Articles | Volume 10, issue 6
https://doi.org/10.5194/wes-10-1137-2025
https://doi.org/10.5194/wes-10-1137-2025
Research article
 | 
25 Jun 2025
Research article |  | 25 Jun 2025

Spatio-temporal graph neural networks for power prediction in offshore wind farms using SCADA data

Simon Daenens, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen

Related authors

Scalable SCADA-driven Failure Prediction for Offshore Wind Turbines Using Autoencoder-Based NBM and Fleet-Median Filtering
Ivo Vervlimmeren, Xavier Chesterman, Timothy Verstraeten, Ann Nowé, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-49,https://doi.org/10.5194/wes-2025-49, 2025
Preprint under review for WES
Short summary
Modular deep learning approach for wind farm power forecasting and wake loss prediction
Stijn Ally, Timothy Verstraeten, Pieter-Jan Daems, Ann Nowé, and Jan Helsen
Wind Energ. Sci., 10, 779–812, https://doi.org/10.5194/wes-10-779-2025,https://doi.org/10.5194/wes-10-779-2025, 2025
Short summary
Impact of inflow conditions and turbine placement on the performance of offshore wind turbines exceeding 7 MW
Konstantinos Vratsinis, Rebeca Marini, Pieter-Jan Daems, Lukas Pauscher, Jeroen van Beeck, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-32,https://doi.org/10.5194/wes-2025-32, 2025
Preprint under review for WES
Short summary
System identification of offshore wind turbines for model updating and validation using field measurements
Jakob Gebel, Ashkan Rezaei, Adithya Vemuri, Veronica Liverud Krathe, Pieter-Jan Daems, Jens Jo Matthys, Jonathan Sterckx, Konstantinos Vratsinis, Kayacan Kestel, Amir R. Nejad, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-173,https://doi.org/10.5194/wes-2024-173, 2025
Preprint under review for WES
Short summary
Assessing the impact of wind profiles at offshore wind farm sites for field data-enabled design
Rebeca Marini, Konstantinos Vratsinis, Kayacan Kestel, Jonathan Sterckx, Jens Matthys, Pieter-Jan Daems, Timothy Verstraeten, and Jan Helsen
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-9,https://doi.org/10.5194/wes-2025-9, 2025
Revised manuscript not accepted
Short summary

Related subject area

Thematic area: Wind technologies | Topic: Offshore technology
Estimating microplastic emissions from offshore wind turbine blades in the Dutch North Sea
Marco Caboni, Anna Elisa Schwarz, Henk Slot, and Harald van der Mijle Meijer
Wind Energ. Sci., 10, 1123–1136, https://doi.org/10.5194/wes-10-1123-2025,https://doi.org/10.5194/wes-10-1123-2025, 2025
Short summary
A new gridded offshore wind profile product for US coasts using machine learning and satellite observations
James Frech, Korak Saha, Paige D. Lavin, Huai-Min Zhang, James Reagan, and Brandon Fung
Wind Energ. Sci., 10, 1077–1099, https://doi.org/10.5194/wes-10-1077-2025,https://doi.org/10.5194/wes-10-1077-2025, 2025
Short summary
Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads in extreme idling conditions
Will Wiley, Jason Jonkman, and Amy Robertson
Wind Energ. Sci., 10, 941–970, https://doi.org/10.5194/wes-10-941-2025,https://doi.org/10.5194/wes-10-941-2025, 2025
Short summary
Gaussian mixture autoencoder for uncertainty-aware damage identification in a floating offshore wind turbine
Ana Fernandez-Navamuel, Nicolas Gorostidi, David Pardo, Vincenzo Nava, and Eleni Chatzi
Wind Energ. Sci., 10, 857–885, https://doi.org/10.5194/wes-10-857-2025,https://doi.org/10.5194/wes-10-857-2025, 2025
Short summary
Effect of Rotor Design on Energy Performance and Cost of Stationary Unmoored Floating Offshore Wind Turbines
Aurélien Babarit, Maximilien André, and Vincent Leroy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-15,https://doi.org/10.5194/wes-2025-15, 2025
Revised manuscript accepted for WES
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 4–8 August 2019, Anchorage AK USA, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019. a
Bentsen, L., Warakagoda, N., Stenbro, R., and Engelstad, P.: Wind Park Power Prediction: Attention-Based Graph Networks and Deep Learning to Capture Wake Losses, J. Phys. Conf. Ser., 2265, 022035, https://doi.org/10.1088/1742-6596/2265/2/022035, 2022. a
Bilendo, F., Badihi, H., Lu, N., Cambron, P., and Jiang, B.: A Normal Behavior Model Based on Power Curve and Stacked Regressions for Condition Monitoring of Wind Turbines, IEEE T. Instrum. Meas., 71, 1–13, https://doi.org/10.1109/TIM.2022.3196116, 2022. a
Bleeg, J.: Graph Neural Networks for Power Prediction in Offshore Wind Farms using SCADA Data, J. Phys. Conf. Ser., 1618, 062054, https://doi.org/10.1088/1742-6596/1618/6/062054, 2020. a
Daenens, S., Vervlimmeren, I., Verstraeten, T., Daems, P.-J., Nowé, A., and Helsen, J.: Power prediction using high-resolution SCADA data with a farm-wide deep neural network approach, J. Phys. Conf. Ser., 2767, 092014, https://doi.org/10.1088/1742-6596/2767/9/092014, 2024. a
Download
Short summary
This study presents a novel model for predicting wind turbine power output at a high temporal resolution in wind farms using a hybrid graph neural network (GNN) and long short-term memory (LSTM) architecture. By modeling the wind farm as a graph, the model captures both spatial and temporal dynamics, outperforming traditional power curve methods. Integrated with a normal behavior model (NBM) framework, the model effectively identifies and analyzes power loss events.
Share
Altmetrics
Final-revised paper
Preprint