Byrkjedal, Ø. and Berge, E.: The use of WRF for Wind Resource Mapping in Norway, in: The 9th WRF Users' Workshop, 23–27 June 2008, National Center for Atmospheric Research, Boulder, Colorado,
https://www2.mmm.ucar.edu/wrf/users/workshops/WS2008/WorkshopPapers.php (last access: 28 November 2025), 2008. a
Carvalho, D., Rocha, A., Santos, C. S., and Pereira, R.: Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques, Applied Energy, 108, 493–504,
https://doi.org/10.1016/j.apenergy.2013.03.074, 2013.
a
Chen, F., Janjć, Z., and Mitchell, K.: Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model, Boundary-Layer Meteorology, 85, 391–421,
https://doi.org/10.1023/A:1000531001463, 1997.
a
Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O., Mortensen, N. G., Kelly, M., Larsén, X. G., Olsen, B. T., Floors, R., Lizcano, G., Casso, P., Lacave, O., Bosch, A., Bauwens, I., Knight, O. J., van Loon, A. P., Fox, R., Parvanyan, T., Hansen, S. B. K., Heathfield, D., Onninen, M., and Drummond, R.: The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application, Bulletin of the American Meteorological Society, 104, E1507–E1525,
https://doi.org/10.1175/BAMS-D-21-0075.1, 2023.
a
Doyle, J. D. and Durran, D. R.: Rotor and Subrotor Dynamics in the Lee of Three-Dimensional Terrain, Journal of the Atmospheric Sciences, 64, 4202–4221,
https://doi.org/10.1175/2007JAS2352.1, 2007.
a
Doyle, J. D., Durran, D. R., Chen, C., Colle, B. A., Georgelin, M., Grubisic, V., Hsu, W. R., Huang, C. Y., Landau, D., Lin, Y. L., Poulos, G. S., Sun, W. Y., Weber, D. B., Wurtele, M. G., and Xue, M.: An Intercomparison of Model-Predicted Wave Breaking for the 11 January 1972 Boulder Windstorm, Monthly Weather Review, 128, 901–914,
https://doi.org/10.1175/1520-0493(2000)128<0901:AIOMPW>2.0.CO;2, 2000.
a,
b
Draxl, C., Worsnop, R. P., Xia, G., Pichugina, Y., Chand, D., Lundquist, J. K., Sharp, J., Wedam, G., Wilczak, J. M., and Berg, L. K.: Mountain waves can impact wind power generation, Wind Energy Science, 6, 45–60,
https://doi.org/10.5194/wes-6-45-2021, 2021.
a,
b,
c,
d,
e
Durran, D.: Lee Wawes and Mountain Waves, in: Encyclopedia of Atmospheric Sciences, edited by Holton, J. R., 1161–1169, Academic Press, Oxford, ISBN 978-0-12-227090-1,
https://doi.org/10.1016/B0-12-227090-8/00202-5, 2003.
a
Durran, D. R.: Mountain Waves and Downslope Winds, 59–81, American Meteorological Society, Boston, MA, ISBN 978-1-935704-25-6,
https://doi.org/10.1007/978-1-935704-25-6_4, 1990.
a,
b,
c,
d,
e
Fernando, H. J. S., Mann, J., Palma, J. M. L. M., Lundquist, J. K., Barthelmie, R. J., Belo-Pereira, M., Brown, W. O. J., Chow, F. K., Gerz, T., Hocut, C. M., Klein, P. M., Leo, L. S., Matos, J. C., Oncley, S. P., Pryor, S. C., Bariteau, L., Bell, T. M., Bodini, N., Carney, M. B., Courtney, M. S., Creegan, E. D., Dimitrova, R., Gomes, S., Hagen, M., Hyde, J. O., Kigle, S., Krishnamurthy, R., Lopes, J. C., Mazzaro, L., Neher, J. M. T., Menke, R., Murphy, P., Oswald, L., Otarola-Bustos, S., Pattantyus, A. K., Rodrigues, C. V., Schady, A., Sirin, N., Spuler, S., Svensson, E., Tomaszewski, J., Turner, D. D., van Veen, L., Vasiljević, N., Vassallo, D., Voss, S., Wildmann, N., and Wang, Y.: The Perdigão: Peering into Microscale Details of Mountain Winds, Bulletin of the American Meteorological Society, 100, 799–819,
https://doi.org/10.1175/BAMS-D-17-0227.1, 2019.
a
Fernández-González, S., Martín, M. L., García-Ortega, E., Merino, A., Lorenzana, J., Sánchez, J. L., Valero, F., and Rodrigo, J. S.: Sensitivity Analysis of the WRF Model: Wind-Resource Assessment for Complex Terrain, Journal of Applied Meteorology and Climatology, 57, 733–753,
https://doi.org/10.1175/JAMC-D-17-0121.1, 2018.
a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model, Monthly Weather Review, 140, 3017–3038,
https://doi.org/10.1175/MWR-D-11-00352.1, 2012.
a,
b,
c
Gaberšek, S. and Durran, D. R.: Gap Flows through Idealized Topography. Part I: Forcing by Large-Scale Winds in the Nonrotating Limit, Journal of the Atmospheric Sciences, 61, 2846–2862,
https://doi.org/10.1175/JAS-3340.1, 2004.
a,
b,
c,
d,
e
García-Santiago, O., Hahmann, A. N., Badger, J., and Peña, A.: Evaluation of wind farm parameterizations in the WRF model under different atmospheric stability conditions with high-resolution wake simulations, Wind Energ. Sci., 9, 963–979,
https://doi.org/10.5194/wes-9-963-2024, 2024.
a,
b,
c
Han, X., Liu, D., Xu, C., and Shen, W. Z.: Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain, Renewable Energy, 126, 640–651,
https://doi.org/10.1016/j.renene.2018.03.048, 2018.
a
He, Y., Han, X., Xu, C., Cheng, Z., Wang, J., Liu, W., and Xu, D.: Sensitivity of simulated wind power under diverse spatial scales and multiple terrains using the weather research and forecasting model, Energy, 285, 129430,
https://doi.org/10.1016/j.energy.2023.129430, 2023.
a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.143582cf, 2017.
a
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.bd0915c6, 2023a.
a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.adbb2d47, 2023b.
a
Holton, J. R. and Hakim, G. J.: Chap. 9 – Mesoscale Circulations, in: An Introduction to Dynamic Meteorology, 5th edn., edited by: Holton, J. R. and Hakim, G. J., Academic Press, Boston, 279–323,
https://doi.org/10.1016/B978-0-12-384866-6.00009-X, ISBN 978-0-12-384866-6,2013.
a,
b
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres, 113,
https://doi.org/10.1029/2008JD009944, 2008.
a
Jackson, P. L., Mayr, G., and Vosper, S.: Dynamically-Driven Winds, Springer Netherlands, Dordrecht, 121–218,
https://doi.org/10.1007/978-94-007-4098-3_3, ISBN 978-94-007-4098-3, 2013.
a,
b,
c,
d,
e
Jiang, Q., Doyle, J. D., and Smith, R. B.: Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event, Quarterly Journal of the Royal Meteorological Society, 131, 675–701,
https://doi.org/10.1256/qj.03.176, 2005.
a
Klemp, J. B. and Lilly, D. R.: The Dynamics of Wave-Induced Downslope Winds, Journal of Atmospheric Sciences, 32, 320–339,
https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2, 1975.
a,
b,
c,
d
Kosović, B., Basu, S., Berg, J., Berg, L. K., Haupt, S. E., Larsén, X. G., Peinke, J., Stevens, R. J. A. M., Veers, P., and Watson, S.: Impact of atmospheric turbulence on performance and loads of wind turbines: Knowledge gaps and research challenges, Wind Energ. Sci. Discuss. [preprint],
https://doi.org/10.5194/wes-2025-42, in review, 2025.
a,
b
Metz, J. J. and Durran, D. R.: Downslope Windstorm Forecasting: Easier with a Critical Level, but Still Challenging for High-Resolution Ensembles, Weather and Forecasting, 38, 1375–1390,
https://doi.org/10.1175/WAF-D-22-0135.1, 2023.
a,
b
Mobbs, S. D., Vosper, S. B., Sheridan, P. F., Cardoso, R., Burton, R. R., Arnold, S. J., Hill, M. K., Horlacher, V., and Gadian, A. M.: Observations of downslope winds and rotors in the Falkland Islands, Quarterly Journal of the Royal Meteorological Society, 131, 329–351,
https://doi.org/10.1256/qj.04.51, 2005.
a,
b,
c
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer, Journal of the Meteorological Society of Japan. Ser. Pt. II, 87, 895–912,
https://doi.org/10.2151/jmsj.87.895, 2009.
a
Radünz, W. C., Sakagami, Y., Haas, R., Petry, A. P., Passos, J. C., Miqueletti, M., and Dias, E.: Influence of atmospheric stability on wind farm performance in complex terrain, Applied Energy, 282, 116149,
https://doi.org/10.1016/j.apenergy.2020.116149, 2021.
a
Reinecke, P. A. and Durran, D. R.: Estimating Topographic Blocking Using a Froude Number When the Static Stability Is Nonuniform, Journal of the Atmospheric Sciences, 65, 1035–1048,
https://doi.org/10.1175/2007JAS2100.1, 2008.
a,
b,
c
Reinecke, P. A. and Durran, D. R.: Initial-Condition Sensitivities and the Predictability of Downslope Winds, Journal of the Atmospheric Sciences, 66, 3401–3418,
https://doi.org/10.1175/2009JAS3023.1, 2009.
a,
b
Rögnvaldsson, O., Bao, J.-W., Ágústsson, H., and Ólafsson, H.: Downslope windstorm in Iceland – WRF/MM5 model comparison, Atmos. Chem. Phys., 11, 103–120,
https://doi.org/10.5194/acp-11-103-2011, 2011.
a,
b,
c,
d,
e
Sachsperger, J., Serafin, S., and Grubišić, V.: Dynamics of rotor formation in uniformly stratified two-dimensional flow over a mountain, Quarterly Journal of the Royal Meteorological Society, 142, 1201–1212,
https://doi.org/10.1002/qj.2746, 2016.
a,
b,
c
Samuelsen, E. M.: Et dynamisk studium av stormen Narve – et kaldluftsutbrudd i Finnmark - ved hjelp av observasjoner og numeriske simuleringer, Master's thesis, University of Bergen, Bergen, Norway,
https://hdl.handle.net/1956/17137 (last access: 28 November 2025), 2007. a
Samuelsen, E. M. and Kvist, K.: Icing Observed and Analysed in Correspondence with Helicopter Flight Campaigns in Norway 2023, in: 20th International Workshop on Atmospheric Icing of Structures, UiT-The Arctic University of Norway, ISBN 978-82-7823-257-6, 2024.
a,
b
Sandvik, A. D. and Harstveit, K.: Study of a down slope windstorm over Southern Norway, Rjukan, 16., Tech. rep., January 2000, Tech. Rep., 23 pp.,
https://www.met.no/publikasjoner/met-report/met-report-2005 (last access: 28 November 2025), 2005.
a,
b
Sharman, R. D., Trier, S. B., Lane, T. P., and Doyle, J. D.: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review, Geophysical Research Letters, 39,
https://doi.org/10.1029/2012GL051996, 2012.
a
Sherry, M. and Rival, D.: Meteorological phenomena associated with wind-power ramps downwind of mountainous terrain, Journal of Renewable and Sustainable Energy, 7, 033101,
https://doi.org/10.1063/1.4919021, 2015.
a
Silver, Z., Dimitrova, A., Zsedrovits, T., Baines, P., and Fernando, H.: Simulation of stably stratified flow in complex terrain: flow structures and dividing streamline, Environmental Fluid Mechanics, 20, 1281–1311,
https://doi.org/10.1007/s10652-018-9648-y, 2020.
a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description of the Advanced Research WRF Model Version Version 4, National Center for Atmospheric Research, NCAR Technical Note, NCAR/TN-556
+STR,
https://doi.org/10.5065/1dfh-6p97, 2019.
a,
b
Smith, C. M. and Skyllingstad, E. D.: Effects of Inversion Height and Surface Heat Flux on Downslope Windstorms, Monthly Weather Review, 139, 3750–3764,
https://doi.org/10.1175/2011MWR3619.1, 2011.
a
Solbakken, K. and Birkelund, Y.: Evaluation of the Weather Research and Forecasting (WRF) model with respect to wind in complex terrain, Journal of Physics: Conference Series, 1102, 012011,
https://doi.org/10.1088/1742-6596/1102/1/012011, 2018.
a,
b,
c
Solbakken, K., Birkelund, Y., and Samuelsen, E. M.: Evaluation of surface wind using WRF in complex terrain: Atmospheric input data and grid spacing, Environmental Modelling and Software, 145, 105182,
https://doi.org/10.1016/j.envsoft.2021.105182, 2021.
a,
b,
c,
d,
e,
f,
g,
h
Solbakken, K., Birkelund, Y., and Samuelsen, E. M.: WRF input files for “Mountain waves and downslope winds impact on wind power production”, Zenodo [code],
https://doi.org/10.5281/zenodo.15845751, 2025.
a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme, Part II: Implementation of a New Snow Parameterization, Monthly Weather Review, 136, 5095–5115,
https://doi.org/10.1175/2008MWR2387.1, 2008.
a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Rodrigo, J. S., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027,
https://doi.org/10.1126/science.aau2027, 2019.
a
Wagner, J., Dörnbrack, A., Rapp, M., Gisinger, S., Ehard, B., Bramberger, M., Witschas, B., Chouza, F., Rahm, S., Mallaun, C., Baumgarten, G., and Hoor, P.: Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?, Atmos. Chem. Phys., 17, 4031–4052,
https://doi.org/10.5194/acp-17-4031-2017, 2017.
a,
b,
c
Wilczak, J. M., Stoelinga, M., Berg, L. K., Sharp, J., Draxl, C., McCaffrey, K., Banta, R. M., Bianco, L., Djalalova, I., Lundquist, J. K., Muradyan, P., Choukulkar, A., Leo, L., Bonin, T., Pichugina, Y., Eckman, R., Long, C. N., Lantz, K., Worsnop, R. P., Bickford, J., Bodini, N., Chand, D., Clifton, A., Cline, J., Cook, D. R., Fernando, H. J. S., Friedrich, K., Krishnamurthy, R., Marquis, M., McCaa, J., Olson, J. B., Otarola-Bustos, S., Scott, G., Shaw, W. J., Wharton, S., and White, A. B.: The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign, Bulletin of the American Meteorological Society, 100, 1701–1723,
https://doi.org/10.1175/BAMS-D-18-0035.1, 2019.
a
Xia, G., Draxl, C., Raghavendra, A., and Lundquist, J. K.: Validating simulated mountain wave impacts on hub-height wind speed using SoDAR observations, Renewable Energy, 163, 2220–2230,
https://doi.org/10.1016/j.renene.2020.10.127, 2021.
a,
b,
c
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme, Monthly Weather Review, 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
a