Articles | Volume 10, issue 12
https://doi.org/10.5194/wes-10-2925-2025
https://doi.org/10.5194/wes-10-2925-2025
Research article
 | 
08 Dec 2025
Research article |  | 08 Dec 2025

Experimental study of transonic flow over a wind turbine airfoil

Abhyuday Aditya, Maria Cristina Vitulano, Delphine De Tavernier, Ferdinand Schrijer, Bas van Oudheusden, and Dominic von Terzi

Related authors

Dynamics of floating wind turbine wakes in a wind tunnel setup
Ricardo Amaral, Felix Houtin-Mongrolle, Dominic von Terzi, Kasper Laugesen, Paul Deglaire, and Axelle Viré
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-264,https://doi.org/10.5194/wes-2025-264, 2025
Preprint under review for WES
Short summary
Phase-controlling the motion of floating wind turbines to reduce wake interactions
Daniel van den Berg, Daan van der Hoek, Delphine De Tavernier, Jonas Gutknecht, and Jan-Willem van Wingerden
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-201,https://doi.org/10.5194/wes-2025-201, 2025
Revised manuscript under review for WES
Short summary
Validation of the near wake of a scaled X-Rotor vertical-axis wind turbine predicted by a free-wake vortex model
Adhyanth Giri Ajay, David Bensason, and Delphine De Tavernier
Wind Energ. Sci., 10, 1829–1847, https://doi.org/10.5194/wes-10-1829-2025,https://doi.org/10.5194/wes-10-1829-2025, 2025
Short summary
CFD analysis of dynamic wind turbine airfoil characteristics in transonic flow using URANS
Maria Cristina Vitulano, Delphine De Tavernier, Giuliano De Stefano, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-125,https://doi.org/10.5194/wes-2025-125, 2025
Revised manuscript under review for WES
Short summary
The experimental characterisation of dynamic stall of the FFA-W3-211 wind turbine airfoil
Simone Chellini, Delphine De Tavernier, and Dominic von Terzi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-121,https://doi.org/10.5194/wes-2025-121, 2025
Revised manuscript under review for WES
Short summary

Cited articles

Accorinti, A., Baur, T., Scharnowski, S., and Kähler, C. J.: Experimental investigation of transonic shock buffet on an OAT15A profile, AIAA Journal, 60, 6289–6300, https://doi.org/10.2514/1.J061135, 2022. a, b
Aditya, A., Schrijer, F., van Oudheusden, B., De Tavernier, D., and von Terzi, D.: Supporting data belonging to publication: ”Experimental study of transonic flow over a wind turbine airfoil”, Version 1, 4TU.ResearchData [data set], https://doi.org/10.4121/fbf1c251-cbf9-49d7-9626-a9fe3498aed5.v1, 2025. a
Benedict, L. and Gould, R.: Towards better uncertainty estimates for turbulence statistics, Experiments in Fluids, 22, 129–136, https://doi.org/10.1007/s003480050030 1996. a
Bertagnolio, F., Sørensen, N. N., Johansen, J., and Fuglsang, P.: Wind turbine airfoil catalogue, ISBN 87-550-2910-8, 2001. a
D'Aguanno, A., Schrijer, F., and van Oudheusden, B.: Experimental investigation of the transonic buffet cycle on a supercritical airfoil, Experiments in Fluids, 62, 1–23, https://doi.org/10.1007/s00348-021-03319-z, 2021. a, b, c, d, e, f
Download
Short summary
This study is the first to experimentally test how wind turbine blades behave at near-supersonic speeds, a condition expected in the largest turbines. In the experiments, we observed unstable and potentially detrimental shock waves that become stronger at higher speeds and angles. Basic prediction tools in wind turbine design miss these details, highlighting the need for better tools and experiments to understand the extreme conditions faced by modern wind turbines.
Share
Altmetrics
Final-revised paper
Preprint