Articles | Volume 10, issue 6
https://doi.org/10.5194/wes-10-1137-2025
https://doi.org/10.5194/wes-10-1137-2025
Research article
 | 
25 Jun 2025
Research article |  | 25 Jun 2025

Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data

Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen

Related authors

Leveraging signal processing and machine learning for automated fault detection in wind turbine drivetrains
Faras Jamil, Cédric Peeters, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci., 10, 1963–1978, https://doi.org/10.5194/wes-10-1963-2025,https://doi.org/10.5194/wes-10-1963-2025, 2025
Short summary
Scalable SCADA-driven Failure Prediction for Offshore Wind Turbines Using Autoencoder-Based NBM and Fleet-Median Filtering
Ivo Vervlimmeren, Xavier Chesterman, Timothy Verstraeten, Ann Nowé, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-49,https://doi.org/10.5194/wes-2025-49, 2025
Revised manuscript accepted for WES
Short summary
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Preprint under review for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 4–8 August 2019, Anchorage AK USA, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Bentsen, L., Warakagoda, N., Stenbro, R., and Engelstad, P.: Wind Park Power Prediction: Attention-Based Graph Networks and Deep Learning to Capture Wake Losses, J. Phys. Conf. Ser., 2265, 022035, https://doi.org/10.1088/1742-6596/2265/2/022035, 2022. a
Bilendo, F., Badihi, H., Lu, N., Cambron, P., and Jiang, B.: A Normal Behavior Model Based on Power Curve and Stacked Regressions for Condition Monitoring of Wind Turbines, IEEE T. Instrum. Meas., 71, 1–13, https://doi.org/10.1109/TIM.2022.3196116, 2022. a
Bleeg, J.: Graph Neural Networks for Power Prediction in Offshore Wind Farms using SCADA Data, J. Phys. Conf. Ser., 1618, 062054, https://doi.org/10.1088/1742-6596/1618/6/062054, 2020. a
Daenens, S., Vervlimmeren, I., Verstraeten, T., Daems, P.-J., Nowé, A., and Helsen, J.: Power prediction using high-resolution SCADA data with a farm-wide deep neural network approach, J. Phys. Conf. Ser., 2767, 092014, https://doi.org/10.1088/1742-6596/2767/9/092014, 2024. a
Download
Short summary
This study presents a novel model for predicting wind turbine power output at a high temporal resolution in wind farms using a hybrid graph neural network (GNN) and long short-term memory (LSTM) architecture. By modeling the wind farm as a graph, the model captures both spatial and temporal dynamics, outperforming traditional power curve methods. Integrated with a normal behavior model (NBM) framework, the model effectively identifies and analyzes power loss events.
Share
Altmetrics
Final-revised paper
Preprint