Articles | Volume 10, issue 9
https://doi.org/10.5194/wes-10-2099-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.In situ condition monitoring of floating offshorewind turbines using kurtosis anddeep-learning-based approaches
Related authors
Cited articles
Bangalore, P. and Tjernberg, L. B.: An artificial neural network approach for early fault detection of gearbox bearings, IEEE T. Smart Grid, 6, 980–987, 2015. a
Barahona, B., Hoelzl, C., and Chatzi, E.: Applying design knowledge and machine learning to scada data for classification of wind turbine operating regimes, in: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 2017, 1–8, https://doi.org/10.1109/SSCI.2017.8280947, 2017. a
Berahmand, K., Daneshfar, F., Salehi, E. S., Li, Y., and Xu, Y.: Autoencoders and their applications in machine learning: a survey, Artif. Intell. Rev., 57, 28, https://doi.org/10.1007/s10462-023-10662-6, 2024. a, b, c
Brincker, R. and Ventura, C.: Introduction to operational modal analysis, John Wiley & Sons, ISBN 978-1-119-96315-8, 2015. a
Chen, J., Li, J., Chen, W., Wang, Y., and Jiang, T.: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders, Renew. Energ., 147, 1469–1480, 2020. a