Batchelor, G. K.: An Introduction to Fluid Dynamics, C. U. P., Cambridge, 1967. a, b
Betz, A.: Schraubenpropeller mit geringstem Energieverlust, Dissertation, Göttingen Nachrichten, Göttingen, 1919.
Branlard, E. and Meyer Forsting, A. R.: Assessing the blockage effect of wind turbines and wind farms using an analytical vortex model, Wind Energy, 23, 1–19, 2020. a
Burgers, J.: On the resistance of fluids and vortex motion, Koninklijke Nederlandsche Akademie van Wetenschappen, Proc. B Phys. Sci., 23, 774–782, 1921. a
Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E.: Wind Energy Handbook. John Wiley & Sons, Chichester, 2011. a
Ebert, P. R. and Wood, D. H.: The near wake of a model horizontal-axis wind turbine: Part 3: properties of the tip and hub vortices, Renew. Energy, 22, 461–472, 2001. a
Eriksen, P. E. and Krogstad, P. Å.: An experimental study of the wake of a model wind turbine using phase-averaging, Int. J. Heat Fluid Flow, 67, 52–62, 2017. a
Glauert, H.: Airplane propellers, in: Aerodynamic theory, Springer, Berlin, Heidelberg, 169–360, 1935. a
Goorjian, P. M.: An invalid Equation in the general momentum theory of the actuator disc, AIAA J., 10, 543–544, 1972.
Hansen, M. O.: Aerodynamics of Wind Turbines, Routledge, London, 2015. a
Hardin, J. C.: The velocity field induced by a helical vortex filament, Phys. Fluids, 25, 1949–1952, 1982.
Hodara, J. and Smith, M. J.: Improvement of crossflow aerodynamic predictions for forward flight at all advance ratios, in: 40th European Rotorcraft Forum, 2–5 September 2014, Southampton, UK, 2014. a
Kang, L., Liu, L., Su, W., and Wu, J.: A minimum-domain impulse theory for unsteady aerodynamic force with discrete wake, Theor. Appl. Mech. Lett., 7, 306–310, 2017. a
Kawada, S.: Induced velocity by helical vortices, J. Aeronaut. Sci., 3, 86–87, 1936.
Lamb, H.: Hydrodynamics, 6th Edn., Dover, New York, 1932. a
Lighthill, J.: An informal introduction to theoretical fluid mechanics, Oxford University Press, New York, 1986. a, b
Limacher, E., Morton, C., and Wood, D.: On the calculation of force from PIV data using the generalized added-mass and circulatory force decomposition, Exp. Fluids, 60, 4, https://doi.org/10.1007/s00348-018-2648-3, 2019. a
Limacher, E., McClure, J., Yarusevych, S., and Morton, C.: Comparison of momentum and impulse formulations for PIV-based force estimation, Meas. Sci. Technol., 31, 054001, https://doi.org/10.1088/1361-6501/ab64ad, 2020. a
Limacher, E. J.: Added Mass and Vortical Impulse: Theory and Experiment, PhD thesis, University of Calgary, Calgary, 2019. a
Madsen, H. A., Bak, C., Døssing, M., Mikkelsen, R., and Øye, S.: Validation and modification of the blade element momentum theory based on comparisons with actuator disc simulations, Wind Energy, 13, 373–389, 2010. a
Noca, F.: On the evaluation of time-dependent fluid-dynamic forces on
bluff bodies, PhD thesis, Caltech, available at: https://thesis.library.caltech.edu/3081/ (last access: 28 January 2021), 1997. a, b
Noca, F., Shiels, D., and Jeon, D.: Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives, J. Fluids Struct., 11, 345–350, 1997. a
Okulov, V. L. and Sørensen, J. N. : Refined Betz limit for rotors with a finite number of blades, Wind Energy, 11, 415–426, 2008.
Okulov, V. L., Sørensen, J. N., and Wood, D. H. The rotor theories by Professor Joukowsky: Vortex theories, Prog. Aerosp. Sci., 73, 19–46, 2015.
Rival, D. E. and van Oudheusden, B.: Load-estimation techniques for unsteady incompressible flows, Exp. Fluids, 58, 319–330, 2017. a
Saffman, P. G.: Vortex Dynamics, C. U. P., Cambridge, 1992. a
Schaffarczyk, A. P.: Introduction to Wind Turbine Aerodynamics, Springer Nature, London, 2020. a
Schmitz, S.: Aerodynamics of Wind Turbines – A Physical Basis for Analysis and Design, Wiley, New York, 2019. a
Sørensen, J. N.: General Momentum Theory for Horizontal Axis Wind Turbines, Springer International Publishing, Heidelberg, https://doi.org/10.1007/978-3-319-22114-4, 2016. a, b
Sørensen, J. N. and Mikkelsen, R.: A critical view on the momentum theory, in: Torque 2012 conference, 9–11 October 2012, Oldenburg, 2012.
Taylor, G. I.: The “Rotational Inflow Factor” in Propeller Theory, ARC R & M no. 765 – Reprinted in G. Batchelor (ed): The Scientific Papers of G. I. Taylor, 3, C. U. P., Cambridge, 59–65, 1921. a, b
Thomson, J. J.: A Treatise on the Motion of Vortex Rings, Macmillan, Cambridge, 1833. a
van Kuik, G. A. M.: The fluid dynamic basis for actuator disc and rotor theories, IOS Press, Amsterdam, 2018. a
van Kuik, G. A. M.: On the velocity at wind turbine and propeller actuator discs, Wind Energ. Sci., 5, 855–865, https://doi.org/10.5194/wes-5-855-2020, 2020. a, b
van Kuik, G. A. M., Micallef, D., Herraez, I., Van Zuijlen, A. H., and Ragni, D.: The role of conservative forces in rotor aerodynamics, J. Fluid Mech., 750, 284–315, 2014. a
Wood, D. H.: Small wind turbines: analysis, design, and application, Springer, London, 2011.
a
Wood, D. H. and Okulov, V. L. : Nonlinear blade element-momentum analysis of Betz-Goldstein rotors, Renew. Energy, 107, 542–549, 2017.
Wu, J. C.: Theory for aerodynamic force and moment in viscous flows, AIAA J., 19, 432–441, 1981. a
Wu, J. Z., Ma, H. Y., and Zhou, M. D.: Vortical Flows, Springer, Berlin, Heidelberg, 2015. a, b, c