Articles | Volume 7, issue 3
https://doi.org/10.5194/wes-7-1153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-7-1153-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
National Renewable Energy Laboratory, Golden, CO, USA
Lindsay M. Sheridan
CORRESPONDING AUTHOR
Pacific Northwest National Laboratory, Richland, WA, USA
Patrick Conry
Los Alamos National Laboratory, Los Alamos, NM, USA
Dimitrios K. Fytanidis
Argonne National Laboratory, Argonne, IL, USA
Dmitry Duplyakin
National Renewable Energy Laboratory, Golden, CO, USA
Sagi Zisman
National Renewable Energy Laboratory, Golden, CO, USA
Nicolas Duboc
Los Alamos National Laboratory, Los Alamos, NM, USA
Matt Nelson
Los Alamos National Laboratory, Los Alamos, NM, USA
Rao Kotamarthi
Argonne National Laboratory, Argonne, IL, USA
Rod Linn
Los Alamos National Laboratory, Los Alamos, NM, USA
Marc Broersma
EAZ Wind, Rijswijk, the Netherlands
Timo Spijkerboer
EAZ Wind, Rijswijk, the Netherlands
Heidi Tinnesand
National Renewable Energy Laboratory, Golden, CO, USA
Model code and software
DW-TAP API D. Duplyakin, S. Zisman, C. Phillips, and H. Tinnesand https://dw-tap.nrel.gov
DW TAP Computational Framework [Computer software] C. Phillips, D. Duplyakin, S. Zisman, and USDOE Office of Energy Efficiency and Renewable Energy https://doi.org/10.11578/dc.20200925.11
Short summary
Adoption of distributed wind turbines for energy generation is hindered by challenges associated with siting and accurate estimation of the wind resource. This study evaluates classic and commonly used methods alongside new state-of-the-art models derived from simulations and machine learning approaches using a large dataset from the Netherlands. We find that data-driven methods are most effective at predicting production at real sites and new models reliably outperform classic methods.
Adoption of distributed wind turbines for energy generation is hindered by challenges associated...
Altmetrics
Final-revised paper
Preprint