Preprints
https://doi.org/10.5194/wes-2018-47
https://doi.org/10.5194/wes-2018-47
03 Jul 2018
 | 03 Jul 2018
Status: this preprint was under review for the journal WES. A revision for further review has not been submitted.

Scale-adaptive simulation of wind turbines, and its verification with respect to wind tunnel measurements

Jiangang Wang, Chengyu Wang, Filippo Campagnolo, and Carlo L. Bottasso

Abstract. This paper considers the application of a scale-adaptive simulation (SAS) CFD formulation for the modeling of single and waked wind turbines in flows of different turbulence intensities. The SAS approach is compared to a large-eddy simulation (LES) formulation, as well as to experimental measurements performed in a boundary layer wind tunnel with scaled wind turbine models. The motivation for the use of SAS is its significantly reduced computational cost with respect to LES, made possible by the use of less dense grids. Results indicate that the two turbulence models yield in general results that are very similar, in terms of rotor-integral quantities and wake behavior. The matching is less satisfactory in very low turbulence inflows. Given that the computational cost is about one order of magnitude smaller, SAS is found to be an interesting alternative to LES for repetitive runs where one can sacrifice a bit of accuracy for a reduced computational burden.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
This paper describes a Scale Adaptive Simulation (SAS) approach for the numerical simulation of...
Share
Altmetrics