Blake, E. S., Landsea, C., and Gibney, E. J.: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts), NOA
A Technical Memorandum NWS NHC-6, National Weather Service, National Hurricane Center, Miami, Florida, August, 47 pp.,
https://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf (last access: 1 October 2020), 2011.
ESDU: Strong Winds in the Atmospheric Boundary Layer, Part 1: Mean Hourly Wind Speed, Engineering Sciences Data Unit Item Number 82026, London, England, ISBN: 978 0 85679 407 0, 1982.
ESDU: Strong Winds in the Atmospheric Boundary Layer, Part 2: Discrete Gust Speeds, Engineering Sciences Data Unit Item Number 83045, London, England, ISBN: 978 0 85679 460 5, 1983.
Gao, Z., Zhou, S., Zhang, J., Zeng, Z., and Bi, X.: Parameterization of sea surface drag coefficient for all wind regimes using 11 aircraft eddy-covariance measurement databases, Atmosphere-Basel, 12, 1485, https://doi.org/10.3390/atmos12111485, 2021.
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: Definition of the IEA Wind 15-Megawatt Offshore Reference Wind, National Renewable Energy Laboratory (NREL), Golden, CO, NREL/TP-5000-75698,
https://www.nrel.gov/docs/fy20osti/75698.pdf (last access: 1 October 2020), 2020.
Hock, T. F. and Franklin, J. L.: The ncar gps dropwindsonde, B. Am. Meteorol. Soc., 80, 407–420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2, 1999.
Holthuijsen, L. H., Powell, M. D., and Pietrzak, J. D.: Wind and waves in extreme hurricanes, J. Geophys. Res.-Oceans, 117, C09003, https://doi.org/10.1029/2012JC007983, 2012.
Hsu, J. Y., Lien, R. C., D'Asaro, E. A., and Sanford, T. B.: Scaling of drag coefficients under five tropical cyclones, Geophys. Res. Lett., 46, 3349–3358, https://doi.org/10.1029/2018GL081574, 2019.
IEC TC88-MT1: IEC 61400-1 Ed.4. Wind Energy Generation Systems. Part 1: Design Requirements, International Electrotechnical Commission, Geneva, Switzerland, ISBN: 9782832279724, 2019.
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty and presentation of a new database format, Mon. Weather Rev., 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Large, W. G. and Pond, S.: Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981.
Lee, W., Kim, S. H., Moon, I. J., Bell, M. M., and Ginis, I.: New parameterization of air-sea exchange coefficients and its impact on intensity prediction under major tropical cyclones, Front. Marine Sci., 9, 1046511, https://doi.org/10.3389/fmars.2022.1046511, 2022.
Li, J., Li, Z., Jiang, Y., and Tang, Y.: Typhoon resistance analysis of offshore wind turbines: A review, Atmosphere-Basel, 13, 451, https://doi.org/10.3390/atmos13030451, 2022.
Lipari, S., Balaguru, K., Rice, J., Feng, S., Xu, W., Berg, L. K., and Judi, D.: Amplified threat of tropical cyclones to US offshore wind energy in a changing climate, Commun. Earth Env., 5, 1–10, 2024.
Liu, B., Guan, C., and Xie, L.: The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds, J. Geophys. Res.-Oceans, 117, C00J22, https://doi.org/10.1029/2011JC007786, 2012.
Makin, V. K.: A note on the drag of the sea surface at hurricane winds, Bound.-Lay. Meteorol., 115, 169–176, https://doi.org/10.1007/s10546-004-3647-x, 2005.
Mattu, K. L., Bloomfield, H. C., Thomas, S., Martínez-Alvarado, O., and Rodríguez-Hernández, O.: The impact of tropical cyclones on potential offshore wind farms, Energy Sustain. Dev., 68, 29–39, 2022.
Peng, S. and Li, Y.: A parabolic model of drag coefficient for storm surge simulation in the South China Sea, Sci. Rep.-UK, 5, 15496, https://doi.org/10.1038/srep15496, 2015.
Powell, M. D., Vickery, P. J., and Reinhold, T. A.: Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422, 279–283, https://doi.org/10.1038/nature01481, 2003.
Richter, D. H., Bohac, R., and Stern, D. P.: An assessment of the flux profile method for determining air–sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones, J. Atmos. Sci., 73, 2665–2682, https://doi.org/10.1175/JAS-D-15-0331.1, 2016.
Richter, D. H., Wainwright, C., Stern, D. P., Bryan, G. H., and Chavas, D.: Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricanes, J. Atmos. Sci., 78, 2339–2352, 2021.
Shi, J., Zhong, Z., Li, X., Jiang, G., Zeng, W., and Li, Y.: The Influence of wave state and sea spray on drag coefficient from low to high wind speeds, J. Ocean U. China, 15, 41–49, https://doi.org/10.1007/s11802-016-2655-z, 2016.
Smith, R. K. and Montgomery, M. T.: On the existence of the logarithmic surface layer in the inner core of hurricanes, Q. J. Roy. Meteor. Soc., 140, 72–81, https://doi.org/10.1002/qj.2121, 2014.
Takagaki, N., Komori, S., Suzuki, N., Iwano, K., Kuramoto, T., Shimada, S., Kurose, R., and Takahashi, K.: Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds, Geophys. Res. Lett., 39, L23604, https://doi.org/10.1029/2012GL053988, 2012.
Troitskaya, Y. I., Sergeev, D. A., Kandaurov, A. A., Baidakov, G. A., Vdovin, M. A., and Kazakov, V. I.: Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions, J. Geophys. Res.-Oceans, 117, C00J21, https://doi.org/10.1029/2011JC007778, 2012.
Vickery, P. J.: Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States, J. Appl. Meteorol., 44, 1807–1826, https://doi.org/10.1175/JAM2310.1, 2005.
Vickery, P. J. and Skerlj, P. F.: Hurricane gust factors revisited, J. Struct. Eng., 131, 825–832, https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(825), 2005.
Vickery, P. J. and Wadhera, D.: Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data, J. Appl. Meteorol. Clim., 47, 2497–2517, https://doi.org/10.1175/2008JAMC1837.1, 2008.
Vickery, P. J., Skerlj, P. F., Steckley, A. C., and Twisdale, L. A.: Hurricane wind field model for use in hurricane simulations, J. Struct. Eng., 126, 1203–1221, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203), 2000a.
Vickery, P. J., Skerlj, P. F., and Twisdale, L. A.: Simulation of hurricane risk in the US using empirical track model, J. Struct. Eng., 126, 1222–1237, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222), 2000b.
Vickery, P. J., Wadhera, D., Powell, M. D., and Chen, Y.: A hurricane boundary layer and wind field model for use in engineering applications, J. Appl. Meteorol. Clim., 48, 381–405, https://doi.org/10.1175/2008JAMC1841.1, 2009a.
Vickery, P. J., Wadhera, D., Twisdale Jr., L. A., and Lavelle, F. M.: US hurricane wind speed risk and uncertainty, J. Struct. Eng., 135, 301–320, https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(301), 2009b.
Vickers, D., Mahrt, L., and Andreas, E. L.: Estimates of the 10 m neutral sea surface drag coefficient from aircraft eddy-covariance measurements, J. Phys. Oceanogr., 43, 301–310, https://doi.org/10.1175/JPO-D-12-0101.1, 2013.
Ye, L., Li, Y., and Gao, Z.: Surface layer drag coefficient at different radius ranges in tropical cyclones, Atmosphere-Basel, 13, 280, https://doi.org/10.3390/atmos13020280, 2022.
Zou, Z., Zhao, D., Tian, J., Liu, B., and Huang, J.: Drag coefficients derived from ocean current and temperature profiles at high wind speeds, Tellus A, 70, 1–13, https://doi.org/10.1080/16000870.2018.1463805, 2018.