Articles | Volume 4, issue 2
Wind Energ. Sci., 4, 251–271, 2019
https://doi.org/10.5194/wes-4-251-2019
Wind Energ. Sci., 4, 251–271, 2019
https://doi.org/10.5194/wes-4-251-2019
Research article
20 May 2019
Research article | 20 May 2019

Power curve and wake analyses of the Vestas multi-rotor demonstrator

Maarten Paul van der Laan et al.

Related authors

FarmConners wind farm flow control benchmark – Part 1: Blind test results
Tuhfe Göçmen, Filippo Campagnolo, Thomas Duc, Irene Eguinoa, Søren Juhl Andersen, Vlaho Petrović, Lejla Imširović, Robert Braunbehrens, Jaime Liew, Mads Baungaard, Maarten Paul van der Laan, Guowei Qian, Maria Aparicio-Sanchez, Rubén González-Lope, Vinit V. Dighe, Marcus Becker, Maarten J. van den Broek, Jan-Willem van Wingerden, Adam Stock, Matthew Cole, Renzo Ruisi, Ervin Bossanyi, Niklas Requate, Simon Strnad, Jonas Schmidt, Lukas Vollmer, Ishaan Sood, and Johan Meyers
Wind Energ. Sci., 7, 1791–1825, https://doi.org/10.5194/wes-7-1791-2022,https://doi.org/10.5194/wes-7-1791-2022, 2022
Short summary
Brief communication: A clarification of wake recovery mechanisms
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-56,https://doi.org/10.5194/wes-2022-56, 2022
Preprint under review for WES
Short summary
Wind turbine wake simulation with explicit algebraic Reynolds stress modeling
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-50,https://doi.org/10.5194/wes-2022-50, 2022
Revised manuscript accepted for WES
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
RANS modeling of a single wind turbine wake in the unstable surface layer
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022,https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary

Related subject area

Aerodynamics and hydrodynamics
FLOW Estimation and Rose Superposition (FLOWERS): an integral approach to engineering wake models
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022,https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
High-Reynolds-number investigations on the ability of the full-scale e-TellTale sensor to detect flow separation on a wind turbine blade section
Antoine Soulier, Caroline Braud, Dimitri Voisin, and Frédéric Danbon
Wind Energ. Sci., 7, 1043–1052, https://doi.org/10.5194/wes-7-1043-2022,https://doi.org/10.5194/wes-7-1043-2022, 2022
Short summary
Experimental investigation of mini Gurney flaps in combination with vortex generators for improved wind turbine blade performance
Jörg Alber, Marinos Manolesos, Guido Weinzierl-Dlugosch, Johannes Fischer, Alexander Schönmeier, Christian Navid Nayeri, Christian Oliver Paschereit, Joachim Twele, Jens Fortmann, Pier Francesco Melani, and Alessandro Bianchini
Wind Energ. Sci., 7, 943–965, https://doi.org/10.5194/wes-7-943-2022,https://doi.org/10.5194/wes-7-943-2022, 2022
Short summary
Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines
Mohammad Sadman Sakib and D. Todd Griffith
Wind Energ. Sci., 7, 677–696, https://doi.org/10.5194/wes-7-677-2022,https://doi.org/10.5194/wes-7-677-2022, 2022
Short summary
High-Reynolds-number wind turbine blade equipped with root spoilers – Part 1: Unsteady aerodynamic analysis using URANS simulations
Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, and Caroline Braud
Wind Energ. Sci., 7, 647–657, https://doi.org/10.5194/wes-7-647-2022,https://doi.org/10.5194/wes-7-647-2022, 2022
Short summary

Cited articles

Baetke, F., Werner, H., and Wengle, H.: Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners, J. Wind Eng. Ind. Aerod., 35, 129–147, https://doi.org/10.1016/0167-6105(90)90213-V, 1990. a
Chasapogiannis, P., Prospathopoulos, J. M., Voutsinas, S. G., and Chaviaropoulos, T. K.: Analysis of the aerodynamic performance of the multi-rotor concept, J. Phys. Conf. Ser., 524, 1–11, https://doi.org/10.1088/1742-6596/524/1/012084, 2014. a, b, c, d
Ebenhoch, R., Muro, B., Dahlberg, J.-Å., Berkesten Hägglund, P., and Segalini, A.: A linearized numerical model of wind-farm flows, Wind Energy, 20, 859–875, https://doi.org/10.1002/we.2067, 2017. a
Ghaisas, N. S., Ghate, A. S. ., and Lele, S. K.: Large-eddy simulation study of multi-rotor wind turbines, J. Phys. Conf. Ser., 1037, 1–10, https://doi.org/10.1088/1742-6596/1037/7/072021, 2018. a, b, c
Gilling, L., Sørensen, N., and Rethore, P.: Imposing Resolved Turbulence by an Actuator in a Detached Eddy Simulation of an Airfoil, in: EWEC 2009 Proceedings online, European Wind Energy Association (EWEA), Marseille, France, https://doi.org/10.1002/we.449, 2009. a
Download
Short summary
Over the past few decades, single-rotor wind turbines have increased in size with the blades being extended toward lengths of 100 m. An alternative upscaling of turbines can be achieved by using multi-rotor wind turbines. In this article, measurements and numerical simulations of a utility-scale four-rotor wind turbine show that rotor interaction leads to increased energy production and faster wake recovery; these findings may allow for the design of wind farms with improved energy production.