Articles | Volume 10, issue 10
https://doi.org/10.5194/wes-10-2395-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-2395-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of local winds on wind power characteristics in a High Arctic valley
The University Centre in Svalbard, 9171 Longyearbyen, Norway
Norwegian University of Science and Technology, 7491 Trondheim, Norway
Knut Vilhelm Høyland
Norwegian University of Science and Technology, 7491 Trondheim, Norway
The University Centre in Svalbard, 9171 Longyearbyen, Norway
Aleksey Shestov
The University Centre in Svalbard, 9171 Longyearbyen, Norway
Anna Sjöblom
The University Centre in Svalbard, 9171 Longyearbyen, Norway
Related authors
No articles found.
Renée Mie Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut Vilhelm Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian Bjerregaaard Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ Gil Duarte Casal
The Cryosphere, 19, 4167–4192, https://doi.org/10.5194/tc-19-4167-2025, https://doi.org/10.5194/tc-19-4167-2025, 2025
Short summary
Short summary
An airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea, useful for evaluating microwave snow penetration. Ka-band and Ku-band had limited penetration with significant contributions from the air–snow interface, contradicting traditional assumptions with discrepancies between commonly used C/S-band "snow-radar" methodologies, all challenging comparisons of airborne and spaceborne estimates.
Renée Mie Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut Vilhelm Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian Bjerregaaard Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ Gil Duarte Casal
The Cryosphere, 19, 4193–4209, https://doi.org/10.5194/tc-19-4193-2025, https://doi.org/10.5194/tc-19-4193-2025, 2025
Short summary
Short summary
An airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea, useful for evaluating microwave snow penetration. Ka-band and Ku-band had limited penetration with significant contributions from the air–snow interface, contradicting traditional assumptions with discrepancies between commonly used C/S-band "snow-radar" methodologies, all challenging comparisons of airborne and spaceborne estimates.
Lia Herrmannsdörfer, Raed Khalil Lubbad, and Knut Vilhelm Høyland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3055, https://doi.org/10.5194/egusphere-2024-3055, 2024
Short summary
Short summary
Numerical simulations of iceberg drift and deterioration are a useful tool to bridge the gap of otherwise scarce iceberg observations in the Barents Sea. We forced iceberg simulations with different combinations of ocean, sea ice and atmosphere models to study their impact on the simulation results. We find that especially using different sea ice models Topaz and Barents-2.5 influences the iceberg drift, deterioration and occurrence in the domain.
Lia Herrmannsdörfer, Raed Khalil Lubbad, and Knut Vilhelm Høyland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3053, https://doi.org/10.5194/egusphere-2024-3053, 2024
Preprint archived
Short summary
Short summary
Disagreement between models describing the Arctic raises the question of suitability of those models for individual use-cases. We compared the ocean-sea ice models Topaz and Barents-2.5, and the atmospheric reanalyses ERA5 and CARRA in the Barents Sea. The results are later used to explain differences caused in iceberg simulations. We highlight spatial differences e.g. at the sea ice edge and coastlines, that are caused by different horizontal resolution and physical variable description.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Cited articles
Banta, R. M., Olivier, L. D., and Levinson, D. H.: Evolution of the Monterey Bay Sea-Breeze Layer As Observed by Pulsed Doppler Lidar, J. Atmos. Sci., 50, 3959–3982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2, 1993. a
Barstad, I. and Adakudlu, M.: Observation and modelling of gap flow and wake formation on Svalbard, Q. J. R. Meteorol. Soc., 137, 1731–1738, https://doi.org/10.1002/qj.782, 2011. a
Barthelmie, R. J. and Jensen, L. E.: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm, Wind Energy, 13, 573–586, https://doi.org/10.1002/we.408, 2010. a
Blackadar, A. K.: Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions, Bull. Am. Meteorol. Soc., 38, 283–290, https://doi.org/10.1175/1520-0477-38.5.283, 1957. a
Browning, K. A. and Pardoe, C. W.: Structure of low‐level jet streams ahead of mid‐latitude cold fronts, Q. J. R. Meteorol. Soc., 99, 619–638, https://doi.org/10.1002/qj.49709942204, 1973. a
Cannon, D., Brayshaw, D., Methven, J., Coker, P., and Lenaghan, D.: Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain, Renewable Energy, 75, 767–778, https://doi.org/10.1016/j.renene.2014.10.024, 2015. a
Chiao, S. and Dumais, R.: A down-valley low-level jet event during T-REX 2006, Meteor. Atmos. Phys., 122, 75–90, https://doi.org/10.1007/s00703-013-0279-z, 2013. a
Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O., Mortensen, N. G., Kelly, M., Larsén, X. G., Olsen, B. T., Floors, R., Lizcano, G., Casso, P., Lacave, O., Bosch, A., Bauwens, I., Knight, O. J., Potter Van Loon, A., Fox, R., Parvanyan, T., Krohn Hansen, S. B., Heathfield, D., Onninen, M., and Drummond, R.: The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application, Bull. Am. Meteorol. Soc., 104, E1507–E1525, https://doi.org/10.1175/BAMS-D-21-0075.1, 2023. a, b
de Witt, M., Stefánsson, H., Valfells, Á., and Larsen, J. N.: Energy resources and electricity generation in Arctic areas, Renewable Energy, 169, 144–156, https://doi.org/10.1016/j.renene.2021.01.025, 2021. a
Dörnbrack, A., Stachlewska, I. S., Ritter, C., and Neuber, R.: Aerosol distribution around Svalbard during intense easterly winds, Atmos. Chem. Phys., 10, 1473–1490, https://doi.org/10.5194/acp-10-1473-2010, 2010. a
ECMWF: Copernicus Arctic Regional Reanalysis (CARRA): Full system documentation – Copernicus Knowledge Base - ECMWF Confluence Wiki, https://confluence.ecmwf.int/display/CKB/Copernicus+Arctic+Regional+Reanalysis+(CARRA):+Full+system+documentation (last access: 21 January 2025), 2025. a
Efimov, V. V. and Komarovskaya, O. I.: The Novaya Zemlya Bora: Analysis and Numerical Modeling, Izvestiya, Atmospheric and Oceanic Physics, 54, 73–85, https://doi.org/10.1134/S000143381801005X, 2018. a
Emeis, S.: A simple analytical wind park model considering atmospheric stability, Wind Energy, 13, 459–469, https://doi.org/10.1002/we.367, 2010. a
Emeis, S.: Current issues in wind energy meteorology, Meteor. Appl., 21, 803–819, https://doi.org/10.1002/met.1472, 2014a. a
Emeis, S.: Wind speed and shear associated with low-level jets over Northern Germany, Meteorologische Zeitschrift, 23, 295–304, https://doi.org/10.1127/0941-2948/2014/0551, 2014b. a, b
Esau, I. and Repina, I.: Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations, Adv. Meteorol., 2012, 1–16, https://doi.org/10.1155/2012/568454, 2012. a
Gryning, S.-E., Floors, R., Peña, A., Batchvarova, E., and Brümmer, B.: Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites, Bound.-Layer Meteorol., 159, 329–348, https://doi.org/10.1007/s10546-015-0113-x, 2016. a
Grünewald, T., Dierer, S., Cattin, R., Steiner, P., Steinkogler, W., Fundel, F., and Lehning, M.: Mapping frequencies of icing on structures in Switzerland, J. Wind Eng. Ind. Aerodyn., 107–108, 76–82, https://doi.org/10.1016/j.jweia.2012.03.022, 2012. a
Gutierrez, W., Ruiz-Columbie, A., Tutkun, M., and Castillo, L.: Impacts of the low-level jet's negative wind shear on the wind turbine, Wind Energ. Sci., 2, 533–545, https://doi.org/10.5194/wes-2-533-2017, 2017. a
Haakenstad, H., Breivik, Ø., Furevik, B. R., Reistad, M., Bohlinger, P., and Aarnes, O. J.: NORA3: A Nonhydrostatic High-Resolution Hindcast of the North Sea, the Norwegian Sea, and the Barents Sea, J. Appl. Meteor. Climatol., 60, 1443–1464, https://doi.org/10.1175/JAMC-D-21-0029.1, 2021. a
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B., Sorteberg, A. (Eds.), Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W. V. D., Bogen, J., Borstad, C. P., Breili, K., Breivik, Ø., Børsheim, K. Y., Christiansen, H. H., Dobler, A., Engeset, R., Frauenfelder, R., Gerland, S., Gjelten, H. M., Gundersen, J., Isaksen, K., Jaedicke, C., Kierulf, H., Kohler, J., Li, H., Lutz, J., Melvold, K., Mezghani, A., Nilsen, F., Nilsen, I. B., Nilsen, J. E. Ø., Pavlova, O., Ravndal, O., Risebrobakken, B., Saloranta, T., Sandven, S., Schuler, T., Simpson, M. J. R., Skogen, M. D., Smedsrud, L. H., Sund, M., Vikhamar-Schuler, D., Westermann, S., and Wong, W. K.: Climate in Svalbard 2100, Commisioned report from the Norwegian Environment Agency (Miljødirektoratet), The Norwegian Centre for Climate Services, https://www.miljodirektoratet.no/publikasjoner/2019/februar-2019/climate-in-svalbard-2100--a-knowledge-base-for-climate-adaptation (last access: 2 June 2022), 2019. a, b, c
Henkies, M., Kral, S., Frank, L., Kramer, D., Jonassen, M., and Reuder, J.: Sodar measurements in Adventdalen, Svalbard, 2015–2017, Norwegian Meteorological Institute (MET) / Arctic Data Centre (ADC) [data set], https://doi.org/10.21343/HRJ5-0J70, 2024a. a, b
Henkies, M., Kral, S., Frank, L., Kramer, D., Jonassen, M., and Reuder, J.: Wind lidar measurements in Adventdalen, Svalbard, 2020, Norwegian Meteorological Institute (MET) / Arctic Data Centre (ADC) [data set], https://doi.org/10.21343/9PJF-BZ59, 2024b. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.BD0915C6, 2018. a
Hertach, M., Schlegel, T., Markus, G., Schaffner, B., and Engel, J.: Wind energy plants, https://www.geocat.ch/geonetwork/srv/eng/catalog.search#/metadata/b11962c5-cad9-4783-9e88-d8248e90c47f (last access: 28 November 2024), 2024. a
Jackson, P. L., Mayr, G., and Vosper, S.: Dynamically-Driven Winds, in: Mountain Weather Research and Forecasting, edited by: Chow, F. K., De Wekker, S. F., and Snyder, B. J., Springer Netherlands, Dordrecht, 121–218, ISBN 978-94-007-4097-6 978-94-007-4098-3, 2013. a
Kalthoff, N. and Vogel, B.: Counter-current and channelling effect under stable stratification in the area of Karlsruhe, Theor. Appl. Clim., 45, 113–126, https://doi.org/10.1007/BF00866400, 1992. a
Karlsen, J.: Energiomstillingen – SVALBARD ENERGI AS, https://www.svalbard-energi.no/energiomstilling.589564.no.html (last access: 18 February 2025), 2025. a
Kilpeläinen, T., Vihma, T., and Ólafsson, H.: Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard, Tellus A, 63, 223, https://doi.org/10.1111/j.1600-0870.2010.00481.x, 2011. a
Kruyt, B., Lehning, M., and Kahl, A.: Potential contributions of wind power to a stable and highly renewable Swiss power supply, Appl. En., 192, 1–11, https://doi.org/10.1016/j.apenergy.2017.01.085, 2017. a
Lampert, A., Bernalte Jimenez, B., Gross, G., Wulff, D., and Kenull, T.: One-year observations of the wind distribution and low-level jet occurrence at Braunschweig, North German Plain: Wind distribution and low-level jet occurrence at Braunschweig, Wind Energy, 19, 1807–1817, https://doi.org/10.1002/we.1951, 2016. a, b
Leahy, P. G. and McKeogh, E. J.: Persistence of low wind speed conditions and implications for wind power variability, Wind Energy, 16, 575–586, https://doi.org/10.1002/we.1509, 2013. a, b
Lehner, M., Rotach, M. W., and Obleitner, F.: A Method to Identify Synoptically Undisturbed, Clear-Sky Conditions for Valley-Wind Analysis, Bound.-Layer Meteorol., 173, 435–450, https://doi.org/10.1007/s10546-019-00471-2, 2019. a
Ludescher-Huber, F., Martinsen, D. C., Støvne, E. M., Haslerud, A. S., Hoem, M. E., Nodeland, A. M., Nygaard, B. E. K., Byrkjedal, Ø., Nyhammer, F., Martinsen, D. C., Rinde, E. B., Grini, S., Buraas, M. S., Warvik, O. B. S., Høydal, M. B., Steinsund, B. A., Giske, F., Vik, A., Frøhaug, E. I., Finnby, A., Kornstad, T., Isdal, T., Rostad, L. J., Nøttveit, O.-M., Herdlevær, E., Berg, E., Suleiman, A., Mürer, V., and Riise, E.: Sol- og vindkraft i Longyearbyen [Solar and wind power in Longyearbyen], Feasibility study, Svalbard Energi AS/Norconsult, https://www.svalbard-energi.no/getfile.php/5234489.3032.p7jlqpntmjsiiq/R01_Sol-+og+vindkraft+i+Longyearbyen_J02NY.pdf (last access: 25 July 2024), 2023. a
Mack, L., Kähnert, M., Rauschenbach, Q., Frank, L., Hasenburg, F. H., Huss, J., Jonassen, M. O., Malpas, M., Batrak, Y., Remes, T., Pirk, N., and Thomas, C. K.: Stable Boundary Layers in an Arctic Fjord-Valley System: Evaluation of Temperature Profiles Observed From Fiber-Optic Distributed Sensing and Comparison to Numerical Weather Prediction Systems at Different Resolutions, J. Geophys. Res. Atmos., 130, e2024JD042825, https://doi.org/10.1029/2024JD042825, 2025. a, b, c, d
Mayer, S., Jonassen, M. O., Sandvik, A., and Reuder, J.: Profiling the Arctic Stable Boundary Layer in Advent Valley, Svalbard: Measurements and Simulations, Bound.-Layer Meteorol., 143, 507–526, https://doi.org/10.1007/s10546-012-9709-6, 2012. a, b, c
Parish, T. R.: Forcing of the Summertime Low-Level Jet along the California Coast, J. Appl. Meteor., 39, 2421–2433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2, 2000. a
Previdi, M., Smith, K. L., and Polvani, L. M.: Arctic amplification of climate change: a review of underlying mechanisms, Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29, 2021. a
Rausch, T., Cañadillas, B., Hampel, O., Simsek, T., Tayfun, Y. B., Neumann, T., Siedersleben, S., and Lampert, A.: Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight, Atmosphere, 13, 839, https://doi.org/10.3390/atmos13050839, 2022. a
Richner, H. and Hächler, P.: Understanding and Forecasting Alpine Foehn, in: Mountain weather research and forecasting: recent progress and current challenges, Springer, New York, ISBN 978-94-007-4097-6, 2012. a
Sandvik, A. D. and Furevik, B. R.: Case Study of a Coastal Jet at Spitsbergen–Comparison of SAR- and Model-Estimated Wind, Mon. Weather Rev., 130, 1040–1051, https://doi.org/10.1175/1520-0493(2002)130<1040:CSOACJ>2.0.CO;2, 2002. a, b
Schmid, F., Schmidli, J., Hervo, M., and Haefele, A.: Diurnal Valley Winds in a Deep Alpine Valley: Observations, Atmosphere, 11, 54, https://doi.org/10.3390/atmos11010054, 2020. a
Schmidli, J. and Quimbayo-Duarte, J.: Diurnal Valley Winds in a Deep Alpine Valley: Model Results, Meteorology, 2, 87–106, https://doi.org/10.3390/meteorology2010007, 2023. a
Schyberg, H., Yang, X., Køltzow, M. A. Ø., Amstrup, B., Bakketun, A., Bazile, E., Bojarova, J., Box, J. E., Dahlgren, P., Hagelin, S., Homleid, M., Horányi, A., Høyer, J., Johansson, A., Killie, M. A., Körnich, H., Le Moigne, P., Lindskog, M., Manninen, T., Nielsen Englyst, P., Nielsen, K. P., Olsson, E., Palmason, B., Peralta Aros, C., Randriamampianina, R., Samuelsson, P., Stappers, R., Støylen, E., Thorsteinsson, S., Valkonen, T., and Wang, Z. Q.: Arctic regional reanalysis on single levels from 1991 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.713858F6, 2021a. a
Schyberg, H., Yang, X., Køltzow, M. A. Ø., Amstrup, B., Bakketun, A., Bazile, E., Bojarova, J., Box, J. E., Dahlgren, P., Hagelin, S., Homleid, M., Horányi, A., Høyer, J., Johansson, A., Killie, M. A., Körnich, H., Le Moigne, P., Lindskog, M., Manninen, T., Nielsen Englyst, P., Nielsen, K. P., Olsson, E., Palmason, B., Peralta Aros, C., Randriamampianina, R., Samuelsson, P., Stappers, R., Støylen, E., Thorsteinsson, S., Valkonen, T., and Wang, Z. Q.: Arctic regional reanalysis on height levels from 1991 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.8679900D, 2021b. a
Schön, M., Suomi, I., Altstädter, B., van Kesteren, B., zum Berge, K., Platis, A., Wehner, B., Lampert, A., and Bange, J.: Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft, Polar Research, https://doi.org/10.33265/polar.v41.7884, 2022. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Shestakova, A. A., Chechin, D. G., Lüpkes, C., Hartmann, J., and Maturilli, M.: The foehn effect during easterly flow over Svalbard, Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, 2022. a, b, c
Simpson, J. E.: Sea breeze and local winds, Cambridge University Press, Cambridge / New York, ISBN 978-0-521-45211-3, 1994. a
Sisterson, D., Hicks, B., Coulter, R., and Wesely, M.: Difficulties in using power laws for wind energy assessment, Solar Energy, 31, 201–204, https://doi.org/10.1016/0038-092X(83)90082-8, 1983. a
Skeie, P. and Grønås, S.: Strongly stratified easterly flows across Spitsbergen, Tellus A, 52, 473, https://doi.org/10.3402/tellusa.v52i5.12281, 2000. a
Steele, C. J., Dorling, S. R., von Glasow, R., and Bacon, J.: Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: implications for offshore wind energy: Sea-Breeze Types and Characteristics Offshore, Q. J. R. Meteorol. Soc., 141, 1821–1835, https://doi.org/10.1002/qj.2484, 2015. a
Storm, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I.: Evaluation of the Weather Research and Forecasting model on forecasting low‐level jets: implications for wind energy, Wind Energy, 12, 81–90, https://doi.org/10.1002/we.288, 2009. a
Stull, R. B. (Ed.): An Introduction to Boundary Layer Meteorology, Springer Netherlands, Dordrecht, ISBN 978-90-277-2769-5 978-94-009-3027-8, https://doi.org/10.1007/978-94-009-3027-8, 1988. a, b
Valkonen, T., Stoll, P., Batrak, Y., Køltzow, M., Schneider, T. M., Stigter, E. E., Aashamar, O. B., Støylen, E., and Jonassen, M. O.: Evaluation of a sub-kilometre NWP system in an Arctic fjord-valley system in winter, Tellus A, 72, 1838181, https://doi.org/10.1080/16000870.2020.1838181, 2020. a, b, c, d, e
Vihma, T., Kilpeläinen, T., Manninen, M., Sjöblom, A., Jakobson, E., Palo, T., Jaagus, J., and Maturilli, M.: Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring, Adv. Meteorol., 2011, 1–14, https://doi.org/10.1155/2011/486807, 2011. a, b, c
Whiteman, C. D. and Doran, J. C.: The Relationship between Overlying Synoptic-Scale Flows and Winds within a Valley, J. Appl. Meteor., 32, 1669–1682, https://doi.org/10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2, 1993. a, b
Wickström, S., Jonassen, M. O., Cassano, J. J., and Vihma, T.: Present Temperature, Precipitation, and Rain-on-Snow Climate in Svalbard, J. Geophys. Res. Atmos., 125, e2019JD032155, https://doi.org/10.1029/2019JD032155, 2020. a
Short summary
For wind energy in the Arctic, a better understanding of wind characteristics is necessary. Observations from a valley in Svalbard show that local, thermally driven valley winds are frequent. They increase the average wind speed and reduce the wind variability in this valley, which is not reproduced well by common numerical model products. The wind characteristics are advantageous for wind power in valleys.
For wind energy in the Arctic, a better understanding of wind characteristics is necessary....
Altmetrics
Final-revised paper
Preprint