Articles | Volume 4, issue 2
https://doi.org/10.5194/wes-4-251-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-4-251-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Power curve and wake analyses of the Vestas multi-rotor demonstrator
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Søren Juhl Andersen
Technical University of Denmark, DTU Wind Energy, Lyngby Campus, Anker Engelunds Vej 1, 2800 Lyngby, Denmark
Néstor Ramos García
Technical University of Denmark, DTU Wind Energy, Lyngby Campus, Anker Engelunds Vej 1, 2800 Lyngby, Denmark
Nikolas Angelou
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Georg Raimund Pirrung
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Søren Ott
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Mikael Sjöholm
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Kim Hylling Sørensen
Vestas Wind System A/S, Hedeager 42, 8200 Aarhus, Denmark
Julio Xavier Vianna Neto
Vestas Wind System A/S, Hedeager 42, 8200 Aarhus, Denmark
Mark Kelly
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Torben Krogh Mikkelsen
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Gunner Christian Larsen
Technical University of Denmark, DTU Wind Energy, RisøCampus, Frederiksborgvej 399, 4000 Roskilde, Denmark
Viewed
Total article views: 9,432 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jan 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
6,990 | 2,299 | 143 | 9,432 | 179 | 118 |
- HTML: 6,990
- PDF: 2,299
- XML: 143
- Total: 9,432
- BibTeX: 179
- EndNote: 118
Total article views: 8,153 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 May 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
6,528 | 1,505 | 120 | 8,153 | 163 | 108 |
- HTML: 6,528
- PDF: 1,505
- XML: 120
- Total: 8,153
- BibTeX: 163
- EndNote: 108
Total article views: 1,279 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jan 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
462 | 794 | 23 | 1,279 | 16 | 10 |
- HTML: 462
- PDF: 794
- XML: 23
- Total: 1,279
- BibTeX: 16
- EndNote: 10
Viewed (geographical distribution)
Total article views: 9,432 (including HTML, PDF, and XML)
Thereof 7,306 with geography defined
and 2,126 with unknown origin.
Total article views: 8,153 (including HTML, PDF, and XML)
Thereof 6,394 with geography defined
and 1,759 with unknown origin.
Total article views: 1,279 (including HTML, PDF, and XML)
Thereof 912 with geography defined
and 367 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
49 citations as recorded by crossref.
- An intuitive representation and analysis of multi‐rotor wind turbine whirling modes O. Filsoof & X. Zhang 10.1002/we.2686
- Experiments on the wake flow behind different configurations of multirotor wind turbines A. Jørs et al. 10.1088/1742-6596/2626/1/012060
- Wake flow characteristics of small wind turbine models with single- and double-rotor arrangements: A wind tunnel study R. Kumar et al. 10.1063/5.0215625
- Effect of tip spacing, thrust coefficient and turbine spacing in multi-rotor wind turbines and farms N. Ghaisas et al. 10.5194/wes-5-51-2020
- Simplified approach for the optimal number of rotors and support structure design of a multi rotor wind turbine system S. Störtenbecker et al. 10.1088/1742-6596/1618/3/032009
- Experiments on upstream induction and wake flow for multirotor wind turbines J. Bartl et al. 10.1088/1742-6596/2505/1/012005
- Feasibility of Very Large Floating Structure as Offshore Wind Foundation: Effects of Hinge Numbers on Wave Loads and Induced Responses X. Zhang et al. 10.1061/(ASCE)WW.1943-5460.0000626
- Axial gap optimisation of half diameter shifted counter rotating dual rotor wind turbine C. Hetyei & F. Szlivka 10.7906/indecs.18.3.9
- Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability Y. Jiang et al. 10.1016/j.apenergy.2021.118350
- Integrated wind farm layout and control optimization M. Pedersen & G. Larsen 10.5194/wes-5-1551-2020
- A multi-rotor medium-voltage wind turbine system and its control strategy R. You et al. 10.1016/j.renene.2022.01.010
- Wind speed reconstruction from three synchronized short-range WindScanner lidars in a large wind turbine inflow field campaign and the associated uncertainties A. Giyanani et al. 10.1088/1742-6596/2265/2/022032
- Effect of yaw on aerodynamic performance of co-planar multi-rotor wind turbines S. Lin et al. 10.1016/j.oceaneng.2023.114441
- A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment F. Bertagnolio et al. 10.1002/wene.469
- A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect Z. Zhang et al. 10.1016/j.energy.2023.129619
- Actuator line simulations of wind turbine wakes using the lattice Boltzmann method H. Asmuth et al. 10.5194/wes-5-623-2020
- CFD Simulation of Co-Planar Multi-Rotor Wind Turbine Aerodynamic Performance Based on ALM Method Y. Zhang et al. 10.3390/en15176422
- Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines I. Berdugo-Parada et al. 10.3390/jmse12010085
- An extended k−ɛ model for wake-flow simulation of wind farms N. Zehtabiyan-Rezaie & M. Abkar 10.1016/j.renene.2023.119904
- A novel real-time hybrid testing method for Twin-Rotor Floating Wind Turbines with Single-Point Mooring systems G. Liu et al. 10.1016/j.oceaneng.2024.119151
- Experimental Study on the Effect of the Blade Tip Distance on the Power and the Wake Recovery with Small Multi-Rotor Wind Turbines S. Gong et al. 10.3390/jmse11050891
- Experimental study of the wake of multi-rotor turbine X. Xiong et al. 10.1016/j.oceaneng.2022.113594
- Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery N. Ramos‐García et al. 10.1002/we.2682
- Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review B. Kassa et al. 10.1115/1.4064141
- Rejecting wake-rotor overlapping load disturbances: An extension to active power control of wind farms M. Vali et al. 10.1088/1742-6596/1618/2/022057
- Modal Analysis of a Quad-Rotor Wind Turbine E. Ferede & F. Gandhi 10.1088/1742-6596/1618/3/032002
- Constructive interference effects for tidal turbine arrays J. McNaughton et al. 10.1017/jfm.2022.454
- Influence of lateral rotor spacing on the benefits in power generated by multi-rotor configurations R. Martín-San-Román et al. 10.1088/1742-6596/2362/1/012024
- Aero‐hydro‐servo‐elastic coupling of a multi‐body finite‐element solver and a multi‐fidelity vortex method N. Ramos‐García et al. 10.1002/we.2584
- Aeroelastic load analysis of a co‐rotating quad‐rotor wind turbine E. Ferede & F. Gandhi 10.1002/we.2681
- Accelerated Wind-Turbine Wake Recovery Through Actuation of the Tip-Vortex Instability K. Brown et al. 10.2514/1.J060772
- Lab-scale measurements of wind farm blockage effects J. Bartl et al. 10.1088/1742-6596/2362/1/012004
- Aerodynamic performance of a dual turbine concept characterized by a relatively close distance between rotors V. Mendoza et al. 10.1002/we.2813
- Modelica‐AeroDyn: Development, benchmark, and application of a comprehensive object‐oriented tool for dynamic analysis of non‐conventional horizontal‐axis floating wind turbines O. El Beshbichi et al. 10.1002/we.2814
- A New Zero Waste Design for a Manufacturing Approach for Direct-Drive Wind Turbine Electrical Generator Structural Components D. Gonzalez-Delgado et al. 10.3390/machines12090643
- Multi-rotor Wind Farm Layout Optimization N. Kirchner-Bossi & F. Porté-Agel 10.1088/1742-6596/1618/3/032014
- Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms A. Eidi et al. 10.1016/j.renene.2021.08.012
- Evaluation of the global-blockage effect on power performance through simulations and measurements A. Sebastiani et al. 10.5194/wes-7-875-2022
- Aeroelastic Stability Analysis of a Quad-Rotor Wind Turbine E. Ferede et al. 10.1088/1742-6596/2265/4/042056
- Wake interactions behind individual-tower multi-rotor wind turbine configurations K. Brown et al. 10.1088/1742-6596/2505/1/012041
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- Simplified support structure design for multi-rotor wind turbine systems S. Störtenbecker et al. 10.5194/wes-5-1121-2020
- Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine X. Liu et al. 10.1016/j.energy.2021.122839
- Multirotor wind turbine wakes M. Bastankhah & M. Abkar 10.1063/1.5097285
- Dynamic analysis of two-rotor wind turbine on spar-type floating platform O. El Beshbichi et al. 10.1016/j.oceaneng.2021.109441
- On critical aeroelastic modes of a tri-rotor wind turbine O. Filsoof et al. 10.1016/j.ijmecsci.2021.106525
- Aero-hydro-servo-elastic coupled modeling and dynamics analysis of a four-rotor floating offshore wind turbine S. Xie et al. 10.1016/j.oceaneng.2023.113724
- Preliminary study of the dynamics and environmental response of multiple floating offshore wind turbines on a single large-scale platform S. Xie et al. 10.1016/j.oceaneng.2024.120008
- Aeroelastic Analysis of a Coplanar Twin-Rotor Wind Turbine A. Ismaiel & S. Yoshida 10.3390/en12101881
48 citations as recorded by crossref.
- An intuitive representation and analysis of multi‐rotor wind turbine whirling modes O. Filsoof & X. Zhang 10.1002/we.2686
- Experiments on the wake flow behind different configurations of multirotor wind turbines A. Jørs et al. 10.1088/1742-6596/2626/1/012060
- Wake flow characteristics of small wind turbine models with single- and double-rotor arrangements: A wind tunnel study R. Kumar et al. 10.1063/5.0215625
- Effect of tip spacing, thrust coefficient and turbine spacing in multi-rotor wind turbines and farms N. Ghaisas et al. 10.5194/wes-5-51-2020
- Simplified approach for the optimal number of rotors and support structure design of a multi rotor wind turbine system S. Störtenbecker et al. 10.1088/1742-6596/1618/3/032009
- Experiments on upstream induction and wake flow for multirotor wind turbines J. Bartl et al. 10.1088/1742-6596/2505/1/012005
- Feasibility of Very Large Floating Structure as Offshore Wind Foundation: Effects of Hinge Numbers on Wave Loads and Induced Responses X. Zhang et al. 10.1061/(ASCE)WW.1943-5460.0000626
- Axial gap optimisation of half diameter shifted counter rotating dual rotor wind turbine C. Hetyei & F. Szlivka 10.7906/indecs.18.3.9
- Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability Y. Jiang et al. 10.1016/j.apenergy.2021.118350
- Integrated wind farm layout and control optimization M. Pedersen & G. Larsen 10.5194/wes-5-1551-2020
- A multi-rotor medium-voltage wind turbine system and its control strategy R. You et al. 10.1016/j.renene.2022.01.010
- Wind speed reconstruction from three synchronized short-range WindScanner lidars in a large wind turbine inflow field campaign and the associated uncertainties A. Giyanani et al. 10.1088/1742-6596/2265/2/022032
- Effect of yaw on aerodynamic performance of co-planar multi-rotor wind turbines S. Lin et al. 10.1016/j.oceaneng.2023.114441
- A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment F. Bertagnolio et al. 10.1002/wene.469
- A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect Z. Zhang et al. 10.1016/j.energy.2023.129619
- Actuator line simulations of wind turbine wakes using the lattice Boltzmann method H. Asmuth et al. 10.5194/wes-5-623-2020
- CFD Simulation of Co-Planar Multi-Rotor Wind Turbine Aerodynamic Performance Based on ALM Method Y. Zhang et al. 10.3390/en15176422
- Numerical Framework for the Coupled Analysis of Floating Offshore Multi-Wind Turbines I. Berdugo-Parada et al. 10.3390/jmse12010085
- An extended k−ɛ model for wake-flow simulation of wind farms N. Zehtabiyan-Rezaie & M. Abkar 10.1016/j.renene.2023.119904
- A novel real-time hybrid testing method for Twin-Rotor Floating Wind Turbines with Single-Point Mooring systems G. Liu et al. 10.1016/j.oceaneng.2024.119151
- Experimental Study on the Effect of the Blade Tip Distance on the Power and the Wake Recovery with Small Multi-Rotor Wind Turbines S. Gong et al. 10.3390/jmse11050891
- Experimental study of the wake of multi-rotor turbine X. Xiong et al. 10.1016/j.oceaneng.2022.113594
- Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery N. Ramos‐García et al. 10.1002/we.2682
- Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review B. Kassa et al. 10.1115/1.4064141
- Rejecting wake-rotor overlapping load disturbances: An extension to active power control of wind farms M. Vali et al. 10.1088/1742-6596/1618/2/022057
- Modal Analysis of a Quad-Rotor Wind Turbine E. Ferede & F. Gandhi 10.1088/1742-6596/1618/3/032002
- Constructive interference effects for tidal turbine arrays J. McNaughton et al. 10.1017/jfm.2022.454
- Influence of lateral rotor spacing on the benefits in power generated by multi-rotor configurations R. Martín-San-Román et al. 10.1088/1742-6596/2362/1/012024
- Aero‐hydro‐servo‐elastic coupling of a multi‐body finite‐element solver and a multi‐fidelity vortex method N. Ramos‐García et al. 10.1002/we.2584
- Aeroelastic load analysis of a co‐rotating quad‐rotor wind turbine E. Ferede & F. Gandhi 10.1002/we.2681
- Accelerated Wind-Turbine Wake Recovery Through Actuation of the Tip-Vortex Instability K. Brown et al. 10.2514/1.J060772
- Lab-scale measurements of wind farm blockage effects J. Bartl et al. 10.1088/1742-6596/2362/1/012004
- Aerodynamic performance of a dual turbine concept characterized by a relatively close distance between rotors V. Mendoza et al. 10.1002/we.2813
- Modelica‐AeroDyn: Development, benchmark, and application of a comprehensive object‐oriented tool for dynamic analysis of non‐conventional horizontal‐axis floating wind turbines O. El Beshbichi et al. 10.1002/we.2814
- A New Zero Waste Design for a Manufacturing Approach for Direct-Drive Wind Turbine Electrical Generator Structural Components D. Gonzalez-Delgado et al. 10.3390/machines12090643
- Multi-rotor Wind Farm Layout Optimization N. Kirchner-Bossi & F. Porté-Agel 10.1088/1742-6596/1618/3/032014
- Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms A. Eidi et al. 10.1016/j.renene.2021.08.012
- Evaluation of the global-blockage effect on power performance through simulations and measurements A. Sebastiani et al. 10.5194/wes-7-875-2022
- Aeroelastic Stability Analysis of a Quad-Rotor Wind Turbine E. Ferede et al. 10.1088/1742-6596/2265/4/042056
- Wake interactions behind individual-tower multi-rotor wind turbine configurations K. Brown et al. 10.1088/1742-6596/2505/1/012041
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- Simplified support structure design for multi-rotor wind turbine systems S. Störtenbecker et al. 10.5194/wes-5-1121-2020
- Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine X. Liu et al. 10.1016/j.energy.2021.122839
- Multirotor wind turbine wakes M. Bastankhah & M. Abkar 10.1063/1.5097285
- Dynamic analysis of two-rotor wind turbine on spar-type floating platform O. El Beshbichi et al. 10.1016/j.oceaneng.2021.109441
- On critical aeroelastic modes of a tri-rotor wind turbine O. Filsoof et al. 10.1016/j.ijmecsci.2021.106525
- Aero-hydro-servo-elastic coupled modeling and dynamics analysis of a four-rotor floating offshore wind turbine S. Xie et al. 10.1016/j.oceaneng.2023.113724
- Preliminary study of the dynamics and environmental response of multiple floating offshore wind turbines on a single large-scale platform S. Xie et al. 10.1016/j.oceaneng.2024.120008
1 citations as recorded by crossref.
Latest update: 06 Jan 2025
Short summary
Over the past few decades, single-rotor wind turbines have increased in size with the blades being extended toward lengths of 100 m. An alternative upscaling of turbines can be achieved by using multi-rotor wind turbines. In this article, measurements and numerical simulations of a utility-scale four-rotor wind turbine show that rotor interaction leads to increased energy production and faster wake recovery; these findings may allow for the design of wind farms with improved energy production.
Over the past few decades, single-rotor wind turbines have increased in size with the blades...
Altmetrics
Final-revised paper
Preprint