ASTM International: ASTM D 3039-00, Standard test method for tensile properties of polymer matrix composite materials, American Society for Testing and Materials, West Conshohocken, PA, USA,
https://www.astm.org/d3039_d3039m-14.html (last access: 21 December 2022), 2017. a
Davidson, P., Waas, A., Yerramalli, C. S., Chandraseker, K., and Faidi, W.: Effect of fiber waviness on the compressive strength of unidirectional carbon composites, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 23–26 April 2012, Honolulu, Hawai, p. 1422,
https://doi.org/10.2514/6.2012-1422, 2012.
a
Galappaththi, U. I. K., De Silva, A. M., Draskovic, M., and Macdonald, M.: Strategic quality control measures to reduce defects in composite wind turbine blades, in: International Conference on Renewable Energies and Power Quality (ICREPQ’13), 20–22 March 2013, Bilbao, Spain,
https://doi.org/10.24084/repqj11.589, 2013.
a
Hsiao, H. M. and Daniel, I. M.: Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading, Compos. Sci. Technol., 56, 581–593,
https://doi.org/10.1016/0266-3538(96)00045-0, 1996b.
a
Hassan, M. H., Othman, A. R., and Kamaruddin, S.: A review on the manufacturing defects of complex-shaped laminate in aircraft composite structures, Int. J. Adv. Manuf. Tech., 91, 4081-4094,
https://doi.org/10.1007/s00170-017-0096-5, 2017.
a
ISO, ISO 527-1:2012: Plastics–Determination of tensile properties – Part 1: General principles. International Organization of Standardization: Geneva, Switzerland, 2012. a
Kulkarni, P., Mali, K. D., and Singh, S.: An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites, Compos. Part A-Appl. S., 137, 106013,
https://doi.org/10.1016/j.compositesa.2020.106013, 2020.
a
Leong, M., Overgaard, L. C., Thomsen, O. T., Lund, E., and Daniel, I. M.: Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades, Compos. Struct., 94, 768–778,
https://doi.org/10.1016/j.compstruct.2011.09.012, 2012.
a,
b,
c
Leong, M., Hvejsel, C. F., Thomsen, O. T., Lund, E., and Daniel, I. M.: Fatigue failure of sandwich beams with face sheet wrinkle defects, Compos. Sci. Technol., 72, 1539–1547,
https://doi.org/10.1016/j.compscitech.2012.06.001, 2012.
a,
b,
c
Lightfoot, J. S., Wisnom, M. R., and Potter, K.: Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol, Composites Part A-Applied S., 51, 99–107,
https://doi.org/10.1016/j.compositesa.2013.04.004, 2013.
a
Mukhopadhyay, S., Jones, M. I., and Hallett, S. R.: Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study. Composites Part A: Applied Science and Manufacturing, 73, 132–142,
https://doi.org/10.1016/j.compositesa.2015.03.012, 2015.
a,
b,
c,
d
Mukhopadhyay, S., Nixon-Pearson, O. J., and Hallett, S. R.: An experimental and numerical study on fatigue damage development in laminates containing embedded wrinkle defects, Int. J. Fatigue, 107, 1–12,
https://doi.org/10.1016/j.ijfatigue.2017.10.008, 2018.
a,
b
Riddle III, W. W.: Development of reliability program for risk assessment of composite structures treating defects as uncertainty variables, Montana State University,
https://scholarworks.montana.edu/xmlui/bitstream/handle/1/3024/RiddleW1213.pdf?sequence=1&isAllowed=y
(last access: 20 December 2022), 2013. a
Smith, R. A., Xie, N., Nelson, L. J., and Hallett, S. R.: October. Modelling the mechanical properties of as-manufactured composite components based on 3D non-destructive characterisation, in: 11th European Conference on Non-Destructive Testing (ECNDT 2014), 6–10 October 2014, Prague, Czech Republic, 2014.
a,
b
Thor, M., Sauce, M. G., and Hinterhölzl, R. M.: Mechanisms of origin and classification of out-of-plane fiber waviness in composite materials – a review, J. Comp. Sci., 4, 130, https://
https://doi.org/10.3390/jcs4030130, 2020.
a
Thor, M., Mandel, U., Nagler, M., Maier, F., Tauchner, J., Sause, M. G., and Hinterhölzl, R. M.: Numerical and experimental investigation of out-of-plane fiber waviness on the mechanical properties of composite materials, Int. J. Mater. Form., 14, 19–37,
https://doi.org/10.1007/s12289-020-01540-5, 2021.
a,
b
Wang, J., Potter, K. D., Hazra, K., and Wisnom, M. R.: Experimental fabrication and characterization of out-of-plane fiber waviness in continuous fiber-reinforced composites, J. Compos. Mater., 46, 2041–2053,
https://doi.org/10.1177/0021998311429877, 2012.
a
Wang, L.: Effects of in-plane fiber waviness on the static and fatigue
strength of fiberglass (Master dissertation, Montana State
University, College of Engineering, Bozeman,
https://www.montana.edu/composites/documents/Lei Wang thesis.pdf (last access: 20 December 2022), 2001. a
Xie, N., Smith, R. A., Mukhopadhyay, S., and Hallett, S. R.: Modelling the mechanical properties of wrinkled composites from NDT data, in: Proceedings of the 20th International Conference on Composite Materials, 19–24 July 2015, Copenhagen, Denmark
http://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-3210-3.pdf
(last access: 20 December 2022), 2015.
a,
b,
c
Xie, N., Smith, R. A., Mukhopadhyay, S., and Hallett, S. R.: A numerical study on the influence of composite wrinkle defect geometry on compressive strength, Mater. Design, 140, 7–20,
https://doi.org/10.1016/j.matdes.2017.11.034, 2018.
a,
b,
c
Yang, G., Yang, T., Yuan, W., and Du, Y.: The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints, Compos. Part B-Eng., 160, 446–456,
https://doi.org/10.1016/j.compositesb.2018.12.095, 2019.
a
Zhu, J., Wang, J., and Zu, L.: Influence of out-of-plane ply waviness on elastic properties of composite laminates under uniaxial loading, Compos. Struct., 132, 440–450,
https://doi.org/10.1016/j.compstruct.2015.05.062, 1996. 2015
a