Branner, K., Berring, P., Berggreen, C., and Knudsen, H. W.: Torsional performance of wind turbine blades – Part II: Numerical validation, in: 16th International Conference on Composite Materials, 8–13 July 2007.Kyoto, Japan, FrAA2-02ge_brannerk223512p,
https://iccm-central.org/Proceedings/ICCM16proceedings/ (last access: 17 January 2024), 2007.
a,
b,
c,
d,
e,
f
Chen, H., Yu, W., and Capellaro, M.: A critical assessment of computer tools for calculating composite wind turbine blade properties, Wind Energy, 13, 497–516, 2010.
a,
b,
c
Chen, J., Shen, X., Zhu, X., and Du, Z.: Study on composite bend-twist coupled wind turbine blade for passive load mitigation, Compos. Struct., 213, 173–189,
https://doi.org/10.1016/j.compstruct.2019.01.086, 2019.
a
Gözcü, M. and Kayran, A.: Investigation of the effect of bending twisting coupling on the loads in wind turbines with superelement blade definition, J. Phys. Conf. Ser., 524, 012040,
https://doi.org/10.1088/1742-6596/524/1/012040, 2014.
a
Harrison, R., Stacey, S., and Hansford, B.: BERP IV the design, development and testing of an advanced rotor blade, in: American Helicopter Society 64th Annual Forum, American Helicopter Society International, Inc., Montréal, Canada, pp. 1334–1353, 2008. a
Hodges, D. H.: Nonlinear Composite Beam Theory, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2006. a
Lekou, D., Bacharoudis, K. C., Farinas, A. B., Branner, K., Berring, P., Croce, A., Philippidis, T., and de Winkel, G. D.: A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading, in: 20th International Conference on Composite Materials ICCM20 Secretariat, 19–24 July 2015, Copenhagen, Denmark, 4219-1,
https://iccm-central.org/Proceedings/ICCM20proceedings/ (last access: 17 January 2024), 2015.
a,
b,
c,
d,
e,
f
Lemanski, S. L.: Static optimisation of prismatic structures as applied to helicopter rotor blades General, PhD thesis, University of Bristol,
https://hdl.handle.net/1983/52d324a6-7c08-4ca7-8cf1-284afe59964f (last access: 17 January 2024), 2004. a
Maes, V. K.: On the sensitivity and validation of bending, twisting, and bend-twist coupling behaviour of wind turbine blade cross-sections, PhD thesis, University of Bristol,
https://hdl.handle.net/1983/c768d821-be53-4fee-84fd-9f32629d3bfa (last access: 17 January 2024), 2021. a
Manolas, D. I., Serafeim, G. P., Chaviaropoulos, P. K., Riziotis, V. A., and Voutsinas, S. G.: Assessment of load reduction capabilities using passive and active control methods on a 10 MW-scale wind turbine, J. Phys. Conf. Ser., 1037, 032042,
https://doi.org/10.1088/1742-6596/1037/3/032042, 2018.
a
McKenna, R., Ostman V.d. Leye, P., and Fichtner, W.: Key challenges and prospects for large wind turbines, Renewable and Sustainable Energy Reviews, 53, 1212–1221, 2016.
a,
b
Moffatt, S. and Griffiths, N.: Structural optimisation and aeroelastic tailoring of the BERP IV demonstrator blade, in: American Helicopter Society 65th Annual Forum, American Helicopter Society International, Inc., Grapevine, Texas, pp. 770–789, 2009. a
Ong, C. H. and Tsai, S. W.: Design, Manufacture and Testing of a Bend-Twist D-Spar, Tech. rep., Sandia National Laboratories,
https://doi.org/10.2172/9461, 1999.
a
Pamadi, B. N.: Performance, Stability, Dynamics and Control of Airplanes, third edit edn., American Institute of Aeronautics and Astronautics, Reston, Viriginia,
https://doi.org/10.2514/4.102745, 2015.
a
Ponta, F. L., Otero, A. D., Rajan, A., and Lago, L. I.: The adaptive-blade concept in wind-power applications, Energy Sustai. Dev., 22, 3–12, 2014. a
Scott, S., Capuzzi, M., Langston, D., Bossanyi, E., McCann, G., Weaver, P., and Pirrera, A.: Gust response of aeroelastically tailored wind turbines, J. Phys. Conf. Ser., 753, 042006,
https://doi.org/10.1088/1742-6596/753/4/042006, 2016.
a
Scott, S., Capuzzi, M., Langston, D., Bossanyi, E., Mccann, G., Weaver, P., and Pirrera, A.: Effects of aeroelastic tailoring on performance characteristics of wind turbine systems, Renew. Energ., 114, 887–903, 2017. a
Şener, Ö., Farsadi, T., and Kayran, A.: Effect of Fiber Orientation of Bend-Twist Coupled Blades on the Structural Performance of the Wind Turbine System, in: 35th Wind Energy Symposium, 9–13 January 2017, Grapevine, Texas, USA,
https://doi.org/10.2514/6.2017-1167, 2017.
a
Serafeim, G. P., Manolas, D. I., Riziotis, V. A., Chaviaropoulos, P. K., and Saravanos, D. A.: Optimized blade mass reduction of a 10MW-scale wind turbine via combined application of passive control techniques based on flap-edge and bend-twist coupling effects, J. Wind Eng. Ind. Aerod., 225, 105002,
https://doi.org/10.1016/j.jweia.2022.105002, 2022.
a
Wiens, M., Meyer, T., and Wenske, J.: Exploiting Bend-Twist Coupling in Wind Turbine Control for Load Reduction, 21st IFAC World Congress, IFAC PapersOnLine, 53, 12139–12144,
https://doi.org/10.1016/j.ifacol.2020.12.781, 2020.
a