Articles | Volume 10, issue 2
https://doi.org/10.5194/wes-10-417-2025
https://doi.org/10.5194/wes-10-417-2025
Research article
 | 
10 Feb 2025
Research article |  | 10 Feb 2025

On the modeling errors of digital twins for load monitoring and fatigue assessment in wind turbine drivetrains

Felix C. Mehlan and Amir R. Nejad

Related authors

Floating Offshore Wind in Japan: Addressing the Challenges, Efforts, and Research gaps
Ryota Wada, Amir R. Nejad, Kazuhiro Iijima, Junji Shimazaki, Mihaela Ibrion, Shinnosuke Wanaka, Hideo Nomura, Yoshitaka Mizushima, Takuya Nakashima, and Ken Takagi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-74,https://doi.org/10.5194/wes-2025-74, 2025
Preprint under review for WES
Short summary
Investigating Lab-scaled Offshore Wind Aerodynamic Testing Failure and Developing Solutions for Early Anomaly Detections
Yuksel R. Alkarem, Ian Ammerman, Kimberly Huguenard, Richard W. Kimball, Babak Hejrati, Amrit Verma, Amir R. Nejad, Reza Hashemi, and Stephan Grilli
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-31,https://doi.org/10.5194/wes-2025-31, 2025
Revised manuscript accepted for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary
On reliability design and code calibration of wind turbine blade bearings under extreme wind conditions
Ashkan Rezaei and Amir Rasekhi Nejad
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-186,https://doi.org/10.5194/wes-2024-186, 2025
Revised manuscript under review for WES
Short summary
Unsupervised anomaly detection of permanent-magnet offshore wind generators through electrical and electromagnetic measurements
Ali Dibaj, Mostafa Valavi, and Amir R. Nejad
Wind Energ. Sci., 9, 2063–2086, https://doi.org/10.5194/wes-9-2063-2024,https://doi.org/10.5194/wes-9-2063-2024, 2024
Short summary

Cited articles

Arias, R. R. and Galvan, J.: NAUTILUS-DTU10 MW Floating Offshore Wind Turbine at Gulf of Maine, WindEurope, https://doi.org/10.1088/1742-6596/1102/1/012015, 2018. a
Branlard, E., Jonkman, J., Brown, C., and Zhang, J.: A digital twin solution for floating offshore wind turbines validated using a full-scale prototype, Wind Energ. Sci., 9, 1–24, https://doi.org/10.5194/wes-9-1-2024, 2024. a
Dong, W., Nejad, A. R., Moan, T., and Gao, Z.: Structural reliability analysis of contact fatigue design of gears in wind turbine drivetrains, J. Loss Prevent. Proc., 65, 104115, https://doi.org/10.1016/j.jlp.2020.104115, 2020. a, b
Eritenel, T. and Parker, R. G.: Three-dimensional nonlinear vibration of gear pairs, J. Sound Vib., 331, 3628–3648, https://doi.org/10.1016/j.jsv.2012.03.019, 2012. a
Download
Short summary
A digital twin is a virtual representation that mirrors the wind turbine's real behavior through simulation models and sensor measurements and can assist in making key decisions such as planning the replacement of parts. These models and measurements are, of course, not perfect and only give an incomplete picture of the real behavior. This study investigates how large the uncertainty of such models and measurements is and to what extent it affects the decision-making process.
Share
Altmetrics
Final-revised paper
Preprint