Articles | Volume 7, issue 3 
            
                
                    
            
            
            https://doi.org/10.5194/wes-7-1153-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1153-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
                                            National Renewable Energy Laboratory, Golden, CO, USA
                                        
                                    Lindsay M. Sheridan
CORRESPONDING AUTHOR
                                            
                                    
                                            Pacific Northwest National Laboratory, Richland, WA, USA
                                        
                                    Patrick Conry
                                            Los Alamos National Laboratory, Los Alamos, NM, USA
                                        
                                    Dimitrios K. Fytanidis
                                            Argonne National Laboratory, Argonne, IL, USA
                                        
                                    Dmitry Duplyakin
                                            National Renewable Energy Laboratory, Golden, CO, USA
                                        
                                    Sagi Zisman
                                            National Renewable Energy Laboratory, Golden, CO, USA
                                        
                                    Nicolas Duboc
                                            Los Alamos National Laboratory, Los Alamos, NM, USA
                                        
                                    Matt Nelson
                                            Los Alamos National Laboratory, Los Alamos, NM, USA
                                        
                                    Rao Kotamarthi
                                            Argonne National Laboratory, Argonne, IL, USA
                                        
                                    Rod Linn
                                            Los Alamos National Laboratory, Los Alamos, NM, USA
                                        
                                    Marc Broersma
                                            EAZ Wind, Rijswijk, the Netherlands
                                        
                                    Timo Spijkerboer
                                            EAZ Wind, Rijswijk, the Netherlands
                                        
                                    Heidi Tinnesand
                                            National Renewable Energy Laboratory, Golden, CO, USA
                                        
                                    Model code and software
DW-TAP API D. Duplyakin, S. Zisman, C. Phillips, and H. Tinnesand https://dw-tap.nrel.gov
DW TAP Computational Framework [Computer software] C. Phillips, D. Duplyakin, S. Zisman, and USDOE Office of Energy Efficiency and Renewable Energy https://doi.org/10.11578/dc.20200925.11
Short summary
                    Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
                    Adoption of distributed wind turbines for energy generation is hindered by challenges associated...
                    
                Altmetrics
                
                Final-revised paper
            
            
                    Preprint
                
                     
 
                     
                     
                     
                    