Articles | Volume 10, issue 12
https://doi.org/10.5194/wes-10-2889-2025
© Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.
Population-based structural health monitoring: homogeneous offshore wind model development
Related authors
Cited articles
Anderlik, S., Stumptner, R., Freudenthaler, B., and Fritz, M.: A proposal for ontology-based integration of heterogeneous decision support systems for structural health monitoring, iiWAS, https://doi.org/10.1145/1967486.1967515, 2010. a
ASTM: Standard Practices for Cycle Counting in Fatigue Analysis, https://store.astm.org/e1049-85r17.html (last access: 10 October 2023), 2017. a
Black, I. M., Cevasco, D., and Kolios, A.: Deep Neural Network Hard Parameter Multi-Task Learning for Condition Monitoring of an Offshore Wind Turbine, Journal of Physics: Conference Series, 2265, 032091, https://doi.org/10.1088/1742-6596/2265/3/032091, 2022. a
Bull, L. A., Gardner, P. A., Gosliga, J., Rogers, T. J., Dervilis, N., Cross, E. J., Papatheou, E., Maguire, A. E., Campos, C., and Worden, K.: Foundations of population-based SHM, Part I: Homogeneous populations and forms, Mech. Syst. Signal Process., 148, 107141, https://doi.org/10.1016/j.ymssp.2020.107141, 2021. a
Chelba, C. and Acero, A.: Adaptation of Maximum Entropy Capitalizer: Little Data Can Help a Lo, in: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Barcelona, Spain, 285–292, https://aclanthology.org/W04-3237 (last access: 10 October 2023), 2004. a, b