Articles | Volume 2, issue 2
https://doi.org/10.5194/wes-2-533-2017
https://doi.org/10.5194/wes-2-533-2017
Research article
 | 
20 Nov 2017
Research article |  | 20 Nov 2017

Impacts of the low-level jet's negative wind shear on the wind turbine

Walter Gutierrez, Arquimedes Ruiz-Columbie, Murat Tutkun, and Luciano Castillo

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Bhaganagar, K. and Debnath, M.: Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines, Energies, 7, 5740–5763, https://doi.org/10.3390/en7095740, 2014.
Blackadar, A. K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions, B. Am. Meteorol. Soc., 38, 283–290, 1957.
Bonner, W. D.: Climatology of the Low Level Jet, Mon. Weather Rev., 96, 833–850, 1968.
Ferreres, E., Soler, M., and Terradellas, E.: Analysis of turbulent exchange and coherent structures in the stable atmospheric boundary layer based on tower observations, Dynam. Atmos. Oceans, 64, 62–78, https://doi.org/10.1016/j.dynatmoce.2013.10.002, 2013.
Giammanco, I. M. and Peterson, R. E.: Three Representative Case Studies of the South Plains Nocturnal Low-Level Jet, 1–16, https://doi.org/10.2514/6.2006-1361, 2005.
Download
Short summary
Low-level jets (LLJ) are fast flows in the low atmosphere, usually seen at night, with a wind speed peak between 100–1000 m above the ground. More wind energy can be captured if an LLJ is present. The positive wind shear below the peak augments the damage to wind turbines. However, our results show that the negative shears above decrease the mechanical loading. Therefore, reaching negative shears more often reduces the LLJs' adverse impacts and makes it more feasible to harness their power.
Altmetrics
Final-revised paper
Preprint