Articles | Volume 6, issue 6
Wind Energ. Sci., 6, 1401–1412, 2021
https://doi.org/10.5194/wes-6-1401-2021
Wind Energ. Sci., 6, 1401–1412, 2021
https://doi.org/10.5194/wes-6-1401-2021

Research article 05 Nov 2021

Research article | 05 Nov 2021

Identification of wind turbine main-shaft torsional loads from high-frequency SCADA (supervisory control and data acquisition) measurements using an inverse-problem approach

W. Dheelibun Remigius and Anand Natarajan

Related authors

Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-63,https://doi.org/10.5194/wes-2021-63, 2021
Revised manuscript accepted for WES
Short summary

Related subject area

Operation, condition monitoring, and maintenance
Analysing the effectiveness of different offshore maintenance base options for floating wind farms
Nadezda Avanessova, Anthony Gray, Iraklis Lazakis, R. Camilla Thomson, and Giovanni Rinaldi
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-121,https://doi.org/10.5194/wes-2021-121, 2021
Revised manuscript accepted for WES
Short summary
On sensor optimisation for structural health monitoring robust to environmental variations
Tingna Wang, David J. Wagg, Keith Worden, and Robert J. Barthorpe
Wind Energ. Sci., 6, 1107–1116, https://doi.org/10.5194/wes-6-1107-2021,https://doi.org/10.5194/wes-6-1107-2021, 2021
Short summary
Effect of individual blade pitch angle misalignment on the remaining useful life of wind turbines
Matthias Saathoff, Malo Rosemeier, Thorsten Kleinselbeck, and Bente Rathmann
Wind Energ. Sci., 6, 1079–1087, https://doi.org/10.5194/wes-6-1079-2021,https://doi.org/10.5194/wes-6-1079-2021, 2021
Short summary
Data-driven farm-wide fatigue estimation on jacket foundation OWTs for multiple SHM setups
Francisco d N Santos, Nymfa Noppe, Wout Weijtjens, and Christof Devriendt
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-76,https://doi.org/10.5194/wes-2021-76, 2021
Revised manuscript accepted for WES
Short summary
Wind turbine drivetrains: state-of-the-art technologies and future development trends
Amir R. Nejad, Jonathan Keller, Yi Guo, Shawn Sheng, Henk Polinder, Simon Watson, Jianning Dong, Zian Qin, Amir Ebrahimi, Ralf Schelenz, Francisco Gutiérrez Guzmán, Daniel Cornel, Reza Golafshan, Georg Jacobs, Bart Blockmans, Jelle Bosmans, Bert Pluymers, James Carroll, Sofia Koukoura, Edward Hart, Alasdair McDonald, Anand Natarajan, Jone Torsvik, Farid K. Moghadam, Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-63,https://doi.org/10.5194/wes-2021-63, 2021
Revised manuscript accepted for WES
Short summary

Cited articles

Aarden, P.: System Identification of the 2B6 Wind Turbine: A regularised PBSIDopt approach, Master's thesis, Delft University of Technology, Delft, the Netherlands, 2017. a
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M.: Description of the DTU 10 MW reference wind turbine, Tech. Rep. I-0092, DTU Wind Energy, Roskilde, Denmark, 2013. a
Bangji, Z., Shouyu, Z., Qingxi, X., and Nong, Z.: Load identification of virtual iteration based on Tikhonov regularization and model reduction, Hong Kong Journal of Social Sciences, 44, 53–59, 2017. a
Berglind, J. J. B., Wisniewski, R., and Soltani, M.: Fatigue load modeling and control for wind turbines based on hysteresis operators, in: 2015 American Control Conference (ACC), IEEE, Chicago, IL, USA, 3721–3727, 2015. a
Boukhezzar, B., Lupu, L., Siguerdidjane, H., and Hand, M.: Multivariable control strategy for variable speed, variable pitch wind turbines, Renew. Energy, 32, 1273–1287, 2007. a, b
Download
Short summary
A novel inverse-problem-based methodology estimates drivetrain main-shaft torsional stiffness and displacement by using high-frequency SCADA (supervisory control and data acquisition) measurements without an aeroelastic design basis. It involves Tikhonov regularisation for regularising the measurement data and the collage method for system identification. The estimated quantities can be further used to identify the site-specific torsional loads and the damage-equivalent load of the main shaft.