Articles | Volume 8, issue 10 
            
                
                    
            
            
            https://doi.org/10.5194/wes-8-1597-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-1597-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
OF2: coupling OpenFAST and OpenFOAM for high-fidelity aero-hydro-servo-elastic FOWT simulations
Guillén Campaña-Alonso
CORRESPONDING AUTHOR
                                            
                                    
                                            Wind Energy Department, Centro Nacional de Energías Renovables (CENER), Ciudad de la Innovación, 7, 31621 Sarriguren, Spain
                                        
                                    
                                            UPM, E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, 28040 Madrid, Spain
                                        
                                    Raquel Martín-San-Román
                                            Wind Energy Department, Centro Nacional de Energías Renovables (CENER), Ciudad de la Innovación, 7, 31621 Sarriguren, Spain
                                        
                                    Beatriz Méndez-López
                                            Wind Energy Department, Centro Nacional de Energías Renovables (CENER), Ciudad de la Innovación, 7, 31621 Sarriguren, Spain
                                        
                                    Pablo Benito-Cia
                                            Wind Energy Department, Centro Nacional de Energías Renovables (CENER), Ciudad de la Innovación, 7, 31621 Sarriguren, Spain
                                        
                                    José Azcona-Armendáriz
                                            Wind Energy Department, Centro Nacional de Energías Renovables (CENER), Ciudad de la Innovación, 7, 31621 Sarriguren, Spain
                                        
                                    Related authors
Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
                                    Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
                                            
                                            
                                        Stefano Cioni, Francesco Papi, Leonardo Pagamonci, Alessandro Bianchini, Néstor Ramos-García, Georg Pirrung, Rémi Corniglion, Anaïs Lovera, Josean Galván, Ronan Boisard, Alessandro Fontanella, Paolo Schito, Alberto Zasso, Marco Belloli, Andrea Sanvito, Giacomo Persico, Lijun Zhang, Ye Li, Yarong Zhou, Simone Mancini, Koen Boorsma, Ricardo Amaral, Axelle Viré, Christian W. Schulz, Stefan Netzband, Rodrigo Soto-Valle, David Marten, Raquel Martín-San-Román, Pau Trubat, Climent Molins, Roger Bergua, Emmanuel Branlard, Jason Jonkman, and Amy Robertson
                                    Wind Energ. Sci., 8, 1659–1691, https://doi.org/10.5194/wes-8-1659-2023, https://doi.org/10.5194/wes-8-1659-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Simulations of different fidelities made by the participants of the OC6 project Phase III are compared to wind tunnel wake measurements on a floating wind turbine. Results in the near wake confirm that simulations and experiments tend to diverge from the expected linearized quasi-steady behavior when the reduced frequency exceeds 0.5. In the far wake, the impact of platform motion is overestimated by simulations and even seems to be oriented to the generation of a wake less prone to dissipation.
                                            
                                            
                                        Roger Bergua, Amy Robertson, Jason Jonkman, Emmanuel Branlard, Alessandro Fontanella, Marco Belloli, Paolo Schito, Alberto Zasso, Giacomo Persico, Andrea Sanvito, Ervin Amet, Cédric Brun, Guillén Campaña-Alonso, Raquel Martín-San-Román, Ruolin Cai, Jifeng Cai, Quan Qian, Wen Maoshi, Alec Beardsell, Georg Pirrung, Néstor Ramos-García, Wei Shi, Jie Fu, Rémi Corniglion, Anaïs Lovera, Josean Galván, Tor Anders Nygaard, Carlos Renan dos Santos, Philippe Gilbert, Pierre-Antoine Joulin, Frédéric Blondel, Eelco Frickel, Peng Chen, Zhiqiang Hu, Ronan Boisard, Kutay Yilmazlar, Alessandro Croce, Violette Harnois, Lijun Zhang, Ye Li, Ander Aristondo, Iñigo Mendikoa Alonso, Simone Mancini, Koen Boorsma, Feike Savenije, David Marten, Rodrigo Soto-Valle, Christian W. Schulz, Stefan Netzband, Alessandro Bianchini, Francesco Papi, Stefano Cioni, Pau Trubat, Daniel Alarcon, Climent Molins, Marion Cormier, Konstantin Brüker, Thorsten Lutz, Qing Xiao, Zhongsheng Deng, Florence Haudin, and Akhilesh Goveas
                                    Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, https://doi.org/10.5194/wes-8-465-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                This work examines if the motion experienced by an offshore floating wind turbine can significantly affect the rotor performance. It was observed that the system motion results in variations in the load, but these variations are not critical, and the current simulation tools capture the physics properly. Interestingly, variations in the rotor speed or the blade pitch angle can have a larger impact than the system motion itself.
                                            
                                            
                                        Iñaki Sandua-Fernández, Felipe Vittori, Raquel Martín-San-Román, Irene Eguinoa, and José Azcona-Armendáriz
                                    Wind Energ. Sci., 8, 277–288, https://doi.org/10.5194/wes-8-277-2023, https://doi.org/10.5194/wes-8-277-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                This work analyses in detail the causes of the yaw drift in floating offshore wind turbines with a single-point-mooring system induced by an upwind wind turbine. The ability of an individual pitch control strategy based on yaw misalignment is demonstrated through simulations using the NREL 5 MW wind turbine mounted on a single-point-mooring version of the DeepCwind OC4 floating platform. This effect is considered to be relevant for all single-point-moored concepts.
                                            
                                            
                                        David Bretos-Arguiñena and Beatriz Méndez-López
                                        Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-8, https://doi.org/10.5194/wes-2023-8, 2023
                                    Revised manuscript not accepted 
                                    Short summary
                                    Short summary
                                            
                                                Wind energy is crucial for dealing with the climatic change challenge. Society needs more efficient wind turbines reducing the costs and the operation and maintenance works. In addition, uncertainties should be also reduced. One of the biggest uncertainties in the wind energy field, is the wind turbine performance with regard to the blade status. Blades are living components and their surface changes with the wind turbine life evolution: they become dirty and or they suffer from erosion.
                                            
                                            
                                        Felipe Vittori, José Azcona, Irene Eguinoa, Oscar Pires, Alberto Rodríguez, Álex Morató, Carlos Garrido, and Cian Desmond
                                    Wind Energ. Sci., 7, 2149–2161, https://doi.org/10.5194/wes-7-2149-2022, https://doi.org/10.5194/wes-7-2149-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                This paper describes the results of a wave tank test campaign of a scaled SATH 10 MW INNWIND floating platform. The software-in-the-loop (SiL) hybrid method was used to include the wind turbine thrust and the in-plane rotor moments. Experimental results are compared with a numerical model developed in OpenFAST of the floating wind turbine. The results are discussed, identifying limitations of the numerical models and obtaining conclusions on how to improve them.
                                            
                                            
                                        Cited articles
                        
                        Azcona, J.: Computational and Experimental Modelling of Mooring Line Dynamics for Offshore Floating Wind Turbines, PhD thesis, Universidad Politécnica de Madrid, https://doi.org/10.20868/UPM.thesis.39817, 2016. a
                    
                
                        
                        Bergua, R., Robertson, A., Jonkman, J., Branlard, E., Fontanella, A., Belloli, M., Schito, P., Zasso, A., Persico, G., Sanvito, A., Amet, E., Brun, C., Campaña-Alonso, G., Martín-San-Román, R., Cai, R., Cai, J., Qian, Q., Maoshi, W., Beardsell, A., Pirrung, G., Ramos-García, N., Shi, W., Fu, J., Corniglion, R., Lovera, A., Galván, J., Nygaard, T. A., dos Santos, C. R., Gilbert, P., Joulin, P.-A., Blondel, F., Frickel, E., Chen, P., Hu, Z., Boisard, R., Yilmazlar, K., Croce, A., Harnois, V., Zhang, L., Li, Y., Aristondo, A., Mendikoa Alonso, I., Mancini, S., Boorsma, K., Savenije, F., Marten, D., Soto-Valle, R., Schulz, C. W., Netzband, S., Bianchini, A., Papi, F., Cioni, S., Trubat, P., Alarcon, D., Molins, C., Cormier, M., Brüker, K., Lutz, T., Xiao, Q., Deng, Z., Haudin, F., and Goveas, A.: OC6 project Phase III: validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure, Wind Energ. Sci., 8, 465–485, https://doi.org/10.5194/wes-8-465-2023, 2023. a
                    
                
                        
                        Bladed: Bladed Theory Manual Version 4.0,, Garrad Hassan & Partners Ltd., St Vincent’s Works, Silverthorne Lane, Bristol BS2 0QD England, https://www.gl-garradhassan.com (last access: May 2023), 2010. a
                    
                
                        
                        Bossanyi, E., Burton, T., and Sharpe, D.: Wind Energy Handbook, John Wiley and Sons, Print ISBN 9780470699751, Online ISBN 9781119992714, https://doi.org/10.1002/9781119992714, 2001. a
                    
                
                        
                        Branlard, E., Gaunaa, M., and MacHefaux, E.: Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt, J. Phys. Conf. Ser., 524, 012124, https://doi.org/10.1088/1742-6596/524/1/012124, 2014. a
                    
                
                        
                        Bureau Veritas: BV-NI572 – Classification and Certification of Floating Offshore Wind Turbines, 33, https://erules.veristar.com/dy/data/bv/pdf/572-NI_2019-01.pdf (last access: May 2023), 2019. a
                    
                
                        
                        Chen, H. and Hall, M.: CFD simulation of floating body motion with mooring dynamics: Coupling MoorDyn with OpenFOAM, Appl. Ocean Res., 124, 103210, https://doi.org/10.1016/j.apor.2022.103210, 2022. a
                    
                
                        
                        Connell, K. O. and Cashman, A.: Development of a numerical wave tank with reduced discretization error, Institute of Electrical and Electronics Engineers Inc., 3008–3012, https://doi.org/10.1109/ICEEOT.2016.7755252, 2016. a
                    
                
                        
                        Faltinsen, O. M.: Sea Loads on Ships and Offshore Structures, Cambridge University Press, ISBN-10: 0521458706, ISBN-13: 978-0521458702, 1993. a
                    
                
                        
                        Hall, M.: MoorDyn User's Guide, Manual, http://www.matt-hall.ca/files/MoorDyn-Users-Guide-2017-08-16.pdf (last access: May 2023), 2017. a
                    
                
                        
                        International Electrotechnical Commission: IEC 61400-3-2 Ed. 1.0, Technical Specification, IEC, Geneva, Switzerland, 51 pp., 2019. a
                    
                
                        
                        Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report tp-500-38060, NREL, https://doi.org/10.2172/947422, 2007. a, b
                    
                
                        
                        Jonkman, J. M.: Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, Technical Report, https://doi.org/10.2172/921803, 2007. a
                    
                
                        
                        Jonkman, J. M.: Dynamics of Offshore Floating Wind Turbines-Model Development and Verification, Wind Energy, 12, 459–492, https://doi.org/10.1002/we.347, 2009. a, b
                    
                
                        
                        Kecskemety, K. M. and McNamara, J. J.: Influence of Wake Effects and Inflow Turbulence on Wind Turbine Loads, AIAA Journal, 49, 2564–2576, https://doi.org/10.2514/1.j051095, 2011. a
                    
                
                        
                        Larsen, B. E., Fuhrman, D. R., and Roenby, J.: Performance of interFoam on the simulation of progressive waves, Coast. Eng. J., 61, 380–400, https://doi.org/10.1080/21664250.2019.1609713, 2019. a
                    
                
                        
                        Liu, Y., Xiao, Q., Incecik, A., Peyrard, C., and Wan, D.: Establishing a fully coupled CFD analysis tool for floating offshore wind turbines, Renew. Energ., 112, 280–301, https://doi.org/10.1016/j.renene.2017.04.052, 2017. a
                    
                
                        
                        Marten, D., Paschereit, C. O., Huang, X., Meinke, M. H., Schroeder, W., Mueller, J., and Oberleithner, K.: Predicting Wind Turbine Wake Breakdown Using a Free Vortex Wake Code, AIAA 2019-2080, AIAA Scitech 2019 Forum, https://doi.org/10.2514/6.2019-2080, 2019. a
                    
                
                        
                        Micallef, D. and Rezaeiha, A.: Floating offshore wind turbine aerodynamics: Trends and future challenges, Renew. Sust. Energ. Rev., 152, 111696, https://doi.org/10.1016/j.rser.2021.111696, 2021. a
                    
                
                        
                        Morison, J., O'Brien, M., Johnson, J., and Schaaf, S.: The Force Exerted by Surface Waves on Piles, J. Petrol. Technol., 2, 149–154, 1950. a
                    
                
                        
                        Newman, J. N.: Marine Hydrodynamics, The MIT Press, ISBN 9780262534826, 1977. a
                    
                
                        
                        Otter, A., Murphy, J., Pakrashi, V., Robertson, A., and Desmond, C.: A review of modelling techniques for floating offshore wind turbines, Wind Energy, 25, 831–857, https://doi.org/10.1002/we.2701, 2021. a
                    
                
                        
                        Quon, E., Doubrawa, P., Annoni, J., Hamilton, N., and Churchfield, M.: Validation of wind power plant modeling approaches in complex terrain, AIAA Scitech 2019 Forum, San Diego, California, 7–11 January 2019, https://doi.org/10.2514/6.2019-2085, 2019. a
                    
                
                        
                        Ren, N., Li, Y., and Ou, J.: Coupled wind-wave time domain analysis of floating offshore wind turbine based on Computational Fluid Dynamics method, J. Renew. Sustain. Ener., 6, 023106, https://doi.org/10.1063/1.4870988, 2014. a
                    
                
                        
                        Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., and Luan, C.: Definition of the Semisubmersible Floating System for Phase II of OC4, Technical Report TP-5000-60601, NREL, https://doi.org/10.2172/1155123, 2014a. a, b, c
                    
                
                        
                        Robertson, A., Jonkman, J., Vorpahl, F., Wojciech, P.and Qvist, J., Frøyd, L., Chen, X., Azcona, J., Uzunoglu, E., Guedes Soares, C., Luan, C., Yutong, H., Pengcheng, F., Yde, A., Larsen, T., Nichols, J., Buils, R., Lei, L., Nygaard, T., Manolas, D., and He: Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisumersible Wind System, in: International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, 8–13 June 2014, OMAE, V09BT09A012, https://doi.org/10.1115/OMAE2014-24040, 2014b. a, b
                    
                
                        
                        Robertson, A. N., Wendt, F., Jonkman, J. M., Popko, W., Dagher, H., Gueydon, S., Qvist, J., Vittori, F., Azcona, J., Uzunoglu, E., Soares, C. G., Harries, R., Yde, A., Galinos, C., Hermans, K., De Vaal, J. B., Bozonnet, P., Bouy, L., Bayati, I., Bergua, R., Galvan, J., Mendikoa, I., Sanchez, C. B., Shin, H., Oh, S., Molins, C., and Debruyne, Y.: OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine, Energy Proced., 137, 38–57, https://doi.org/10.1016/j.egypro.2017.10.333, 2017.  a, b
                    
                
                        
                        Tran, T. T. and Kim, D.-H.: Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach, Renew. Energ., 92, 244–261, https://doi.org/10.1016/j.renene.2016.02.021, 2016. a, b, c, d
                    
                
                        
                        Wang, L., Robertson, A., Jonkman, J., Yu, Y.-H., Koop, A., Borràs Nadal, A., Li, H., Bachynski-Polić, E., Pinguet, R., Shi, W., Zeng, X., Zhou, Y., Xiao, Q., Kumar, R., Sarlak, H., Ransley, E., Brown, S., Hann, M., Netzband, S., Wermbter, M., and Méndez López, B.: OC6 Phase Ib: Validation of the CFD predictions of difference-frequency wave excitation on a FOWT semisubmersible, Ocean Eng., 241, 110026, https://doi.org/10.1016/j.oceaneng.2021.110026, 2021. a, b
                    
                
                        
                        Wang, L., Robertson, A., Jonkman, J., Kim, J., Shen, Z.-R., Koop, A., Borràs Nadal, A., Shi, W., Zeng, X., Ransley, E., Brown, S., Hann, M., Chandramouli, P., Viré, A., Ramesh Reddy, L., Li, X., Xiao, Q., Méndez López, B., Campaña Alonso, G., Oh, S., Sarlak, H., Netzband, S., Jang, H., and Yu, K.: OC6 Phase Ia: CFD Simulations of the Free-Decay Motion of the DeepCwind Semisubmersible, Energies, 15, 389, https://doi.org/10.3390/en15010389, 2022a. a
                    
                
                        
                        Wang, L., Robertson, A., Kim, J., Jang, H., Shen, Z.-R., Koop, A., Bunnik, T., and Yu, K.: Validation of CFD simulations of the moored DeepCwind offshore wind semisubmersible in irregular waves, Ocean Eng., 260, 112028, https://doi.org/10.1016/j.oceaneng.2022.112028, 2022b. a
                    
                
                        
                        Windt, C., Davidson, J., Schmitt, P., and Ringwood, J. V.: On the assessment of numericalwave makers in CFD simulations, Journal of Marine Science and Engineering, 7, 47, https://doi.org/10.3390/JMSE7020047, 2019. a, b
                    
                
                        
                        Zhang, Y. and Kim, B.: A Fully Coupled Computational Fluid Dynamics Method for Analysis of Semi-Submersible Floating Offshore Wind Turbines Under Wind-Wave Excitation Conditions Based on OC5 Data, Applied Sciences, 8, 2314, https://doi.org/10.3390/app8112314, 2018. a, b, c, d
                    
                Short summary
                    Wind energy is one of the pillars to accomplish the future objectives established by governments with regard to the reduction in emissions of CO2 expected by 2050. Wind energy usage increase will only be possible if more efficient and durable wind turbines are designed. In addition, such increases in wind energy installation worldwide can only be achieved if floating wind turbine design is mature enough. With this purpose a new tool to design and optimize floating wind turbines is presented.
                    Wind energy is one of the pillars to accomplish the future objectives established by governments...
                    
                Altmetrics
                
                Final-revised paper
            
            
                    Preprint
                
                     
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                     
                     
                    