Articles | Volume 4, issue 1
https://doi.org/10.5194/wes-4-127-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-4-127-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The aerodynamics of the curled wake: a simplified model in view of flow control
Luis A. Martínez-Tossas
CORRESPONDING AUTHOR
National Renewable Energy Laboratory, Golden, CO, USA
Jennifer Annoni
National Renewable Energy Laboratory, Golden, CO, USA
Paul A. Fleming
National Renewable Energy Laboratory, Golden, CO, USA
Matthew J. Churchfield
National Renewable Energy Laboratory, Golden, CO, USA
Viewed
Total article views: 5,354 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Aug 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,965 | 1,323 | 66 | 5,354 | 110 | 71 |
- HTML: 3,965
- PDF: 1,323
- XML: 66
- Total: 5,354
- BibTeX: 110
- EndNote: 71
Total article views: 4,350 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Mar 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,400 | 896 | 54 | 4,350 | 87 | 53 |
- HTML: 3,400
- PDF: 896
- XML: 54
- Total: 4,350
- BibTeX: 87
- EndNote: 53
Total article views: 1,004 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Aug 2018)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
565 | 427 | 12 | 1,004 | 23 | 18 |
- HTML: 565
- PDF: 427
- XML: 12
- Total: 1,004
- BibTeX: 23
- EndNote: 18
Viewed (geographical distribution)
Total article views: 5,354 (including HTML, PDF, and XML)
Thereof 4,069 with geography defined
and 1,285 with unknown origin.
Total article views: 4,350 (including HTML, PDF, and XML)
Thereof 3,199 with geography defined
and 1,151 with unknown origin.
Total article views: 1,004 (including HTML, PDF, and XML)
Thereof 870 with geography defined
and 134 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
49 citations as recorded by crossref.
- The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows L. Martínez-Tossas et al. 10.5194/wes-6-555-2021
- Design and analysis of a wake steering controller with wind direction variability E. Simley et al. 10.5194/wes-5-451-2020
- Adaptation of Engineering Wake Models using Gaussian Process Regression and High-Fidelity Simulation Data L. Andersson et al. 10.1088/1742-6596/1618/2/022043
- Parametric dependencies of the yawed wind‐turbine wake development E. Kleusberg et al. 10.1002/we.2395
- Experimental investigation and analytical modelling of active yaw control for wind farm power optimization H. Zong & F. Porté-Agel 10.1016/j.renene.2021.02.059
- Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1 P. Fleming et al. 10.5194/wes-4-273-2019
- Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model D. Wei et al. 10.3390/en14154494
- Power Maximization and Fatigue-Load Mitigation in a Wind-turbine Array by Active Yaw Control: an LES Study M. Lin & F. Porté-Agel 10.1088/1742-6596/1618/4/042036
- Pseudo-2D RANS: A LiDAR-driven mid-fidelity model for simulations of wind farm flows S. Letizia & G. Iungo 10.1063/5.0076739
- Wind Farm Modeling with Interpretable Physics-Informed Machine Learning M. Howland & J. Dabiri 10.3390/en12142716
- Real-time relocation of floating offshore wind turbine platforms for wind farm efficiency maximization: An assessment of feasibility and steady-state potential A. Kheirabadi & R. Nagamune 10.1016/j.oceaneng.2020.107445
- Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment M. Howland et al. 10.1063/5.0023746
- Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms B. Doekemeijer et al. 10.3390/en15061964
- A new method for simulating multiple wind turbine wakes under yawed conditions D. Wei et al. 10.1016/j.oceaneng.2021.109832
- Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models M. Lin & F. Porté-Agel 10.3390/en12234574
- Generation and decay of counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer C. Shapiro et al. 10.1017/jfm.2020.717
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- A quantitative review of wind farm control with the objective of wind farm power maximization A. Kheirabadi & R. Nagamune 10.1016/j.jweia.2019.06.015
- Wind turbine partial wake merging description and quantification R. Scott et al. 10.1002/we.2504
- Mechanisms of dynamic near-wake modulation of a utility-scale wind turbine A. Abraham et al. 10.1017/jfm.2021.737
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- A Wake Modeling Paradigm for Wind Farm Design and Control C. Shapiro et al. 10.3390/en12152956
- Predicting the benefit of wake steering on the annual energy production of a wind farm using large eddy simulations and Gaussian process regression D. Hoek et al. 10.1088/1742-6596/1618/2/022024
- Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load J. De Kooning et al. 10.3390/pr9122224
- A new method to characterize the curled wake shape under yaw misalignment B. Sengers et al. 10.1088/1742-6596/1618/6/062050
- The Effect of Using Different Wake Models on Wind Farm Layout Optimization: A Comparative Study P. Yang & H. Najafi 10.1115/1.4052775
- Improving wind farm flow models by learning from operational data J. Schreiber et al. 10.5194/wes-5-647-2020
- Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines J. Bossuyt et al. 10.1017/jfm.2021.237
- Large eddy simulations of curled wakes from tilted wind turbines H. Johlas et al. 10.1016/j.renene.2022.02.018
- Wind Farm Simulation and Layout Optimization in Complex Terrain J. Allen et al. 10.1088/1742-6596/1452/1/012066
- Wind farm blockage effects: comparison of different engineering models E. Branlard et al. 10.1088/1742-6596/1618/6/062036
- Toward flow control: An assessment of the curled wake model in the FLORIS framework C. Bay et al. 10.1088/1742-6596/1618/2/022033
- Comparison of modular analytical wake models to the Lillgrund wind plant N. Hamilton et al. 10.1063/5.0018695
- Incoming flow measurements of a utility-scale wind turbine using super-large-scale particle image velocimetry C. Li et al. 10.1016/j.jweia.2019.104074
- A point vortex transportation model for yawed wind turbine wakes H. Zong & F. Porté-Agel 10.1017/jfm.2020.123
- Experimental results of wake steering using fixed angles P. Fleming et al. 10.5194/wes-6-1521-2021
- Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations P. Hulsman et al. 10.5194/wes-5-309-2020
- The curled wake model: equivalence of shed vorticity models L. Martínez-Tossas & E. Branlard 10.1088/1742-6596/1452/1/012069
- A vortex sheet based analytical model of the curled wake behind yawed wind turbines M. Bastankhah et al. 10.1017/jfm.2021.1010
- Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2 P. Fleming et al. 10.5194/wes-5-945-2020
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow P. Hulsman et al. 10.5194/wes-7-237-2022
- Control-oriented model for secondary effects of wake steering J. King et al. 10.5194/wes-6-701-2021
- Wind farm power optimization through wake steering M. Howland et al. 10.1073/pnas.1903680116
- Highlighting the impact of yaw control by parsing atmospheric conditions based on total variation N. Hamilton 10.1088/1742-6596/1452/1/012006
- An adaptation of the super-Gaussian wake model for yawed wind turbines F. Blondel et al. 10.1088/1742-6596/1618/6/062031
- Evaluation of the potential for wake steering for U.S. land-based wind power plants D. Bensason et al. 10.1063/5.0039325
- Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance E. Simley et al. 10.5194/wes-6-1427-2021
- Engineering models for turbine wake velocity deficit and wake deflection. A new proposed approach for onshore and offshore applications R. Ruisi & E. Bossanyi 10.1088/1742-6596/1222/1/012004
48 citations as recorded by crossref.
- The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows L. Martínez-Tossas et al. 10.5194/wes-6-555-2021
- Design and analysis of a wake steering controller with wind direction variability E. Simley et al. 10.5194/wes-5-451-2020
- Adaptation of Engineering Wake Models using Gaussian Process Regression and High-Fidelity Simulation Data L. Andersson et al. 10.1088/1742-6596/1618/2/022043
- Parametric dependencies of the yawed wind‐turbine wake development E. Kleusberg et al. 10.1002/we.2395
- Experimental investigation and analytical modelling of active yaw control for wind farm power optimization H. Zong & F. Porté-Agel 10.1016/j.renene.2021.02.059
- Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1 P. Fleming et al. 10.5194/wes-4-273-2019
- Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model D. Wei et al. 10.3390/en14154494
- Power Maximization and Fatigue-Load Mitigation in a Wind-turbine Array by Active Yaw Control: an LES Study M. Lin & F. Porté-Agel 10.1088/1742-6596/1618/4/042036
- Pseudo-2D RANS: A LiDAR-driven mid-fidelity model for simulations of wind farm flows S. Letizia & G. Iungo 10.1063/5.0076739
- Wind Farm Modeling with Interpretable Physics-Informed Machine Learning M. Howland & J. Dabiri 10.3390/en12142716
- Real-time relocation of floating offshore wind turbine platforms for wind farm efficiency maximization: An assessment of feasibility and steady-state potential A. Kheirabadi & R. Nagamune 10.1016/j.oceaneng.2020.107445
- Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment M. Howland et al. 10.1063/5.0023746
- Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms B. Doekemeijer et al. 10.3390/en15061964
- A new method for simulating multiple wind turbine wakes under yawed conditions D. Wei et al. 10.1016/j.oceaneng.2021.109832
- Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models M. Lin & F. Porté-Agel 10.3390/en12234574
- Generation and decay of counter-rotating vortices downstream of yawed wind turbines in the atmospheric boundary layer C. Shapiro et al. 10.1017/jfm.2020.717
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- A quantitative review of wind farm control with the objective of wind farm power maximization A. Kheirabadi & R. Nagamune 10.1016/j.jweia.2019.06.015
- Wind turbine partial wake merging description and quantification R. Scott et al. 10.1002/we.2504
- Mechanisms of dynamic near-wake modulation of a utility-scale wind turbine A. Abraham et al. 10.1017/jfm.2021.737
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- A Wake Modeling Paradigm for Wind Farm Design and Control C. Shapiro et al. 10.3390/en12152956
- Predicting the benefit of wake steering on the annual energy production of a wind farm using large eddy simulations and Gaussian process regression D. Hoek et al. 10.1088/1742-6596/1618/2/022024
- Digital Twins for Wind Energy Conversion Systems: A Literature Review of Potential Modelling Techniques Focused on Model Fidelity and Computational Load J. De Kooning et al. 10.3390/pr9122224
- A new method to characterize the curled wake shape under yaw misalignment B. Sengers et al. 10.1088/1742-6596/1618/6/062050
- The Effect of Using Different Wake Models on Wind Farm Layout Optimization: A Comparative Study P. Yang & H. Najafi 10.1115/1.4052775
- Improving wind farm flow models by learning from operational data J. Schreiber et al. 10.5194/wes-5-647-2020
- Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines J. Bossuyt et al. 10.1017/jfm.2021.237
- Large eddy simulations of curled wakes from tilted wind turbines H. Johlas et al. 10.1016/j.renene.2022.02.018
- Wind Farm Simulation and Layout Optimization in Complex Terrain J. Allen et al. 10.1088/1742-6596/1452/1/012066
- Wind farm blockage effects: comparison of different engineering models E. Branlard et al. 10.1088/1742-6596/1618/6/062036
- Toward flow control: An assessment of the curled wake model in the FLORIS framework C. Bay et al. 10.1088/1742-6596/1618/2/022033
- Comparison of modular analytical wake models to the Lillgrund wind plant N. Hamilton et al. 10.1063/5.0018695
- Incoming flow measurements of a utility-scale wind turbine using super-large-scale particle image velocimetry C. Li et al. 10.1016/j.jweia.2019.104074
- A point vortex transportation model for yawed wind turbine wakes H. Zong & F. Porté-Agel 10.1017/jfm.2020.123
- Experimental results of wake steering using fixed angles P. Fleming et al. 10.5194/wes-6-1521-2021
- Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations P. Hulsman et al. 10.5194/wes-5-309-2020
- The curled wake model: equivalence of shed vorticity models L. Martínez-Tossas & E. Branlard 10.1088/1742-6596/1452/1/012069
- A vortex sheet based analytical model of the curled wake behind yawed wind turbines M. Bastankhah et al. 10.1017/jfm.2021.1010
- Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2 P. Fleming et al. 10.5194/wes-5-945-2020
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow P. Hulsman et al. 10.5194/wes-7-237-2022
- Control-oriented model for secondary effects of wake steering J. King et al. 10.5194/wes-6-701-2021
- Wind farm power optimization through wake steering M. Howland et al. 10.1073/pnas.1903680116
- Highlighting the impact of yaw control by parsing atmospheric conditions based on total variation N. Hamilton 10.1088/1742-6596/1452/1/012006
- An adaptation of the super-Gaussian wake model for yawed wind turbines F. Blondel et al. 10.1088/1742-6596/1618/6/062031
- Evaluation of the potential for wake steering for U.S. land-based wind power plants D. Bensason et al. 10.1063/5.0039325
- Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance E. Simley et al. 10.5194/wes-6-1427-2021
Latest update: 27 May 2023
Short summary
A new control-oriented model is developed to compute the wake of a wind turbine under yaw. The model uses a simplified version of the Navier–Stokes equation with assumptions. Good agreement is found between the model-proposed and large eddy simulations of a wind turbine in yaw.
A new control-oriented model is developed to compute the wake of a wind turbine under yaw. The...