Articles | Volume 5, issue 2
https://doi.org/10.5194/wes-5-647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-5-647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving wind farm flow models by learning from operational data
Johannes Schreiber
Wind Energy Institute, Technische Universität München, 85748
Garching bei München, Germany
Wind Energy Institute, Technische Universität München, 85748
Garching bei München, Germany
Bastian Salbert
Wind Energy Institute, Technische Universität München, 85748
Garching bei München, Germany
Filippo Campagnolo
Wind Energy Institute, Technische Universität München, 85748
Garching bei München, Germany
Viewed
Total article views: 4,136 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Dec 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,898 | 1,156 | 82 | 4,136 | 100 | 74 |
- HTML: 2,898
- PDF: 1,156
- XML: 82
- Total: 4,136
- BibTeX: 100
- EndNote: 74
Total article views: 3,457 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 May 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,593 | 788 | 76 | 3,457 | 82 | 65 |
- HTML: 2,593
- PDF: 788
- XML: 76
- Total: 3,457
- BibTeX: 82
- EndNote: 65
Total article views: 679 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Dec 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
305 | 368 | 6 | 679 | 18 | 9 |
- HTML: 305
- PDF: 368
- XML: 6
- Total: 679
- BibTeX: 18
- EndNote: 9
Viewed (geographical distribution)
Total article views: 4,136 (including HTML, PDF, and XML)
Thereof 3,530 with geography defined
and 606 with unknown origin.
Total article views: 3,457 (including HTML, PDF, and XML)
Thereof 3,017 with geography defined
and 440 with unknown origin.
Total article views: 679 (including HTML, PDF, and XML)
Thereof 513 with geography defined
and 166 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
29 citations as recorded by crossref.
- A physically interpretable data-driven surrogate model for wake steering B. Sengers et al. 10.5194/wes-7-1455-2022
- Analysis of the systematic errors of energy yield assessment in the context of wind farm repowering P. Mazoyer et al. 10.1088/1742-6596/2507/1/012016
- CFD Analysis of the Mechanical Power and the Wake of a Scaled Wind Turbine and Its Experimental Validation Y. Hwang & I. Paek 10.7736/JKSPE.020.113
- Can wind turbine farms increase settlement of particulate matters during dust events? M. Mataji et al. 10.1063/5.0129481
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-7-345-2022
- Performance Test of 3D Printed Blades for a Scaled Wind Turbine in a Wind Tunnel D. Kim et al. 10.7736/JKSPE.020.057
- The impact of the atmospheric boundary layer on the asymmetric wake profile: A bivariate analysis M. Barasa et al. 10.1016/j.seta.2022.102563
- A physics-based model for wind turbine wake expansion in the atmospheric boundary layer D. Vahidi & F. Porté-Agel 10.1017/jfm.2022.443
- Data-driven wake model parameter estimation to analyze effects of wake superposition M. LoCascio et al. 10.1063/5.0163896
- Control-oriented modelling of wind direction variability S. Dallas et al. 10.5194/wes-9-841-2024
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- FarmConners wind farm flow control benchmark – Part 1: Blind test results T. Göçmen et al. 10.5194/wes-7-1791-2022
- The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data R. Braunbehrens et al. 10.5194/wes-8-691-2023
- Field testing of a local wind inflow estimator and wake detector J. Schreiber et al. 10.5194/wes-5-867-2020
- Wind tunnel testing of wake steering with dynamic wind direction changes F. Campagnolo et al. 10.5194/wes-5-1273-2020
- Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment B. Sengers et al. 10.5194/wes-8-747-2023
- Wind farm flow control: prospects and challenges J. Meyers et al. 10.5194/wes-7-2271-2022
- Wind farm yaw control set-point optimization under model parameter uncertainty M. Howland 10.1063/5.0051071
- Wake effect parameter calibration with large-scale field operational data using stochastic optimization P. Jain et al. 10.1016/j.apenergy.2023.121426
- Modeling and experimentally-driven sensitivity analysis of wake-induced power loss in offshore wind farms: Insights from Block Island Wind Farm S. Shid-Moosavi et al. 10.1016/j.renene.2024.122126
- The balance effects of momentum deficit and thrust in cumulative wake models M. Barasa et al. 10.1016/j.energy.2022.123399
- Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-5-1315-2020
- Further calibration and validation of FLORIS with wind tunnel data F. Campagnolo et al. 10.1088/1742-6596/2265/2/022019
- FLOWERS AEP: An Analytical Model for Wind Farm Layout Optimization M. LoCascio et al. 10.1002/we.2954
- Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm D. van Binsbergen et al. 10.5194/wes-9-1507-2024
- Turbulence and Control of Wind Farms C. Shapiro et al. 10.1146/annurev-control-070221-114032
- A new wake‐merging method for wind‐farm power prediction in the presence of heterogeneous background velocity fields L. Lanzilao & J. Meyers 10.1002/we.2669
- Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation M. Howland & J. Dabiri 10.3390/en14010052
28 citations as recorded by crossref.
- A physically interpretable data-driven surrogate model for wake steering B. Sengers et al. 10.5194/wes-7-1455-2022
- Analysis of the systematic errors of energy yield assessment in the context of wind farm repowering P. Mazoyer et al. 10.1088/1742-6596/2507/1/012016
- CFD Analysis of the Mechanical Power and the Wake of a Scaled Wind Turbine and Its Experimental Validation Y. Hwang & I. Paek 10.7736/JKSPE.020.113
- Can wind turbine farms increase settlement of particulate matters during dust events? M. Mataji et al. 10.1063/5.0129481
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-7-345-2022
- Performance Test of 3D Printed Blades for a Scaled Wind Turbine in a Wind Tunnel D. Kim et al. 10.7736/JKSPE.020.057
- The impact of the atmospheric boundary layer on the asymmetric wake profile: A bivariate analysis M. Barasa et al. 10.1016/j.seta.2022.102563
- A physics-based model for wind turbine wake expansion in the atmospheric boundary layer D. Vahidi & F. Porté-Agel 10.1017/jfm.2022.443
- Data-driven wake model parameter estimation to analyze effects of wake superposition M. LoCascio et al. 10.1063/5.0163896
- Control-oriented modelling of wind direction variability S. Dallas et al. 10.5194/wes-9-841-2024
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- FarmConners wind farm flow control benchmark – Part 1: Blind test results T. Göçmen et al. 10.5194/wes-7-1791-2022
- The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data R. Braunbehrens et al. 10.5194/wes-8-691-2023
- Field testing of a local wind inflow estimator and wake detector J. Schreiber et al. 10.5194/wes-5-867-2020
- Wind tunnel testing of wake steering with dynamic wind direction changes F. Campagnolo et al. 10.5194/wes-5-1273-2020
- Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment B. Sengers et al. 10.5194/wes-8-747-2023
- Wind farm flow control: prospects and challenges J. Meyers et al. 10.5194/wes-7-2271-2022
- Wind farm yaw control set-point optimization under model parameter uncertainty M. Howland 10.1063/5.0051071
- Wake effect parameter calibration with large-scale field operational data using stochastic optimization P. Jain et al. 10.1016/j.apenergy.2023.121426
- Modeling and experimentally-driven sensitivity analysis of wake-induced power loss in offshore wind farms: Insights from Block Island Wind Farm S. Shid-Moosavi et al. 10.1016/j.renene.2024.122126
- The balance effects of momentum deficit and thrust in cumulative wake models M. Barasa et al. 10.1016/j.energy.2022.123399
- Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-5-1315-2020
- Further calibration and validation of FLORIS with wind tunnel data F. Campagnolo et al. 10.1088/1742-6596/2265/2/022019
- FLOWERS AEP: An Analytical Model for Wind Farm Layout Optimization M. LoCascio et al. 10.1002/we.2954
- Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm D. van Binsbergen et al. 10.5194/wes-9-1507-2024
- Turbulence and Control of Wind Farms C. Shapiro et al. 10.1146/annurev-control-070221-114032
- A new wake‐merging method for wind‐farm power prediction in the presence of heterogeneous background velocity fields L. Lanzilao & J. Meyers 10.1002/we.2669
Latest update: 20 Jan 2025
Short summary
The paper describes a new method that uses standard historical operational data and reconstructs the flow at the rotor disk of each turbine in a wind farm. The method is based on a baseline wind farm flow and wake model, augmented with error terms that are
learnedfrom operational data using an ad hoc system identification approach. Both wind tunnel experiments and real data from a wind farm at a complex terrain site are used to show the capabilities of the new method.
The paper describes a new method that uses standard historical operational data and reconstructs...
Altmetrics
Final-revised paper
Preprint