Allaerts, D. and Meyers, J.: Boundary-layer development and gravity waves in
conventionally neutral wind farms, J. Fluid Mech., 814, 95–130, 2017. a, b, c, d, e
Allaerts, D. and Meyers, J.: Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions, Bound.-Lay. Meteorol., 166, 269–299, 2018. a, b, c, d, e, f, g
Allaerts, D. and Meyers, J.: Sensitivity and feedback of wind-farm induced
gravity waves, J. Fluid Mech., 862, 990–1028, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa
Allaerts, D., Vanden Broucke, S., Van Lipzig, N., and Meyers, J.: Annual impact of wind-farm gravity waves on the Belgian-Dutch offshore wind-farm cluster, J. Phys.: Conf. Ser., 1037, 072006, https://doi.org/10.1088/1742-6596/1037/7/072006, 2018. a, b, c, d
Baker, A. H., Jessup, E. R., and Manteuffel, T.: A technique for accelerating
the convergence of restarted GMRES, SIAM J., 26, 962–984, 2005. a
Barthelmie, R., Pryor, S., Frandsen, S., Hansen, K., Schepers, J., Rados, K.,
Schlez, W., Neubert, A., Jensen, L., and Neckelmann, S.: Quantifying the
impact of wind turbine wakes on power output at offshore wind farms, J. Atmos. Ocean. Tech., 27, 1302–1317, 2010. a
Bleeg, J., Purcell, M., Ruisi, R., and Traiger, E.: Wind Farm Blockage and the Consequences of Neglecting Its Impact on Energy Production, Energies, 11,
1609, https://doi.org/10.3390/en11061609, 2018. a, b
Bortolotti, P., Tarrés, H. C., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: IEA Wind Task 37 on Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Technical report, https://doi.org/10.2172/1529216, 2019. a
Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Wind Energy Handbook,
Wiley, New York, 2001. a
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for
bound constrained optimization, SIAM J., 16, 1190–1208, 1995. a
Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A.: Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, Germany, https://doi.org/10.1007/978-3-642-84108-8, 1988. a
Csanady, G. T.: Equilibrium theory of the planetary boundary layer with an
inversion lid, Bound.-Lay. Meteorol., 6, 63–79, 1974. a
De Los Reyes, J. C.: Numerical PDE-Constrained Optimization, in: Springer Briefs in Optimization, Springer Briefs in Optimization, Cham, Switzerland, https://doi.org/10.1007/978-3-319-13395-9, 2015. a
Durran, D. R.: Mountain waves and downslope winds, Am. Meteorol. Soc., 23, 1990. a
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain
waves, Geophys. Norveg., 22, 3, 1960. a
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K.,
Michalakes, J., and Barstad, I.: Local and mesoscale impacts of wind farms as
parameterized in a mesoscale NWP model, Mon. Weather Rev., 140, 3017–3038,
2012. a, b
Frederik, J. A., Weber, R., Cacciola, S., Campagnolo, F., Croce, A., Bottasso, C., and Wingerden, J. W.: Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel experiments, Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020, 2020. a, b
Gill, A. E.: Atmosphere-Ocean Dynamics, in: International Geophysics Series 30, Academic Press, San Diego, USA, 1982. a, b
Goit, J. P. and Meyers, J.: Optimal control of energy extraction in wind-farm
boundary layers, J. Fluid Mech., 768, 5–50, 2015. a, b
Kheirabadi, A. C. and Nagamune, R.: A quantitative review of wind farm control with the objective of wind farm power maximization, J. Wind Eng. Indust. Aerodynam., 192, 45–73, 2019. a
Munters, W. and Meyers, J.: Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization, Energies, 11,
177, https://doi.org/10.3390/en11010177, 2018. a, b
Nappo, C. J.: An Introduction to Atmospheric Gravity Waves, in: International
Geophysics Series 85, Academic Press, Waltham, USA, 2002. a
Niayifar, A. and Porté-Agel, F.: Analytical modeling of wind farms: A new
approach for power prediction, Energies, 9, 741, https://doi.org/10.3390/en9090741, 2016. a, b
Nieuwstadt, F.: On the solution of the stationary, baroclinic Ekman-layer
equations with a finite boundary-layer height, Bound.-Lay. Meteorol., 26,
377–390, 1983. a
Nita, C., Vandewalle, S., and Meyers, J.: On the efficiency of gradient based
optimization algorithms for DNS-based optimal control in a turbulent channel
flow, Comput. Fluids, 125, 11–24, 2016. a
Nocedal, J. and Wright, S. J.: Numerical Optimization, Springer-Verlag, New
York, USA, 1999. a
Queney, P.: The problem of the airflow over mountains: a summary of theoretical studies, B. Am. Meteorol. Soc., 29, 16–26, 1948. a
Segalini, A. and Dahlberg, J. A.: Blockage effects in wind farms, Wind Energy, 23, 120–128, https://doi.org/10.1002/we.2413, 2019. a
Shamsoddin, S. and Porté-Agel, F.: A model for the effect of pressure gradient on turbulent axisymmetric wakes, J. Fluid Mech., 837, R3,
https://doi.org/10.1017/jfm.2017.864, 2018. a
Smith, R. B.: Linear theory of stratified hydrostatic flow past an isolated
mountain, Tellus, 32, 348–364, 1980. a
Smith, R. B.: Interacting mountain waves and boundary layers, J. Atmos. Sci.,
64, 594–607, 2007. a
Smith, R. B.: Gravity wave effects on wind farm efficiency, Wind Energy, 13,
449–458, 2010. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Smith, R. B., Jiang, Q., and Doyle, J. D.: A theory of gravity wave absorption by a boundary, J. Atmos. Sci., 63, 774–781, 2006.
a
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1988. a
Sutherland, B. R.: Internal gravity waves, Cambridge University Press, Cambridge, 2010. a, b
Volker, P. J. H.: Wake effects of large offshore wind farms – a study of the
mesoscale atmosphere, PhD thesis, DTU Wind Energy, Roskilde, Denmark, 2014. a
Wolfe, P.: Convergence conditions for ascent methods, SIAM Rev., 11, 226–235, 1969. a
Wu, L. K. and Porté-Agel, F.: Flow Adjustment Inside and Around Large
Finite-Size Wind Farms, Energies, 10, 2164, https://doi.org/10.3390/en10122164, 2017. a, b
Wu, Y.-T. and Porté-Agel, F.: Simulation of turbulent flow inside and above wind farms: model validation and layout effects, Bound.-Lay. Meteorol.,
146, 181–205, 2013. a