Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-1943-2025
https://doi.org/10.5194/wes-10-1943-2025
Research article
 | 
11 Sep 2025
Research article |  | 11 Sep 2025

Wind turbine wake detection and characterisation utilising blade loads and SCADA data: a generalised approach

Piotr Fojcik, Edward Hart, and Emil Hedevang

Related authors

Brief communication: An elliptical parameterisation of the wind direction rose
Edward Hart
Wind Energ. Sci., 10, 1821–1827, https://doi.org/10.5194/wes-10-1821-2025,https://doi.org/10.5194/wes-10-1821-2025, 2025
Short summary
Reductions in wind farm main bearing rating lives resulting from wake impingement
Julian Quick, Edward Hart, Marcus Binder Nilsen, Rasmus Sode Lund, Jaime Liew, Piinshin Huang, Pierre-Elouan Rethore, Jonathan Keller, Wooyong Song, and Yi Guo
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-63,https://doi.org/10.5194/wes-2025-63, 2025
Revised manuscript under review for WES
Short summary
Control-oriented modelling of wind direction variability
Scott Dallas, Adam Stock, and Edward Hart
Wind Energ. Sci., 9, 841–867, https://doi.org/10.5194/wes-9-841-2024,https://doi.org/10.5194/wes-9-841-2024, 2024
Short summary
Wind turbine main-bearing lubrication – Part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 MW wind turbine
Edward Hart, Elisha de Mello, and Rob Dwyer-Joyce
Wind Energ. Sci., 7, 1533–1550, https://doi.org/10.5194/wes-7-1533-2022,https://doi.org/10.5194/wes-7-1533-2022, 2022
Short summary
Impacts of wind field characteristics and non-steady deterministic wind events on time-varying main-bearing loads
Edward Hart, Adam Stock, George Elderfield, Robin Elliott, James Brasseur, Jonathan Keller, Yi Guo, and Wooyong Song
Wind Energ. Sci., 7, 1209–1226, https://doi.org/10.5194/wes-7-1209-2022,https://doi.org/10.5194/wes-7-1209-2022, 2022
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015. a
Adaramola, M. and Krogstad, P.-A.: Experimental investigation of wake effects on wind turbine performance, Renew. Energy, 36, 2078–2086, https://doi.org/10.1016/j.renene.2011.01.024, 2011. a
Ahmed, N., Natarajan, T., and Rao, K.: Discrete Cosine Transform, IEEE Transact. Comput., C-23, 90–93, https://doi.org/10.1109/T-C.1974.223784, 1974. a
Azadkia, M. and Chatterjee, S.: A simple measure of conditional dependence, Ann. Stat., 49, 3070–3102, https://doi.org/10.1214/21-AOS2073, 2021. a, b
Barthelmie, R. J., Pryor, S. C., Frandsen, S. T., Hansen, K. S., Schepers, J. G., Rados, K., Schlez, W., Neubert, A., Jensen, L. E., and Neckelmann, S.: Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms, J. Atmos. Ocean. Tech., 27, 1302–1317, https://doi.org/10.1175/2010JTECHA1398.1, 2010. a
Download
Short summary
Increasing the efficiency of wind farms can be achieved via reducing the impact of wakes – flow regions with lower wind speed occurring downwind from turbines. This work describes training and validation of a novel method for the estimation of the wake effects impacting a turbine. The results show that for most tested wind conditions, the developed model is capable of robust detection of wake presence and accurate characterisation of its properties. Further validation and improvements are planned.
Share
Altmetrics
Final-revised paper
Preprint