulation of Deep Convection in the U.S. Southern Great Plains, J. Appl. Meteorol. Climatol., 62, 41–62, https://doi.org/10.1175/JAMC-D-22-0090.1, 2023. a
Pryor, S. C., Barthelmie, R. J., and Hannedóttir, A.: A roadmap for producing wind turbine blade coating leading edge erosion atlases: Preliminary results, Tech. rep., IEA Wind Task 46: Erosion of wind turbine blades, https://iea-wind.org/wp-content/uploads/2025/03/IEA_Wind_Task_46_WP2.6-RoadmapErosionAtlases.pdf, last access: 26 March 2025a. a
Pryor, S. C., Coburn, J. J., and Barthelmie, R. J.: Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion, Energies, 18, 425, https://doi.org/10.3390/en18020425, 2025b. a
Schalkwijk, J., Griffith, E. J., Post, F. H., and Jonker, H. J. J.: High-Performance Simulations of Turbulent Clouds on a Desktop PC: Exploiting the GPU, Bull. Am. Meteorol. Soc., 93, 307–314, http://www.jstor.org/stable/26218643 (last access: 28 August 2025), 2012. a
Shankar Verma, A., Jiang, Z., Ren, Z., Caboni, M., Verhoef, H., van der Mijle-Meijer, H., Castro, S. G., and Teuwen, J. J.: A probabilistic long-term framework for site-specific erosion analysis of wind turbine blades: A case study of 31 Dutch sites, Wind Energy, 24, 1315–1336, https://doi.org/10.1002/we.2634, 2021. a
Slot, H.: A fatigue-based model for the droplet impingement erosion incubation period, Ph.D. thesis, University of Twente, Enschede, the Netherlands, ISBN: 978-90-365-5191-5, https://doi.org/10.3990/1.9789036551915, 2021. a, b
Slot, H., Gelinck, E., Rentrop, C., and van der Heide, E.: Leading edge erosion of coated wind turbine blades: Review of coating life models, Renew. Energ., 80, 837–848, https://doi.org/10.1016/j.renene.2015.02.036, 2015. a
Storey, R. and Rauffus, R.: Mesoscale-coupled Large Eddy Simulation for Wind Resource Assessment, J. Phys. Conf. Ser., 2767, 052040, https://doi.org/10.1088/1742-6596/2767/5/052040, 2024. a
Thurai, M., Schönhuber, M., Lammer, G., and Bringi, V.: Raindrop shapes and fall velocities in “turbulent times”, Adv. Sci. Res., 16, 95–101, https://doi.org/10.5194/asr-16-95-2019, 2019. a
Tilg, A.-M., Vejen, F., Hasager, C. B., and Nielsen, M.: Rainfall Kinetic Energy in Denmark: Relationship with Drop Size, Wind Speed, and Rain Rate, J. Hydrometeorol., 21, 1621–1637, https://doi.org/10.1175/JHM-D-19-0251.1, 2020. a
Verma, A. S., Jiang, Z., Caboni, M., Verhoef, H., van der Mijle Meijer, H., Castro, S. G., and Teuwen, J. J.: A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system, Renew. Energ., 178, 1435–1455, https://doi.org/10.1016/j.renene.2021.06.122, 2021. a
Vimalakanthan, K., van der Mijle Meijer, H., Bakhmet, I., and Schepers, G.: Computational fluid dynamics (CFD) modeling of actual eroded wind turbine blades, Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023, 2023. a
Whiffle B. V.: Precision Weather Forecasting with Large Eddy Simulation [code], https://whiffle.nl, 2025.
Wind Energy – The Facts: Tip Speed Trends, https://www.wind-energy-the-facts.org/tip-speed-trends.html, last access: 6 December 2024. a
Short summary
Weather simulations carried out over a decade showed that the average erosivity of rainfall on wind turbine blades increases from the southwestern part of the Dutch North Sea to the northeastern region. These results suggest that future wind farms developed in the northeast are likely to encounter higher erosion rates compared to those currently operating in the southwest. This requires special attention when developing mitigation strategies.
Weather simulations carried out over a decade showed that the average erosivity of rainfall on...
Altmetrics
Final-revised paper
Preprint