Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-521-2017
https://doi.org/10.5194/wes-2-521-2017
Research article
 | 
20 Nov 2017
Research article |  | 20 Nov 2017

Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill

Georg R. Pirrung, Helge A. Madsen, and Scott Schreck

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (02 Sep 2017) by Gerard J.W. van Bussel
AR by Georg Raimund Pirrung on behalf of the Authors (06 Sep 2017)  Author's response   Manuscript 
ED: Publish as is (14 Sep 2017) by Gerard J.W. van Bussel
ED: Publish subject to technical corrections (10 Oct 2017) by Jakob Mann (Chief editor)
AR by Georg Raimund Pirrung on behalf of the Authors (12 Oct 2017)  Manuscript 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A near-wake model for wind turbines in operation is extended to cover these conditions. The model is validated in aerodynamic simulations of the NREL/NASA Ames Phase VI rotor. Good agreement with the experiments has been obtained in attached flow and beginning separation. Aeroelastic simulations of the DTU 10 MW turbine in standstill indicate a minor impact of the model.
Altmetrics
Final-revised paper
Preprint