Articles | Volume 10, issue 6
https://doi.org/10.5194/wes-10-1123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating microplastic emissions from offshore wind turbine blades in the Dutch North Sea
TNO, Wind Energy Technology, Westerduinweg 3, 1755 LE Petten, the Netherlands
Anna Elisa Schwarz
TNO, Climate, Air & Sustainability, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
Henk Slot
TNO, Reliable Structures, Molengraaffsingel 8, 2629 JD Delft, the Netherlands
Harald van der Mijle Meijer
TNO, Wind Energy Technology, Westerduinweg 3, 1755 LE Petten, the Netherlands
Related authors
Marco Caboni and Gerwin van Dalum
Wind Energ. Sci., 10, 1887–1906, https://doi.org/10.5194/wes-10-1887-2025, https://doi.org/10.5194/wes-10-1887-2025, 2025
Short summary
Short summary
Weather simulations carried out over a decade showed that the average erosivity of rainfall on wind turbine blades increases from the southwestern part of the Dutch North Sea to the northeastern region. These results suggest that future wind farms developed in the northeast are likely to encounter higher erosion rates compared to those currently operating in the southwest. This requires special attention when developing mitigation strategies.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Marco Caboni and Gerwin van Dalum
Wind Energ. Sci., 10, 1887–1906, https://doi.org/10.5194/wes-10-1887-2025, https://doi.org/10.5194/wes-10-1887-2025, 2025
Short summary
Short summary
Weather simulations carried out over a decade showed that the average erosivity of rainfall on wind turbine blades increases from the southwestern part of the Dutch North Sea to the northeastern region. These results suggest that future wind farms developed in the northeast are likely to encounter higher erosion rates compared to those currently operating in the southwest. This requires special attention when developing mitigation strategies.
Kisorthman Vimalakanthan, Harald van der Mijle Meijer, Iana Bakhmet, and Gerard Schepers
Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023, https://doi.org/10.5194/wes-8-41-2023, 2023
Short summary
Short summary
Leading edge erosion (LEE) is one of the most critical degradation mechanisms that occur with wind turbine blades. A detailed understanding of the LEE process and the impact on aerodynamic performance due to the damaged leading edge is required to optimize blade maintenance. Providing accurate modeling tools is therefore essential. This novel study assesses CFD approaches for modeling high-resolution scanned LE surfaces from an actual blade with LEE damages.
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020, https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary
Short summary
This work characterizes the unsteady aerodynamic response of a scaled version of a 10 MW floating wind turbine subjected to an imposed platform motion. The focus has been put on the simple yet significant motion along the wind's direction (surge). For this purpose, different state-of-the-art aerodynamic codes have been used, validating the outcomes with detailed wind tunnel experiments. This paper sheds light on floating-turbine unsteady aerodynamics for a more conscious controller design.
Cited articles
4C-Offshore: Global Offshore Wind Farms Database, https://www.4coffshore.com/windfarms/, last access: 28 November 2024. a
Bak, C., Forsting, A. M., and Sorensen, N. N.: The influence of leading edge roughness, rotor control and wind climate on the loss in energy production, J. Phys. Conf. Ser., 1618, 052050, https://doi.org/10.1088/1742-6596/1618/5/052050, 2020. a
Barfknecht, N. and von Terzi, D.: Aerodynamic interaction of rain and wind turbine blades: the significance of droplet slowdown and deformation for leading-edge erosion, Wind Energ. Sci., 9, 2333–2357, https://doi.org/10.5194/wes-9-2333-2024, 2024. a
Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018. a, b
Bech, J. I., Johansen, N. F.-J., Madsen, M. B., Hannesdóttir, Á., and Hasager, C. B.: Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades, Renew. Energ., 197, 776–789, https://doi.org/10.1016/j.renene.2022.06.127, 2022. a, b
Caboni, M., Slot, H. M., Bergman, G., Wouters, D. A. J., and van der Mijle Meijer, H.: Evaluation of wind turbine blades' rain-induced leading edge erosion using rainfall measurements at offshore, coastal and onshore locations in the Netherlands, J. Phys. Conf. Ser., 2767, 062003, https://doi.org/10.1088/1742-6596/2767/6/062003, 2024. a, b, c
Copernicus Climate Change Service, C. D. S.: Land cover classification gridded maps from 1992 to present derived from satellite observation, https://doi.org/10.24381/cds.006f2c9a, 2019. a
Domenech, L., García-Peñas, V., Šakalytė, A., Puthukara Francis, D., Skoglund, E., and Sánchez, F.: Top Coating Anti-Erosion Performance Analysis in Wind Turbine Blades Depending on Relative Acoustic Impedance. Part 2: Material Characterization and Rain Erosion Testing Evaluation, Coatings, 10, 709, https://doi.org/10.3390/coatings10080709, 2020. a
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A.: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, Tech. Rep. NREL/TP-5000-75698, National Renewable Energy Laboratory (NREL), Golden, CO, USA, https://doi.org/10.2172/1603478, 2020. a, b
Gall, S. and Thompson, R.: The impact of debris on marine life, Mar. Pollut. Bull., 92, 170–179, https://doi.org/10.1016/j.marpolbul.2014.12.041, 2015. a
Gires, A., Tchiguirinskaia, I., and Schertzer, D.: 3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field, Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, 2022. a
Haščič, I. and Mackie, A.: Land Cover Change and Conversions: Methodology and Results for OECD and G20 Countries, OECD Green Growth Papers, No. 2018/04, OECD Publishing, Paris, https://doi.org/10.1787/72a9e331-en, 2018. a
Hawkins, S. and Nyboe, A.: The TEKNOBLADE REPAIR 9000 – a practical approach to Leading Edge Protection for wind turbine blades, Tech. rep., TEKNOS, https://www.worldclassmaintenance.com/wp-content/uploads/2019/12/2022.05.20-Teknos-A-practical-approach-to-Leading-Edge-Protection-for-wind-turbine-blades.pdf (last access: 12 June 2025), 2019. a, b
Herring, R., Dyer, K., MacLeod, A., and Ward, C.: Computational fluid dynamics methodology for characterisation of leading edge erosion in whirling arm test rigs, J. Phys. Conf. Ser., 1222, 012011, https://doi.org/10.1088/1742-6596/1222/1/012011, 2019. a
Herring, R., Domenech, L., Renau, J., Šakalytė, A., Ward, C., Dyer, K., and Sánchez, F.: Assessment of a Wind Turbine Blade Erosion Lifetime Prediction Model with Industrial Protection Materials and Testing Methods, Coatings, 11, 767, https://doi.org/10.3390/coatings11070767, 2021. a
Heymann, F.: Toward Quantitative Prediction of Liquid Impact Erosion, in: Characterization and Determination of Erosion Resistance, ASTM International, https://doi.org/10.1520/STP26871S, 1970. a
Heymann, F. J.: Conclusions from the ASTM interlaboratory test program with liquid impact erosion facilities, in: International Conference on Erosion by Liquid and Solid Impact, 5th edn., 3–6 September 1979, Cambridge, England, Proceedings (A80-25030 09-23), Cambridge, Cambridge University, 20-1–20-10, 1979. a, b, c, d
Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, A., and Geissen, V.: Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae), Environ. Sci. Technol., 50, 2685–2691, https://doi.org/10.1021/acs.est.5b05478, 2016. a
KNMI: Jaaroverzicht Weer 2022, https://cdn.knmi.nl/knmi/map/page/klimatologie/gegevens/mow/jow_2022.pdf (last access: 12 June 2025), 2022. a
Krzyzanowski, J. and Szprengiel, Z.: The Influence of Droplet Size on the Turbine Blading Erosion Hazard, J. Eng. P., 100, 561–565, https://doi.org/10.1115/1.3446394, 1978. a
Kusumgar, N. G.: Kusumgar, Nerlfi & Growney publishes fourth study on the global paint & coatings industry, Focus on Powder Coatings, 2020, 7, https://doi.org/10.1016/j.fopow.2020.04.038, 2020. a
Lebreton, L. C., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, B., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., and Reisser, J.: Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic, Sci. Rep.-UK, 8, 1–10, https://doi.org/10.1038/s41598-018-22939-w, 2018. a
Leslie, H. A., van Velzen, M. J., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., and Lamoree, M. H.: Discovery and quantification of plastic particle pollution in human blood, Environ. Int., 163, 107199, https://doi.org/10.1016/j.envint.2022.107199, 2022. a
Maniaci, D. C., Westergaard, C., Hsieh, A., and Paquette, J. A.: Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance, J. Phys. Conf. Ser., 1618, 052082, https://doi.org/10.1088/1742-6596/1618/5/052082, 2020. a
Mishnaevsky, L., Hasager, C. B., Bak, C., Tilg, A.-M., Bech, J. I., Doagou Rad, S., and Fæster, S.: Leading edge erosion of wind turbine blades: Understanding, prevention and protection, Renew. Energ., 169, 953–969, https://doi.org/10.1016/j.renene.2021.01.044, 2021. a
Mishnaevsky, L., Tempelis, A., Kuthe, N., and Mahajan, P.: Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling, Renew. Energ., 215, 118966, https://doi.org/10.1016/j.renene.2023.118966, 2023. a
Pugh, K. and Stack, M. M.: Rain Erosion Maps for Wind Turbines Based on Geographical Locations: A Case Study in Ireland and Britain, Journal of Bio- and Tribo-Corrosion, 7, 34, https://doi.org/10.1007/s40735-021-00472-0, 2021. a
Sánchez, F., Sakalyte, A., Ansari, M. Q., Wu, C.-Y., Teuven, J., Young, T. M., Olivares, A., and Domenech, L.: Erosion Damage Progression Analysis for Wind Turbine Blade Material Coatings based on Comparison of Accelerated Rain Erosion Testing Methods and Polymer Properties, SSRN, https://doi.org/10.2139/ssrn.5172335, 2025. a, b, c
Schmitt, G. F.: Research for Improved Subsonic and Supersonic Rain Erosion Resistant Material, Tech. Rep. AFML-TR-67-211, Air Force Materials Laboratory, https://apps.dtic.mil/sti/html/tr/AD0828188/index.html (last access: 12 June 2025), 1968. a
Schwarz, A., Lensen, S., Langeveld, E., Parker, L., and Urbanus, J.: Plastics in the global environment assessed through material flow analysis, degradation and environmental transportation, Sci. Total Environ., 875, 162644, https://doi.org/10.1016/j.scitotenv.2023.162644, 2023. a, b, c, d
Seleznev, L. I., Ryzhenkov, V. A., and Mednikov, A. F.: Phenomenology of erosion wear of constructional steels and alloys by liquid particles, Therm. Eng.+, 57, 741–745, https://doi.org/10.1134/S004060151009003X, 2010. a
Slot, H.: A fatigue-based model for the droplet impingement erosion incubation period, PhD thesis, University of Twente, Enschede, the Netherlands, https://ris.utwente.nl/ws/portalfiles/portal/268387756/PhD_thesis_H_Slot.pdf (last access: 12 June 2025), 2021. a
Slot, H., Gelinck, E., Rentrop, C., and van der Heide, E.: Leading edge erosion of coated wind turbine blades: Review of coating life models, Renew. Energ., 80, 837–848, https://doi.org/10.1016/j.renene.2015.02.036, 2015. a, b, c
Solberg, A., Rimereit, B.-E., and Weinbach, J. E.: Leading Edge erosion and pollution from wind turbine blades, https://docs.wind-watch.org/Leading-Edge-erosion-and-
pollution-from-wind-turbine-blades_5_july_English.pdf (last access: 17 October 2024), 2021. a, b, c, d, e
Springer, G. S.: Erosion by liquid impact, John Wiley & Sons, https://doi.org/10.1017/S0001924000034552, 1976. a, b
Springer, G. S., Yang, C.-I., and Larsen, P. S.: Analysis of Rain Erosion of Coated Materials, J. Compos. Mater., 8, 229–252, https://doi.org/10.1177/002199837400800302, 1974. a
Tempelis, A. and Mishnaevsky, L.: Surface roughness evolution of wind turbine blade subject to rain erosion, Mater. Design, 231, 112011, https://doi.org/10.1016/j.matdes.2023.112011, 2023. a
Verma, A. S., Jiang, Z., Caboni, M., Verhoef, H., van der Mijle Meijer, H., Castro, S. G., and Teuwen, J. J.: A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system, Renew. Energ., 178, 1435–1455, https://doi.org/10.1016/j.renene.2021.06.122, 2021. a
Verma, A. S., Yan, J., Hu, W., Jiang, Z., Shi, W., and Teuwen, J. J.: A review of impact loads on composite wind turbine blades: Impact threats and classification, Renew. Sust. Energ. Rev., 178, 113261, https://doi.org/10.1016/j.rser.2023.113261, 2023. a
Verschoor, A.: Emission of microplastics and potential mitigation measures Abrasive cleaning agents, paints and tyre wear, Tech. Rep. 2016-0026, RIVM, https://www.rivm.nl/bibliotheek/rapporten/2016-0026.pdf (last access: 12 June 2025), 2016. a
Vimalakanthan, K., van der Mijle Meijer, H., Bakhmet, I., and Schepers, G.: Computational fluid dynamics (CFD) modeling of actual eroded wind turbine blades, Wind Energ. Sci., 8, 41–69, https://doi.org/10.5194/wes-8-41-2023, 2023. a
Vitulli, J., Eeckels, C., Bot, E., Verhoef, J., Bergman, G., and der Werff, P. V.: Offshore wind energy deployment in the North Sea by 2030: long-term measurement campaign. LEG, 2014-2022, Tech. Rep. R10579, TNO, https://publications.tno.nl/publication/34640886/7ycJdI/TNO-2023-R10579.pdf (last access: 12 June 2025), 2023. a
Weigle, B. and Szprengiel, Z.: An attempt to assess the erosion damage due to the impact of a polyfractional rain of droplets, Transactions Institute of Fluid-Flow Machinery, 88, 45–70, 1985. a
Short summary
In this study, we assessed the total quantity of microplastics emitted by wind turbines currently operating in the Dutch North Sea. The estimates of microplastics currently emitted from offshore wind turbines in the Netherlands account for a very small portion of the total microplastics released offshore in the Netherlands, specifically less than 1 ‰.
In this study, we assessed the total quantity of microplastics emitted by wind turbines...
Altmetrics
Final-revised paper
Preprint