Fu, W., Guo, F., Schlipf, D., and Peña, A.: Feedforward pitch control for a 15 MW wind turbine using a spinner-mounted single-beam lidar, Wind Energ. Sci., 8, 1893–1907,
https://doi.org/10.5194/wes-8-1893-2023, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Abbas, N. J., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G. N., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: IEA wind TCP task 37: Definition of the IEA 15-megawatt offshore reference wind turbine, Tech. Rep., National Renewable Energy Lab.(NREL), Golden, CO, United States,
https://doi.org/10.2172/1603478, 2020.
a,
b,
c,
d
Gambier, A.: Control of Large Wind Energy Systems, Theory and Methods for the User, Springer, ISBN 978-3-030-84895-8, 2022.
a,
b
Gao, S., Zhao, H., Gui, Y., Zhou, D., and Blaabjerg, F.: An Improved Direct Power Control for Doubly Fed Induction Generator, IEEE T. Power Electr., 36, 4672–4685,
https://doi.org/10.1109/TPEL.2020.3024620, 2021.
a
Guo, F., Schlipf, D., and Cheng, P. W.: Evaluation of lidar-assisted wind turbine control under various turbulence characteristics, Wind Energ. Sci., 8, 149–171,
https://doi.org/10.5194/wes-8-149-2023, 2023.
a
IEC: Wind turbines-Part 1: Design requirements, IEC 61400-1, 3rd edn., Tech. Rep., International Electrotechnical Commission, Geneva, Switzerland, ISBN 2831881617, 2005. a
Jonkman, B. J.: TurbSim user's guide, Tech. Rep., National Renewable Energy Lab. (NREL), Golden, CO, United States,
https://www.nrel.gov/docs/fy06osti/39797.pdf (last access: 11 August 2023), 2006. a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development, Tech. Rep., National Renewable Energy Lab. (NREL), Golden, CO, United States,
https://www.nrel.gov/docs/fy09osti/38060.pdf (last access: 11 August 2023), 2009.
a,
b
Kipchirchir, E., Do, M. H., Njiri, J. G., and Söffker, D.: Prognostics-based adaptive control strategy for lifetime control of wind turbines, Wind Energ. Sci., 8, 575–588,
https://doi.org/10.5194/wes-8-575-2023, 2023.
a
Kost, C., Shammugam, S., Fluri, V., Peper, D., Memar, A., and Schlegl, T.: Study: Levelized Cost of Electricity – Renewable Energy Technologies,
https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html (last access: 24 July 2023), 2021. a
Liu, X., Ortega, R., Su, H., and Chu, J.: Identification of nonlinearly parameterized nonlinear models: application to mass balance systems, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 28th Chinese Control Conference, 15–18 December 2009, Shanghai, China, 4682–4685,
https://doi.org/10.1109/CDC.2009.5399817, 2009.
a
Mahdizadeh, A., Schmid, R., and Oetomo, D.: LIDAR-Assisted Exact Output Regulation for Load Mitigation in Wind Turbines, IEEE T. Contr. Syst. T., 29, 1102–1116,
https://doi.org/10.1109/TCST.2020.2991640, 2021.
a,
b,
c
Moldenhauer, R.: Dataset and code for `LIDAR-assisted nonlinear output regulation of wind turbines for fatigue load reduction', Zenodo [code and data set],
https://doi.org/10.5281/zenodo.14523056, 2024.
a
Mordor Intelligence: China Wind Energy Market Size & Share Analysis – Growth Trends & Forecasts (2023–2028),
https://www.mordorintelligence.com/industry-reports/china-wind-energy-market, (last access: 10 December 2024), 2024. a
Munteanu, I., Bratcu, A., Cutululis, N., and Ceanga, E.: Optimal Control of Wind Energy Systems, Towards a Global Approach, Springer, ISBN 978-1-84800-080-3, 2008. a
NREL: OpenFAST, Version 2.1.0, GitHub [code],
https://github.com/openfast/openfast (last access: 10 December 2024), 2019.
a,
b,
c
NREL: ROSCO Version 2.8.0, GitHub [code],
https://github.com/NREL/ROSCO (last access: 10 December 2024), 2021. a
Ortega, R., Mancilla-David, F., and Jaramillo, F.: A globally convergent wind speed estimator for windmill systems, in: 50th IEEE Conference on Decision and Control and European Control Conference, 12–15 December 2011, Orlando, FL, USA, 6079–6084,
https://doi.org/10.1109/CDC.2011.6160544, 2011.
a,
b,
c
Ortega, R., Mancilla-David, F., and Jaramillo, F.: A globally convergent wind speed estimator for wind turbine systems, Int. J. Adapt. Control, 27, 413–425,
https://doi.org/10.1002/acs.2319, 2013.
a,
b,
c,
d
Requate, N., Meyer, T., and Hofmann, R.: From wind conditions to operational strategy: optimal planning of wind turbine damage progression over its lifetime, Wind Energ. Sci., 8, 1727–1753,
https://doi.org/10.5194/wes-8-1727-2023, 2023.
a
Schlipf, D.: Lidar-assisted control concepts for wind turbines, PhD thesis, Universität Stuttgart,
https://elib.uni-stuttgart.de/bitstreams/219460fd-5aa3-4aff-be0d-a0cfc39af167/download (last access: 26 May 2025), 2016.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Schlipf, D., Schlipf, D. J., and Kühn, M.: Nonlinear model predictive control of wind turbines using LIDAR, Wind Energy, 16, 1107–1129,
https://doi.org/10.1002/we.1533, 2013.
a
Schlipf, D., Guo, F., Raach, S., and Lemmer, F.: A Tutorial on Lidar-Assisted Control for Floating Offshore Wind Turbines, in: 2023 American Control Conference (ACC), 31 May 2023–02 June 2023, San Diego, CA, USA, 2536–2541,
https://doi.org/10.23919/ACC55779.2023.10156419, 2023.
a,
b
Soltani, M. N., Knudsen, T., Svenstrup, M., Wisniewski, R., Brath, P., Ortega, R., and Johnson, K.: Estimation of Rotor Effective Wind Speed: A Comparison, IEEE T. Contr. Syst. T., 21, 1155–1167,
https://doi.org/10.1109/TCST.2013.2260751, 2013.
a,
b
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39,
https://doi.org/10.5194/wes-1-1-2016, 2016.
a,
b
Woolcock, L., Liu, V., Witherby, A., Schmid, R., and Mahdizadeh, A.: Comparison of REWS and LIDAR-based feedforward control for fatigue load mitigation in wind turbines, Control Eng. Pract., 138, 105477,
https://doi.org/10.1016/j.conengprac.2023.105477, 2023.
a,
b,
c,
d
Wright, A., Fingersh, L., and Balas, M.: Testing State-Space Controls for the Controls Advanced Research Turbine, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, NV, USA,
https://doi.org/10.2514/6.2006-604, 2006.
a
Wright, A. D.: Modern Control Design for Flexible Wind Turbines, Tech. Rep. NREL/TP-500-35816, National Renewable Energy Lab. (NREL), Golden, CO, United States,
https://doi.org/10.2172/15011696, 2004.
a
Wright, A. D. and Fingersh, L. J.: Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests, Tech. Rep. NREL/TP–500–42437, National Renewable Energy Lab. (NREL), Golden, CO, United States,
https://doi.org/10.2172/927269, 2008.
a
Yaakoubi, A. E., Bouzem, A., Alami, R. E., Chaibi, N., and Bendaou, O.: Wind turbines dynamics loads alleviation: Overview of the active controls and the corresponding strategies, Ocean Eng., 278, 114070,
https://doi.org/10.1016/j.oceaneng.2023.114070, 2023.
a,
b
Zalkind, D. S. and Pao, L. Y.: Constrained Wind Turbine Power Control, in: 2019 American Control Conference (ACC), 10–12 July 2019, Philadelphia, PA, USA, 3494–3499,
https://doi.org/10.23919/ACC.2019.8814860, 2019.
a