Articles | Volume 10, issue 7
https://doi.org/10.5194/wes-10-1351-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1351-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal behavior of the far wake of a wind turbine model subjected to harmonic motions: phase averaging applied to stereo particle image velocimetry measurements
Antonin Hubert
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Boris Conan
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Sandrine Aubrun
CORRESPONDING AUTHOR
Nantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, 44000 Nantes, France
Related authors
No articles found.
Caroline Braud, Pascal Keravec, Ingrid Neunaber, Sandrine Aubrun, Jean-Luc Attié, Pierre Durand, Philippe Ricaud, Jean-François Georgis, Emmanuel Leclerc, Lise Mourre, and Claire Taymans
Wind Energ. Sci., 10, 1929–1942, https://doi.org/10.5194/wes-10-1929-2025, https://doi.org/10.5194/wes-10-1929-2025, 2025
Short summary
Short summary
A 3-year meteorological dataset from an operational wind farm of six 2 MW (megawatt) turbines has been made available. This includes a meteorological mast equipped with sonic anemometers at four different heights and radiometer measurements for atmospheric stability analysis. Simultaneously, supervisory control and data acquisition (SCADA) and the scanned geometry of the turbine blades are provided. This database has been made accessible to the research community (https://awit.aeris-data.fr).
Dimas Alejandro Barile, Roberto Sosa, Sandrine Aubrun, and Alejandro Daniel Otero
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-2, https://doi.org/10.5194/wes-2025-2, 2025
Manuscript not accepted for further review
Short summary
Short summary
This work sets out a novel methodology for the CFD simulation of an ABL wind tunnel flow. Initially, the scheme is well validated against experimental measurements, and then it is applied to the study of a floating offshore wind turbine model under surge motion with varying turbulence intensities and motion frequencies. New insights are gained related to wake recovery of a wind turbine under surge motion, as certain frequency cases exhibit a distinctive behaviour regarding coherence structures.
Benyamin Schliffke, Boris Conan, and Sandrine Aubrun
Wind Energ. Sci., 9, 519–532, https://doi.org/10.5194/wes-9-519-2024, https://doi.org/10.5194/wes-9-519-2024, 2024
Short summary
Short summary
This paper studies the consequences of floater motions for the wake properties of a floating wind turbine. Since wake interactions are responsible for power production loss in wind farms, it is important that we know whether the tools that are used to predict this production loss need to be upgraded to take into account these aspects. Our wind tunnel study shows that the signature of harmonic floating motions can be observed in the far wake of a wind turbine, when motions have strong amplitudes.
Boris Conan and Aleksandra Visich
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-141, https://doi.org/10.5194/wes-2023-141, 2023
Revised manuscript not accepted
Short summary
Short summary
The paper describes an original field experiment using a scanning LiDAR set up to measure the wind profile above the sea surface up to an altitude of 500 m. Reaching this height with a good vertical resolution is key for the wind energy sector, especially for wind turbine design, load and fatigue predictions. Observations at the site include low-level jets and extreme wind shear that are observed 15 % and 30 % of the time, respectively.
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021, https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary
Short summary
This paper investigates the effect of misaligning a wind turbine on its wake deviation response and on the global load variation of a downstream wind turbine during a positive and negative yaw maneuver, representing a misalignment–realignment scenario. Yaw maneuvers could be used to voluntarily misalign wind turbines when wake steering control is targeted. The aim of this wind farm control strategy is to optimize the overall production of the wind farm and its lifetime.
Cited articles
Adrian, R. J. and Westerweel, J.: Particle Image Velocimetry, no. 30 in Cambridge Aerospace Series, Cambridge University Press, ISBN 978-0521440080, 2011. a
Ainslie, J.: Calculating the Flowfield in the Wake of Wind Turbines, J. Wind Eng. Ind. Aerod., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988. a
Aubrun, S. and Conan, B.: Spatio-temporal behavior of the far-wake of a wind turbine model subjected to harmonic motions: Phase averaging applied to Stereo-PIV measurements, Zenodo [data set], https://doi.org/10.5281/zenodo.15038753, 2025. a
Aubrun, S., Loyer, S., Hancock, P., and Hayden, P.: Wind Turbine Wake Properties: Comparison between a Non-Rotating Simplified Wind Turbine Model and a Rotating Model, J. Wind Eng. Ind. Aerod., 120, 1–8, https://doi.org/10.1016/j.jweia.2013.06.007, 2013. a, b
Aubrun, S., Bastankhah, M., Cal, R., Conan, B., Hearst, R., Hoek, D., Hölling, M., Huang, M., Hur, C., Karlsen, B., Neunaber, I., Obligado, M., Peinke, J., Percin, M., Saetran, L., Schito, P., Schliffke, B., Sims-Williams, D., Uzol, O., Vinnes, M., and Zasso, A.: Round-Robin Tests of Porous Disc Models, J. Phys. Conf. Ser., 1256, 012004, https://doi.org/10.1088/1742-6596/1256/1/012004, 2019. a
Bastankhah, M. and Porté-Agel, F.: A New Analytical Model for Wind-Turbine Wakes, Renew. Energ., 70, 116–123, https://doi.org/10.1016/j.renene.2014.01.002, 2014. a, b, c
Bastankhah, M. and Porté-Agel, F.: A Wind-Tunnel Investigation of Wind-Turbine Wakes in Yawed Conditions, J. Phys. Conf. Ser., 625, 012014, https://doi.org/10.1088/1742-6596/625/1/012014, 2015. a
Bastankhah, M. and Porté-Agel, F.: Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions, J. Fluid Mech., 806, 506–541, https://doi.org/10.1017/jfm.2016.595, 2016. a, b, c
Bayati, I., Belloli, M., Bernini, L., and Zasso, A.: Wind Tunnel Wake Measurements of Floating Offshore Wind Turbines, Enrgy. Proced., 137, 214–222, https://doi.org/10.1016/j.egypro.2017.10.375, 2017. a
Bayati, I., Bernini, L., Zanotti, A., Belloli, M., and Zasso, A.: Experimental Investigation of the Unsteady Aerodynamics of FOWT through PIV and Hot-Wire Wake Measurements, J. Phys. Conf. Ser., 1037, 052024, https://doi.org/10.1088/1742-6596/1037/5/052024, 2018. a
Belvasi, N., Conan, B., Schliffke, B., Perret, L., Desmond, C., Murphy, J., and Aubrun, S.: Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis, Energies, 15, 7757, https://doi.org/10.3390/en15207757, 2022. a, b, c
Beucher, S.: Algorithmes sans biais de ligne de partage des eaux, https://www.researchgate.net/publication/265407320_Algorithmes_sans_biais_de_ligne_de_partage_des_eaux (last access: 1 July 2025), 2004. a
Bingöl, F., Mann, J., and Larsen, G. C.: Light Detection and Ranging Mesurements of Wake Dynamics, Wind Energy, 13, 51–61, https://doi.org/10.1002/we.352, 2009. a
Bossuyt, J., Scott, R., Ali, N., and Cal, R. B.: Quantification of Wake Shape Modulation and Deflection for Tilt and Yaw Misaligned Wind Turbines, J. Fluid Mech., 917, A3, https://doi.org/10.1017/jfm.2021.237, 2021. a, b
Choisnet, T.: Report on the Requirements of the Floating Structure, Deliverable 3.1, Floatgen project, EC-GA 295977, IDEOL, https://www.scribd.com/document/455505558/floatgen-d3-1-report-on-the-requirements-of-the-floating-structure (last access: 1 July 2025), 2013. a
Costanzo, G., Brindley, G., and Cole, P.: Wind Energy in Europe – 2022 Statistics and the Outlook for 2023–2027, Tech. rep., WindEurope, https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/ (last access: 1 July 2025), 2023. a
Counihan J.: Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972, Atmos. Environ., 1967, 871–905, https://doi.org/10.1016/0004-6981(75)90088-8, 1975. a, b
Dalla Longa, F., Kober, T., Badger, J., Volker, P., Hoyer-Klick, C., Hidalgo Gonzalez, I., Medarac, H., Nijs, W., Politis, S., Tarvydas, D., and Zucker, A.: Wind potentials for EU and neighbouring countries: Input datasets for the JRC-EU-TIMES Model , EUR 29083 EN, Publications Office of the European Union, Luxembourg, JRC109698, ISBN 978-92-79-77811-7, https://doi.org/10.2760/041705, 2018. a
Duan, L., Sun, Q., He, Z., and Li, G.: Wake Topology and Energy Recovery in Floating Horizontal-Axis Wind Turbines with Harmonic Surge Motion, Energy, 260, 124907, https://doi.org/10.1016/j.energy.2022.124907, 2022. a, b, c
ESDU: Part II: Single Point Data for Strong Winds (Neutral Atmosphere), Tech. Rep. 85020, ESDU International, ISBN 978-0 85679 526 8, 1985. a
España, G., Aubrun, S., Loyer, S., and Devinant, P.: Spatial Study of the Wake Meandering Using Modelled Wind Turbines in a Wind Tunnel, Wind Energy, 14, 923–937, https://doi.org/10.1002/we.515, 2011. a, b, c
Feist, C., Sotiropoulos, F., and Guala, M.: A Quasi-Coupled Wind Wave Experimental Framework for Testing Offshore Wind Turbine Floating Systems, Theoretical and Applied Mechanics Letters, 11, 100294, https://doi.org/10.1016/j.taml.2021.100294, 2021. a
Ferčák, O., Bossuyt, J., Ali, N., and Cal, R. B.: Decoupling Wind–Wave–Wake Interactions in a Fixed-Bottom Offshore Wind Turbine, Appl. Energ., 309, 118358, https://doi.org/10.1016/j.apenergy.2021.118358, 2021. a
Fontanella, A., Bayati, I., Mikkelsen, R., Belloli, M., and Zasso, A.: UNAFLOW: a holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion, Wind Energ. Sci., 6, 1169–1190, https://doi.org/10.5194/wes-6-1169-2021, 2021. a, b
Fu, S., Jin, Y., Zheng, Y., and Chamorro, L. P.: Wake and Power Fluctuations of a Model Wind Turbine Subjected to Pitch and Roll Oscillations, Appl. Energ., 253, 113605, https://doi.org/10.1016/j.apenergy.2019.113605, 2019. a, b
Fu, S., Zhang, B., Zheng, Y., and Chamorro, L. P.: In-Phase and out-of-Phase Pitch and Roll Oscillations of Model Wind Turbines within Uniform Arrays, Appl. Energ., 269, 114921, https://doi.org/10.1016/j.apenergy.2020.114921, 2020. a
Fu, S., Li, Z., Zhu, W., Han, X., Liang, X., Yang, H., and Shen, W.: Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine under Pitch Motion, Renew. Energ., 205, 317–325, https://doi.org/10.1016/j.renene.2023.01.040, 2023. a, b
Hastie, T., Tibshirani, R., and Friedman, J.: Kernel Smoothing Methods, Springer New York, New York, NY, 191–218, https://doi.org/10.1007/978-0-387-84858-7_6, 2009. a
Howland, M. F., Bossuyt, J., Martínez-Tossas, L. A., Meyers, J., and Meneveau, C.: Wake Structure in Actuator Disk Models of Wind Turbines in Yaw under Uniform Inflow Conditions, J. Renew. Sustain. Ener., 8, 043301, https://doi.org/10.1063/1.4955091, 2016. a, b
Jézéquel, E., Blondel, F., and Masson, V.: Analysis of Wake Properties and Meandering under Different Cases of Atmospheric Stability: A Large Eddy Simulation Study, J. Phys. Conf. Ser., 2265, 022067, https://doi.org/10.1088/1742-6596/2265/2/022067, 2022. a
Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, ISBN 978-0195062397, 1994. a
Kopperstad, K. M., Kumar, R., and Shoele, K.: Aerodynamic Characterization of Barge and Spar Type Floating Offshore Wind Turbines at Different Sea States, Wind Energy, 23, 2087–2112, https://doi.org/10.1002/we.2547, 2020. a, b, c
Larsen, G., Pedersen, A., Hansen, K., Larsen, T., Courtney, M., and Sjöholm, M.: Full-Scale 3D Remote Sensing of Wake Turbulence – a Taster, J. Phys. Conf. Ser., 1256, 012001, https://doi.org/10.1088/1742-6596/1256/1/012001, 2019. a
Larsen, G. C., Madsen Aagaard, H., Bingöl, F., Mann, J., Ott, S., Sørensen, J. N., Okulov, V., Troldborg, N., Nielsen, N. M., Thomsen, K., Larsen, T. J., and Mikkelsen, R.: Dynamic wake meandering modeling, Risø National Laboratory, Denmark, Forskningscenter Risoe, Risoe-R No. 1607(EN), ISBN 978-87-550-3602-4, 2007. a, b
Leimeister, M., Kolios, A., and Collu, M.: Critical Review of Floating Support Structures for Offshore Wind Farm Deployment, J. Phys. Conf. Ser., 1104, 012007, https://doi.org/10.1088/1742-6596/1104/1/012007, 2018. a
Li, Z. and Yang, X.: Resolvent-Based Motion-to-Wake Modelling of Wind Turbine Wakes under Dynamic Rotor Motion, J. Fluid Mech., 980, A48, https://doi.org/10.1017/jfm.2023.1097, 2024. a, b
Meng, H., Su, H., Qu, T., and Lei, L.: Wind Tunnel Study on the Wake Characteristics of a Wind Turbine Model Subjected to Surge and Sway Motions, J. Renew. Sustain. Ener., 14, 013307, https://doi.org/10.1063/5.0079843, 2022. a, b
Muller, Y.-A., Aubrun, S., and Masson, C.: Determination of Real-Time Predictors of the Wind Turbine Wake Meandering, Exp. Fluids, 56, 53, https://doi.org/10.1007/s00348-015-1923-9, 2015. a
Porchetta, S., Temel, O., Muñoz-Esparza, D., Reuder, J., Monbaliu, J., van Beeck, J., and van Lipzig, N.: A new roughness length parameterization accounting for wind–wave (mis)alignment, Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019, 2019. a, b
Porchetta, S., Muñoz-Esparza, D., Munters, W., van Beeck, J., and van Lipzig, N.: Impact of Ocean Waves on Offshore Wind Farm Power Production, Renew. Energ., 180, 1179–1193, https://doi.org/10.1016/j.renene.2021.08.111, 2021. a
Porté-Agel, F., Bastankhah, M., and Shamsoddin, S.: Wind-Turbine and Wind-Farm Flows: A Review, Bound.-Lay. Meteorol., 174, 1–59, https://doi.org/10.1007/s10546-019-00473-0, 2020. a
Raffel, M., Willert, C., and Kompenhans, J. (Eds.): Particle Image Velocimetry: A Practical Guide, 2nd edn., Springer, Heidelberg, New York, https://doi.org/10.1007/978-3-540-72308-0, 1998. a
Rockel, S., Camp, E., Schmidt, J., Peinke, J., Cal, R., and Hölling, M.: Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model, Energies, 7, 1954–1985, https://doi.org/10.3390/en7041954, 2014. a
Schliffke, B.: Experimental Characterisation of the Far Wake of a Modelled Floating Wind Turbine as a Function of Incoming Swell, PhD thesis, Centrale Nantes, Nantes, https://theses.hal.science/tel-03722239/ (last access: 1 July 2025), 2022. a
Sciacchitano, A.: Uncertainty Quantification in Particle Image Velocimetry, Meas. Sci. Technol., 30, 092001, https://doi.org/10.1088/1361-6501/ab1db8, 2019. a
Sebastian, T. and Lackner, M.: Characterization of the Unsteady Aerodynamics of Offshore Floating Wind Turbines: Unsteady Aerodynamics of Offshore Floating Wind Turbines, Wind Energy, 16, 339–352, https://doi.org/10.1002/we.545, 2013. a
VDI: Physical Modelling of Flow and Dispersion Processes in the Atmospheric Boundary Layer – Application of Wind Tunnels, Tech. Rep. 12, Engl. VDI/DIN-Kommission Reinhaltung der Luft (KRdL) – Normenausschuss, https://www.vdi.de/en/home/vdi-standards/details/vdi-3783-blatt-12-environmental-meteorology-physical-modelling-of-flow-and-dispersion-processes-in-the-atmospheric-boundary-layer-application-of-wind-tunnels (last access: 1 July 2025), 2000. a, b
Vermeer, L., Sørensen, J., and Crespo, A.: Wind Turbine Wake Aerodynamics, Prog. Aerosp. Sci., 39, 467–510, https://doi.org/10.1016/S0376-0421(03)00078-2, 2003. a, b
Wieneke, B.: PIV Uncertainty Quantification and Beyond, PhD thesis, Delft University of Technology, https://doi.org/10.4233/UUID:4CA8C0B8-0835-47C3-8523-12FC356768F3, 2017. a
Zhang, P., Li, C., Wei, Y., and Wu, W.: Three-Dimensional Analytical Wake Model for Floating Offshore Wind Turbines under Pitch Motion, Ocean Eng., 311, 118935, https://doi.org/10.1016/j.oceaneng.2024.118935, 2024. a, b
Short summary
The paper aims to study the far wake of a wind turbine under realistic inflow conditions subjected to harmonic floating motions. The present work shows that phase averaging enables the observation of the coherent spatiotemporal wake behaviour in response to the harmonic motions, contrary to previous studies with time averaging, and that the resulting variations in the chosen metrics exhibit an intensity higher than those expected when using basic quasi-steady-state approaches.
The paper aims to study the far wake of a wind turbine under realistic inflow conditions...
Altmetrics
Final-revised paper
Preprint