Articles | Volume 10, issue 10
https://doi.org/10.5194/wes-10-2189-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-2189-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scour variability across offshore wind farms (OWFs): identifying site-specific scour drivers as a step towards assessing potential impacts on the marine environment
Leibniz University Hannover, Ludwig Franzius Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, 30167 Hannover, Germany
Christian Jordan
Leibniz University Hannover, Ludwig Franzius Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, 30167 Hannover, Germany
Gregor Melling
Federal Waterways Engineering and Research Institute (BAW), Wedeler Landstraße 157, 22559 Hamburg, Germany
Alexander Schendel
Leibniz University Hannover, Ludwig Franzius Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, 30167 Hannover, Germany
Coastal Research Centre, Joint Research Facility of Leibniz Universität Hannover and Technische Universität Braunschweig, Merkurstraße 11, 30419 Hannover, Germany
Mario Welzel
Leibniz University Hannover, Ludwig Franzius Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, 30167 Hannover, Germany
Torsten Schlurmann
Leibniz University Hannover, Ludwig Franzius Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, 30167 Hannover, Germany
Coastal Research Centre, Joint Research Facility of Leibniz Universität Hannover and Technische Universität Braunschweig, Merkurstraße 11, 30419 Hannover, Germany
Related authors
No articles found.
Robert Lepper, Leon Jänicke, Ingo Hache, Christian Jordan, and Frank Kösters
Ocean Sci., 20, 711–723, https://doi.org/10.5194/os-20-711-2024, https://doi.org/10.5194/os-20-711-2024, 2024
Short summary
Short summary
Most coastal environments are sheltered by tidal flats and salt marshes. These habitats are threatened from drowning under sea level rise. Contrary to expectation, recent analyses in the Wadden Sea showed that tidal flats can accrete faster than sea level rise. We found that this phenomenon was facilitated by the nonlinear link between tidal characteristics and coastal bathymetry evolution. This link caused local and regional tidal adaptation with sharp increase–decrease edges at the coast.
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Cited articles
Annad, M., Lefkir, A., Mammar-Kouadri, M., and Bettahar, I.: Development of a local scour prediction model clustered by soil class, Water Pract. Technol., 16, 1159–1172, https://doi.org/10.2166/wpt.2021.065, 2021.
Annad, M., Zourgui, N. H., Lefkir, A., Kibboua, A., and Annad, O.: Scour-dependent seismic fragility curves considering soil-structure interaction and fuzzy damage clustering: A case study of an Algerian RC Bridge with shallow foundations, Ocean Engineering, 275, 114157, https://doi.org/10.1016/j.oceaneng.2023.114157, 2023.
Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., and Clopper, P. E.: Evaluating scour at bridges (HEC-18, Publication No. FHWA-HIF-12-003, Fifth Edition), U.S. Department of Transportation, Federal Highway Administration, Washington, D.C., USA, 340 pp., ISBN 978-1329667099, 2012.
Baelus, L., Bolle, A., and Szengel, V.: Long-term scour monitoring around on a sandy seabed, in: Scour and Erosion IX: Proceedings of the 9th International Conference on Scour and Erosion (ICSE 2018), 5–8 November, 2018, Taipei, Taiwan, edited by: Yeh, K.-C., CRC Press, Boca Raton, FL, USA, pp. 383–392, https://doi.org/10.1201/9780429020940, 2018.
Baeye, M. and Fettweis, M.: In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea, Geo-Mar. Lett., 35, 247–255, https://doi.org/10.1007/s00367-015-0404-8, 2015.
Bailey, H., Brookes, K. L., and Thompson, P. M.: Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future, Aquat. Biosyst., 10, 1–13, https://doi.org/10.1186/2046-9063-10-8, 2014.
Baykal, C., Sumer, B. M., Fuhrman, D. R., Jacobsen, N. G., and Fredsøe, J.: Numerical investigation of flow and scour around a vertical circular cylinder, Philos. Trans. R. Soc. A, 373, 20140104, https://doi.org/10.1098/rsta.2014.0104, 2015.
Bolle, A., Mercelis, P., Goossens, W., and Haerens, P.: Scour monitoring and scour protection solution for offshore gravity based foundations, in: Scour and Erosion: Proceedings of the Sixth International Conference on Scour and Erosion (ICSE-6), Paris, France, ASCE, Reston, VA, USA, 27–31 August 2012, 491–500, https://doi.org/10.1061/41147(392)47, 2012.
Breusers, H. N. C., Nicollet, G., and Shen, H. W.: Local scour around cylindrical piers, J. Hydraul. Res., 15, 211–252, https://doi.org/10.1080/00221687709499645, 1977.
Brignon, J. M., Lejart, M., Nexer, M., Michel, S., Quentric, A., Thiebaud, L.: A risk-based method to prioritize cumulative impacts assessment on marine biodiversity and research policy for offshore wind farms in France, Environ. Sci. Pol., 128, 264–276, https://doi.org/10.1016/j.envsci.2021.12.003, 2022.
Bunte, K., and Abt, S. R.: Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, RMRS-GTR-74, Fort Collins, CO, USA, https://doi.org/10.2737/RMRS-GTR-74, 2001.
Carpenter, J. R., Merckelbach, L., Callies, U., Clark, S., Gaslikova, L., and Baschek, B.: Potential impacts of offshore wind farms on North Sea stratification, PLOS ONE, 11, https://doi.org/10.1371/journal.pone.0159512, 2016.
Carreiras, J., Larroudé, P., Seabra-Santos, F., and Mory, M.: Wave scour around piles, in: Coastal Engineering 2000, Proceedings of the 27th International Conference on Coastal Engineering (ICCE), 16–21 July 2000, Sydney, Australia, ASCE, Reston, VA, USA, 1860–1870, https://doi.org/10.1061/40549(276)145, 2001.
Carroll, B., Cooper, B., Dewey, N., Whitehead, P., Dolphin, T., Rees, J., Judd, A., Whitehouse, R., and Harris, J.: A further review of sediment monitoring data, COWRIE Ltd., commissioned project ScourSed-09, ISBN 978-0-9561404-8-7, 2010.
Chen, H., Zhang, J., Guo, Y., Cui, L., Guan, D., and Jiang, L.: Laboratory modelling study on the scour characteristics around a jacket foundation subjected to combined wave-current loading, Renew. Energy, 122443, 2025.
Chiew, Y. M. and Melville, B. W.: Local scour around bridge piers, J. Hydraul. Res., 25, 15–26, https://doi.org/10.1080/00221688709499285, 1987.
Christiansen, N., Daewel, U., Djath, B., and Schrum, C.: Emergence of large-scale hydrodynamic structures due to atmospheric offshore wind farm wakes, Front. Mar. Sci., 64, https://doi.org/10.3389/fmars.2022.818501, 2022.
CMEMS: Atlantic – European North West Shelf – Ocean Physics Reanalysis, CMEMS [dataset], https://doi.org/10.48670/moi-00059, 2023a.
CMEMS: Atlantic – European North West Shelf – Wave Physics Reanalysis, CMEMS [dataset], https://doi.org/10.48670/moi-00060, 2023b.
Corvaro, S., Mancinelli, A., and Brocchini, M.: Flow dynamics of waves propagating over different permeable beds, Coastal Engineering Proceedings, 35, 35–35, https://doi.org/10.9753/icce.v35.waves.35, 2016.
DECC: Dynamics of scour pits and scour protection – Synthesis report and recommendations (Milestones 2 and 3), Department of Energy and Climate Change and Department for Environment, Food and Rural Affairs, Final Report, https://tethys.pnnl.gov/sites/default/files/publications/Whitehouse-et-al-2008.pdf, 2008.
Du, S., Wu, G., Zhu, D. Z., Wang, R., Lu, Y., and Liang, B.: Experimental study of local scour around submerged square piles in combined waves and current, Ocean Eng., 266, 113176, https://doi.org/10.1016/j.oceaneng.2022.113176, 2022.
EGS (International) Ltd.: Lynn and Inner Dowsing Offshore Wind Farms, Year 3 Post-Construction Survey (2011), Phase 1 – Geophysical Survey, Job No. 4918, Final Report – Rev 7, CREL Reference No LD-O-EV-013-0000-000000-368-D, Marine Data Exchange, https://www.marinedataexchange.co.uk/details/TCE-1041/2011-egs-lynn-and-inner-dowsing-year-3-post-construction-survey-phase-1—geophysical-survey/summary (last access: 18 September 2025), 2012.
EGS (International) Ltd.: Lynn and Inner Dowsing Offshore Wind Farms (October 2012), Job No. 5038, Final Report – Rev1, Marine Data Exchange, https://www.marinedataexchange.co.uk/details/TCE-1076/2012-egs-lynn-and-inner-dowsing-offshore-wind-farms-post-construction-hydrographic-and-geophysical-survey/summary (last access: 18 September 2025), 2013.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM 2020), EMODnet Bathymetry Consortium, https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a, 2020.
Escarameia, M. and May, R.: Scour around structures in tidal flows, Technical Report SR 521, HR Wallingford, Wallingford, UK, http://eprints.hrwallingford.com/id/eprint/436 (last access: 9 October 2025), 1999.
European Commission: An EU Strategy to harness the potential of offshore renewable energy for a climate-neutral future, European Commission, Communication COM/2020/741 final, European Commission, Brussels, Belgium, 27 pp., https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0741 (last access: 29 September 2025), 2020.
Gabriel, K. R.: The Biplot Graphic Display of Matrices with Application to Principal Component Analysis, Biometrika, 58, 453–467, https://doi.org/10.1093/biomet/58.3.453, 1971.
Garcia, K., Jordan, C., Melling, G., Schendel, A., Welzel, M., and Schlurmann, T.: Scour depth, sediment characteristics, and hydrodynamic conditions dataset at British offshore wind farms, 2005–2014, PANGAEA [dataset], https://doi.pangaea.de/10.1594/PANGAEA.984839, 2025.
Gazi, A. H., Purkayastha, S., and Afzal, M. S.: The equilibrium scour depth around a pier under the action of collinear waves and current, J. Mar. Sci. Eng., 8, 36, https://doi.org/10.3390/jmse8010036, 2020.
Guşatu, L. F., Menegon, S., Depellegrin, D., Zuidema, C., Faaij, A., and Yamu, C.: Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin, Sci. Rep., 11, 1–18, https://doi.org/10.1038/s41598-021-89537-1, 2021.
Hancu, S.: Sur le calcul des affouillements locaux dans la zone des piles de ponts, in: Proceedings of the 14th IAHR Congress: La recherche hydraulique et son impact sur l’environnement, International Association for Hydraulic Research, Société hydrotechnique de France, Paris, France, 29 August–3 September 1971, vol. 3, pp. 299–313, https://catalog.hathitrust.org/api/volumes/oclc/726174.html (last access: 29 September 2025), 1971.
Harasti, A., Gilja, G., Adžaga, N., and Škreb, K. A.: Principal Component Analysis in development of empirical scour formulae, in: Proceedings of the 7th IAHR Europe Congress, edited by: Stamou, A. I., and Tsihrintzis, V., Athens, Greece, 7–9 September 2022, 271–272, ISBN 978-618-85675-3-5, 2022.
Harris, J. and Whitehouse, R. J. S.: Scour prediction in non-uniform soils: Undrained shear strength and erodibility, in: Scour and Erosion: Proceedings of the 7th International Conference on Scour and Erosion (ICSE-7), Perth, Australia, edited by: Cheng, L., Draper, S., and An, H., CRC Press, Boca Raton, FL, USA, 2–4 December 2014, 267–274, ISBN 9781138027329, 2014.
Harris, J. M., Herman, W. M., and Cooper, B. S.: Offshore windfarms: an approach to scour assessment, in: Proceedings of the 2nd International Conference on Scour and Erosion, edited by: Chiew, Y. M., Lim, S.-Y., and Cheng, N.-S., Stallion Press, Singapore, 283–291, https://hdl.handle.net/20.500.11970/99946 (last access: 9 October 2025), 2004.
Harris, J. M., Tavouktsoglou, N. S., Couldrey, A., Whitehouse, R. J., and Klapper, J.: Scour prediction in cohesive marine soils: a hybrid approach, ISSMGE Int. J. Geoeng. Case Histories, 7, 59–75, https://doi.org/10.4417/IJGCH-07-04-06, 2022.
Hjorth, P.: Studies on the nature of local scour, Bulletin Series A, No. 46, Department of Water Resources Engineering, Lund Institute of Technology, Lund, Sweden, 1975.
Hu, R., Wang, X., Liu, H., and Lu, Y.: Experimental study of local scour around tripod foundation in combined collinear waves-current conditions, Journal of Marine Science and Engineering, 9, 1373, https://doi.org/10.3390/jmse9121373, 2021.
Jolliffe, I. T. and Cadima, J.: Principal component analysis: a review and recent developments, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150202, https://doi.org/10.1098/rsta.2015.0202, 2016.
Kenyon, N. and Cooper, B.: Sand banks, sand transport and offshore wind farms, ABP Marine Environmental Research Ltd., Southampton, UK, https://doi.org/10.13140/RG.2.1.1593.4807, 2005.
Laursen, E. M.: An analysis of relief bridge scour, J. Hydraul. Div., Proc. ASCE, 89, 93–118, https://doi.org/10.1061/JYCEAJ.0000896, 1963.
Link, O. and Zanke, U.: On the time-dependent scour-hole volume evolution at a circular pier in uniform coarse sand, in: Proc. 2nd International Conference on Scour and Erosion (ICSE-2), Singapore, edited by: Chiew, Y.-M., Lim, S.-Y., and Cheng, N.-S., Nanyang Technological University, Singapore, 14–17 November 2004, https://hdl.handle.net/20.500.11970/99984 (last access: 9 October 2025), 2004.
Lloret, J., Turiel, A., Solé, J., Berdalet, E., Sabatés, A., Olivares, A., Gili, J.-M., Vila-Subirós, J., and Sardá, R.: Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea, Sci. Total Environ., 824, 153803, https://doi.org/10.1016/j.scitotenv.2022.153803, 2022.
London Array Ltd.: Environmental Statement Volume 1: Offshore Works, Technical report, London Array Ltd., Crown Estate via Marine Data Exchange, https://www.marinedataexchange.co.uk/details/TCE-992/2003-2005-eon-london-array-environmental-statement (last access: 29 September 2025), 2005.
Louwersheimer, W. F., Verhagen, H. J., and Olthof, J.: Scour around an offshore wind turbine, in: Coastal Structures 2007 – Proceedings of the 5th Coastal Structures International Conference, CST07, Venice, Italy, World Scientific Publishing Company, Singapore, 2–4 July 2007, 1903–1912, https://doi.org/10.1142/9789814282024_0168, 2009.
Lyu, X., Cheng, Y., Wang, W., An, H., and Li, Y.: Experimental study on local scour around submerged monopile under combined waves and current, Ocean Eng., 240, 109929, 2021.
Matthieu J. and Raaijmakers T.: Interaction between Offshore Pipelines and Migrating Sand Waves, in: Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), Rio de Janeiro, Brazil, American Society of Mechanical Engineers (ASME), New York, NY, USA, 1–6 July 2012, OMAE2012-83875, 203–209, https://doi.org/10.1115/OMAE2012-83875 (last access: 9 October 2025), 2013.
Matutano, C., Negro, V., López-Gutiérrez, J.-S., and Esteban, M. D.: Scour prediction and scour protections in offshore wind farms, Renew. Energy, 57, 358–365, https://doi.org/10.1016/j.renene.2013.01.048, 2013.
May, R. P. and Willoughby, I.: Local scour around large obstructions, Technical Report SR 240, HR Wallingford, Wallingford, UK, http://eprints.hrwallingford.com/id/eprint/270 (last access: 9 October 2025), 1990.
McGovern, D. J., Ilic, S., Folkard, A. M., McLelland, S. J., and Murphy, B. J.: Time development of scour around a cylinder in simulated tidal currents, J. Hydraul. Eng., 140, 04014014, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001023, 2014.
Melling, G. J.: Hydrodynamic and geotechnical controls of scour around offshore monopiles, Ph.D. thesis, University of Southampton, Ocean and Earth Science, Southampton, UK, 250 pp., http://eprints.soton.ac.uk/id/eprint/378992 (last access: 9 October 2025), 2015.
Melville, B. W.: The physics of local scour at bridge piers, in: Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4), edited by: Sekiguchi, H., The Japanese Geotechnical Society, Tokyo, Japan, 5–7 November 2008, 28–40, https://hdl.handle.net/20.500.11970/100095 (last access: 9 October 2025), 2008.
Negro, V., López-Gutiérrez, J.-S., Esteban, M. D., Alberdi, P., Imaz, M., and Serraclara, J.-M.: Monopiles in offshore wind: preliminary estimate of main dimensions, Ocean Eng., 133, 253–261, https://doi.org/10.1016/j.oceaneng.2017.02.011, 2017.
Noormets, R., Ernstsen, V., Bartholoma, A., Flemming, B., and Hebbeln, D.: Local scour in a tidal environment: a case study from the Otzumer Balje tidal inlet, southern North Sea, preliminary results, in: River, Coastal and Estuarine Morphodynamics: RCEM 2003, edited by: Sánchez-Archilla, A., and Bateman, A., IAHR, 1134–1136, ISBN 90-805649-6-6, 2003.
Qi, M., Li, J., and Chen, Q.: Comparison of existing equations for local scour at bridge piers: parameter influence and validation, Nat. Hazards, 82, 2089–2105, https://doi.org/10.1007/s11069-016-2287-z, 2016.
Qi, W. G. and Gao, F. P.: Physical modeling of local scour development around a large-diameter monopile in combined waves and current, Coast. Eng., 83, 72–81, https://doi.org/10.1016/j.coastaleng.2013.10.007,, 2014.
Qu, L., An, H., Draper, S., Watson, P., Zhao, M., Harris, J., Whitehouse, R., and Zhang, D.: A review of scour impacting monopiles for offshore wind, Ocean Engineering, 301, 117385, https://doi.org//10.1016/j.oceaneng.2024.117385, 2024.
Richardson, M. D., Valent, P., Briggs, K., Bradley, J., and Griffin, S.: NRL mine burial experiments, in: Proceedings of the 2nd Australian-American Joint Conference on the Technologies of Mines and Mine Countermeasures, Sydney, Australia, 27–29 March 2001, 1–23, https://share.google/yobgPo9mN7uk6hqxt (last access: 29 September 2025), 2001.
Rivier, A., Bennis, A. C., Pinon, G., Magar, V., and Gross, M.: Parameterization of wind turbine impacts on hydrodynamics and sediment transport, Ocean Dyn., 66, 1285–1299, https://doi.org/10.1007/s10236-016-0983-6, 2016.
Roulund, A., Sutherland, J., Todd, D., and Sterner, J.: Parametric equations for Shields parameter and wave orbital velocity in combined current and irregular waves, in: Proceedings of the 8th International Conference on Scour and Erosion (ICSE-8), Oxford, UK, 12–15 September 2016, HR Wallingford, http://eprints.hrwallingford.com/id/eprint/1134 (last access: 9 October 2025), 2016.
Rudolph, D., Bos, K. J., Luijendijk, A. P., Rietema, K., and Out, J. M. M.: Scour around offshore structures – Analysis of field measurements, in: Proceedings of the 2nd International Conference on Scour and Erosion, edited by: Chiew, Y. M., Lim, S.-Y., and Cheng, N.-S., Stallion Press, Singapore, 400–407, https://hdl.handle.net/20.500.11970/99960 (last access: 9 October 2025), 2004.
Saathoff, J. E., Goldau, N., Achmus, M., Schendel, A., Welzel, M., and Schlurmann, T.: Influence of scour and scour protection on the stiffness of monopile foundations in sand, Appl. Ocean Res., 144, 103920, https://doi.org/10.1016/j.apor.2024.103920, 2024.
Sarkar, A.: Scour and flow around submerged structures, in: Proceedings of the Institution of Civil Engineers-Water Management, 167, 65–78, Thomas Telford Ltd., https://doi.org/10.1680/wama.12.00117, 2014.
Sarmiento, J., Guanche, R., Losada, I. J., Rosendo, E. M., Guindo, A., and de Guevara, J. L.: Scour processes around pile clusters of jacket foundations under steady currents, Ocean Eng., 313, 119502, https://doi.org/10.1016/j.oceaneng.2024.119502, 2024.
Schendel, A.: Wave-current-induced scouring processes and protection by widely graded material, Dissertation, Leibniz University Hannover, https://doi.org/10.15488/4453, 2018.
Schendel, A., Welzel, M., Schlurmann, T., and Hsu, T.-W.: Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents, Coast. Eng., 161, 103751, https://doi.org/10.1016/j.coastaleng.2020.103751, 2020.
Schultze, L. K. P., Merckelbach, L. M., Horstmann, J., Raasch, S., and Carpenter, J. R.: Increased mixing and turbulence in the wake of offshore wind farm foundations, J. Geophys. Res.-Oceans, 125, e2019JC015858, https://doi.org/10.1029/2019JC015858, 2020.
Sheppard, D. M., Odeh, M., and Glasser, T.: Large scale clear-water local pier scour experiments, J. Hydraul. Eng., 130, 957–963, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957), 2004.
Shields, M. A., Woolf, D. K., Grist, E. P., Kerr, S. A., Jackson, A. C., Harris, R. E., and Side, J.: Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment, Ocean Coast. Manag., 54, 2–9, https://doi.org/10.1016/j.ocecoaman.2010.10.036, 2011.
Smith, J. D. and McLean, S. R.: Spatially averaged flow over a wavy surface, J. Geophys. Res., 82, 1735–1746, https://doi.org/10.1029/JC082i012p01735, 1977.
Soulsby, R.: Dynamics of Marine Sands: A Manual for Practical Applications, Thomas Telford Publishing, London, UK, ISBN 072772584X, 1997.
Soulsby, R. L. and Whitehouse, R. J. S.: Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports '97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, Vol. 1, Centre for Advanced Engineering, University of Canterbury, Christchurch, NZ, 145–150, ISBN 0908993153, 1997.
Stahlmann, A.: Numerical and experimental modeling of scour at foundation structures for offshore wind turbines, in: Proceedings of the 10th ISOPE Ocean Mining & Gas Hydrates Symposium, Szczecin, Poland, 22–26 September 2013, International Society of Offshore and Polar Engineers (ISOPE), Cupertino, CA, USA, ISBN 9781880653920, 2013.
Sturt, F., Dix, J. K., and EMU Ltd.: The Outer Thames Estuary Regional Environmental Characterisation, Marine Aggregate Levy Sustainability Fund, 09/J/1/06/1305/0870, Technical report, Marine Aggregate Levy Sustainability Fund, 2009.
Sumer, B. M.: Liquefaction around marine structures (with CD-ROM), Vol. 39, World Scientific Publishing Co. Pte. Ltd., Singapore, 159 pp., ISBN 9789814329316, 2014.
Sumer, B. M. and Fredsøe, J.: Scour around pile in combined waves and current, J. Hydraul. Eng., 127, 403–411, https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(403), 2001.
Sumer, B. M., Fredsøe, J., and Christiansen, N.: Scour around vertical pile in waves, J. Waterway Port Coastal Ocean Eng., 118, 15–31, https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15), 1992.
Sumer, B. M. and Fredsøe, J.: The mechanics of scour in the marine environment, World Scientific Publishing Co. Pte. Ltd., Singapore, 552 pp., ISBN 9810249306, 2002.
Sumer, B. M., Christiansen, N., and Fredsøe, J.: The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves, J. Fluid Mech., 332, 41–70, https://doi.org/10.1017/S0022112096003898, 1997.
Sumer, B. M., Petersen, T. U., Locatelli, L., Fredsøe, J., Musumeci, R. E., and Foti, E.: Backfilling of a scour hole around a pile in waves and current, J. Waterway Port Coastal Ocean Eng., 139, 9–23, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000161, 2013.
Teilmann, J. and Carstensen, J.: Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – evidence of slow recovery, Environ. Res. Lett., 7, https://doi.org/10.1088/1748-9326/7/4/045101, 2012.
Van Rijn, L. C.: Sediment transport, part I: bed load transport, J. Hydraul. Eng., 110, 1431–1456, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431), 1984.
Van Rijn, L. C., Soulsby, R., Hoekstra, P., and Davies, A. G.: Transport of fine sands by currents and waves, J. Waterway Port Coastal Ocean Eng., 119, 123–143, https://doi.org/10.1061/(ASCE)0733-950X(1993)119:2(123), 1993.
Vanhellemont, Q. and Ruddick, K.: Turbid wakes associated with offshore wind turbines observed with Landsat 8, Remote Sens. Environ., 145, 105–115, https://doi.org/10.1016/j.rse.2014.01.009, 2014.
Walker, W.: Field measurements of local pier scour in a tidal inlet, MSc, University of Florida, 1995.
Watson, S. C., Somerfield, P. J., Lemasson, A. J., Knights, A. M., Edwards-Jones, A., Nunes, J., and Beaumont, N. J.: The global impact of offshore wind farms on ecosystem services, Ocean Coast. Manag., 249, 107023, https://doi.org/10.1016/j.ocecoaman.2024.107023, 2024.
Welzel, M.: Wave-current-induced scouring processes around complex offshore structures, Ph.D. thesis, Leibniz University Hannover, Hannover, Germany, https://doi.org/10.15488/11225, 2021.
Welzel, M., Schendel, A., Schlurmann, T., and Hildebrandt, A.: Volume-based assessment of erosion patterns around a hydrodynamic transparent offshore structure, Energies, 12, 3089, https://doi.org/10.3390/en12163089,, 2019.
Welzel, M., Schendel, A., Satari, R., Neuweiler, I., and Schlurmann, T.: Spatio-temporal analysis of scour around complex offshore foundations under clear water and live bed conditions, Ocean Eng., 298, 117042, https://doi.org/10.1016/j.oceaneng.2024.117042, 2024.
Whitehouse, R.: Dynamics of estuarine muds, Thomas Telford Ltd., London, UK, ISBN 0727728644, 2000.
Whitehouse, R. J. S.: Scour at marine structures: a manual for practical applications, Thomas Telford Ltd., London, UK, ISBN 0727726552, 1998.
Whitehouse, R. J. S., Harris, J. M., Mundon, T. R., and Sutherland, J.: Scour at offshore structures, in: Proceedings of the 5th International Conference on Scour and Erosion, San Francisco, CA, USA, 11–20, https://doi.org/10.1061/41147(392)2, 2010.
Whitehouse, R. J. S., Harris, J. M., Sutherland, J., and Rees, J.: The nature of scour development and scour protection at onshore wind farm foundations, Mar. Pollut. Bull., 62, 73–88, 2011.
Whitehouse, R. J. S. and Harris, J.: Scour prediction offshore and soil erosion testing, in: Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2014), San Francisco, CA, USA, 8–13 June 2014, Volume 8B, Ocean Engineering, Paper No. OMAE2014-24271, V08BT06A044, 10 pp., ASME, https://doi.org/10.1115/OMAE2014-24271, 2014.
Whitehouse, R. J. S., Sutherland, J., and O’Brien, D.: Seabed scour assessment for offshore windfarm, in: Proceedings of the 3rd International Conference on Scour and Erosion (ICSE-3), Gouda, the Netherlands, HR Wallingford, 3–5 July 2006, http://eprints.hrwallingford.com/id/eprint/595 (last access: 9 October 2025), 2006.
Wilson, J. C. and Elliott, M.: The habitat-creation potential of offshore wind farms, Wind Energy, 12, 203–212, https://doi.org/10.1002/we.324, 2009.
Yao, Y., Chen, Y., Zhou, H., and Yang, H.: Numerical modeling of current loads on a net cage considering fluid–structure interaction, J. Fluids Struct., 62, 350–366, https://doi.org/10.1016/j.jfluidstructs.2016.01.004, 2016.
Zanke, U. C. E., Hsu, T.-W., Roland, A., Link, O., and Diab, R.: Equilibrium scour depths around piles in noncohesive sediments under currents and waves, Coastal Eng., 58, 986–991, https://doi.org/10.1016/j.coastaleng.2011.05.011, 2011.
Zhao, M., Zhu, X., Cheng, L., and Teng, B.: Experimental study of local scour around subsea caissons in steady currents, Coast. Eng., 60, 30–40, https://doi.org/10.1016/j.coastaleng.2011.08.004, 2012.
Short summary
Scour depths at nine British offshore wind farms (OWFs) were analysed. Site-specific scour drivers were identified, including the relative water depth, relative median grain size, Keulegan–Carpenter number, and sediment mobility. These findings improve our understanding of scour behaviour at different scales and lay the groundwork for enhancing scour prediction frameworks at future offshore wind farms, thereby supporting the expansion of sustainable energy.
Scour depths at nine British offshore wind farms (OWFs) were analysed. Site-specific scour...
Altmetrics
Final-revised paper
Preprint