Articles | Volume 10, issue 8
https://doi.org/10.5194/wes-10-1737-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-10-1737-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of wind-farm control strategies under realistic offshore wind conditions: wake quantities of interest
Sandia National Laboratories, Albuquerque, NM, USA
Gopal Yalla
Sandia National Laboratories, Albuquerque, NM, USA
Lawrence Cheung
Sandia National Laboratories, Livermore, CA, USA
Joeri Frederik
National Renewable Energy Laboratory, Golden, CO, USA
Dan Houck
Sandia National Laboratories, Albuquerque, NM, USA
Nathaniel deVelder
Sandia National Laboratories, Albuquerque, NM, USA
Eric Simley
National Renewable Energy Laboratory, Golden, CO, USA
Paul Fleming
National Renewable Energy Laboratory, Golden, CO, USA
Related authors
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, Marc T. Henry de Frahan, Marc Day, and Michael Sprague
Wind Energ. Sci., 10, 1403–1420, https://doi.org/10.5194/wes-10-1403-2025, https://doi.org/10.5194/wes-10-1403-2025, 2025
Short summary
Short summary
Mitigating turbine wakes is an important aspect to maximizing wind farm energy production but is a challenge to model. We demonstrate a new approach to modeling active wake mixing, which re-energizes turbine wake through periodic blade pitching. The new model divides the wake into separate steady, unsteady, and turbulent components and solves for each in a computationally efficient manner. Our results show that the model can reasonably predict the faster wake recovery due to mixing.
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025, https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Short summary
In this paper, we present results from advanced computer simulations to determine the effects of applying different control strategies to a small wind farm. We show that when there is variability in wind direction over height, steering the wake of a turbine away from other turbines is the most effective strategy. When this variability is not present, actively changing the pitch angle of the blades to increase turbulence in the wake could be more effective.
Gopal R. Yalla, Kenneth Brown, Lawrence Cheung, Dan Houck, Nathaniel deVelder, and Nicholas Hamilton
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-14, https://doi.org/10.5194/wes-2025-14, 2025
Revised manuscript accepted for WES
Short summary
Short summary
When wind reaches the first set of turbines in a wind farm, energy is extracted, reducing the energy available for downstream turbines. This study examines emerging technologies aimed at re-energizing the wind between turbines in a wind farm to improve overall power production. Optimizing these technologies depends on understanding complex features of the atmosphere and the wakes behind turbines, which is accomplished using high fidelity computer simulations and data analysis techniques.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024, https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Geng Xia, Mike Optis, Georgios Deskos, Michael Sinner, Daniel Mulas Hernando, Julie Kay Lundquist, Andrew Kumler, Miguel Sanchez Gomez, Paul Fleming, and Walter Musial
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-154, https://doi.org/10.5194/wes-2025-154, 2025
Preprint under review for WES
Short summary
Short summary
This study examines energy losses from cluster wakes in offshore wind farms along the U.S. East Coast. Simulations based on real lease projects show that large wind speed deficits do not always cause equally large energy losses. The energy loss method revealed wake areas up to 30 % larger than traditional estimates, underscoring the need to consider both wind speed deficit and energy loss in planning offshore wind development.
Lawrence Cheung, Gopal Yalla, Prakash Mohan, Alan Hsieh, Kenneth Brown, Nathaniel deVelder, Daniel Houck, Marc T. Henry de Frahan, Marc Day, and Michael Sprague
Wind Energ. Sci., 10, 1403–1420, https://doi.org/10.5194/wes-10-1403-2025, https://doi.org/10.5194/wes-10-1403-2025, 2025
Short summary
Short summary
Mitigating turbine wakes is an important aspect to maximizing wind farm energy production but is a challenge to model. We demonstrate a new approach to modeling active wake mixing, which re-energizes turbine wake through periodic blade pitching. The new model divides the wake into separate steady, unsteady, and turbulent components and solves for each in a computationally efficient manner. Our results show that the model can reasonably predict the faster wake recovery due to mixing.
Joeri A. Frederik, Eric Simley, Kenneth A. Brown, Gopal R. Yalla, Lawrence C. Cheung, and Paul A. Fleming
Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025, https://doi.org/10.5194/wes-10-755-2025, 2025
Short summary
Short summary
In this paper, we present results from advanced computer simulations to determine the effects of applying different control strategies to a small wind farm. We show that when there is variability in wind direction over height, steering the wake of a turbine away from other turbines is the most effective strategy. When this variability is not present, actively changing the pitch angle of the blades to increase turbulence in the wake could be more effective.
Gopal R. Yalla, Kenneth Brown, Lawrence Cheung, Dan Houck, Nathaniel deVelder, and Nicholas Hamilton
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-14, https://doi.org/10.5194/wes-2025-14, 2025
Revised manuscript accepted for WES
Short summary
Short summary
When wind reaches the first set of turbines in a wind farm, energy is extracted, reducing the energy available for downstream turbines. This study examines emerging technologies aimed at re-energizing the wind between turbines in a wind farm to improve overall power production. Optimizing these technologies depends on understanding complex features of the atmosphere and the wakes behind turbines, which is accomplished using high fidelity computer simulations and data analysis techniques.
Kenneth Brown, Pietro Bortolotti, Emmanuel Branlard, Mayank Chetan, Scott Dana, Nathaniel deVelder, Paula Doubrawa, Nicholas Hamilton, Hristo Ivanov, Jason Jonkman, Christopher Kelley, and Daniel Zalkind
Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, https://doi.org/10.5194/wes-9-1791-2024, 2024
Short summary
Short summary
This paper presents a study of the popular wind turbine design tool OpenFAST. We compare simulation results to measurements obtained from a 2.8 MW land-based wind turbine. Measured wind conditions were used to generate turbulent flow fields through several techniques. We show that successful validation of the tool is not strongly dependent on the inflow generation technique used for mean quantities of interest. The type of inflow assimilation method has a larger effect on fatigue quantities.
Erik K. Fritz, Christopher L. Kelley, and Kenneth A. Brown
Wind Energ. Sci., 9, 1713–1726, https://doi.org/10.5194/wes-9-1713-2024, https://doi.org/10.5194/wes-9-1713-2024, 2024
Short summary
Short summary
This study investigates the benefits of optimizing the spacing of pressure sensors for measurement campaigns on wind turbine blades and airfoils. It is demonstrated that local aerodynamic properties can be estimated considerably more accurately when the sensor layout is optimized compared to commonly used simpler sensor layouts. This has the potential to reduce the number of sensors without losing measurement accuracy and, thus, reduce the instrumentation complexity and experiment cost.
Daniel R. Houck, Nathaniel B. de Velder, David C. Maniaci, and Brent C. Houchens
Wind Energ. Sci., 9, 1189–1209, https://doi.org/10.5194/wes-9-1189-2024, https://doi.org/10.5194/wes-9-1189-2024, 2024
Short summary
Short summary
Experiments offer incredible value to science, but results must come with an uncertainty quantification to be meaningful. We present a method to simulate a proposed experiment, calculate uncertainties, and determine the measurement duration (total time of measurements) and the experiment duration (total time to collect the required measurement data when including condition variability and time when measurement is not occurring) required to produce statistically significant and converged results.
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024, https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Short summary
Wake steering is a wind farm control technology in which turbines are misaligned with the wind to deflect their wakes away from downstream turbines, increasing total power production. In this paper, we use a wind farm control model and historical electricity prices to assess the potential increase in market value from wake steering for 15 US wind plants. For most plants, we find that the relative increase in revenue from wake steering exceeds the relative increase in energy production.
Balthazar Arnoldus Maria Sengers, Andreas Rott, Eric Simley, Michael Sinner, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 8, 1693–1710, https://doi.org/10.5194/wes-8-1693-2023, https://doi.org/10.5194/wes-8-1693-2023, 2023
Short summary
Short summary
Unexpected wind direction changes are undesirable, especially when performing wake steering. This study explores whether the yaw controller can benefit from accessing wind direction information before a change reaches the turbine. Results from two models with different fidelities demonstrate that wake steering can indeed benefit from preview information.
Andrew P. J. Stanley, Christopher J. Bay, and Paul Fleming
Wind Energ. Sci., 8, 1341–1350, https://doi.org/10.5194/wes-8-1341-2023, https://doi.org/10.5194/wes-8-1341-2023, 2023
Short summary
Short summary
Better wind farms can be built by simultaneously optimizing turbine locations and control, which is currently impossible or extremely challenging because of the size of the problem. The authors present a method to determine optimal wind farm control as a function of the turbine locations, which enables turbine layout and control to be optimized together by drastically reducing the size of the problem. In an example, a wind farm's performance improves by 0.8 % when optimized with the new method.
Christopher J. Bay, Paul Fleming, Bart Doekemeijer, Jennifer King, Matt Churchfield, and Rafael Mudafort
Wind Energ. Sci., 8, 401–419, https://doi.org/10.5194/wes-8-401-2023, https://doi.org/10.5194/wes-8-401-2023, 2023
Short summary
Short summary
This paper introduces the cumulative-curl wake model that allows for the fast and accurate prediction of wind farm energy production wake interactions. The cumulative-curl model expands several existing wake models to make the simulation of farms more accurate and is implemented in a computationally efficient manner such that it can be used for wind farm layout design and controller development. The model is validated against high-fidelity simulations and data from physical wind farms.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Johan Meyers, Carlo Bottasso, Katherine Dykes, Paul Fleming, Pieter Gebraad, Gregor Giebel, Tuhfe Göçmen, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 2271–2306, https://doi.org/10.5194/wes-7-2271-2022, https://doi.org/10.5194/wes-7-2271-2022, 2022
Short summary
Short summary
We provide a comprehensive overview of the state of the art and the outstanding challenges in wind farm flow control, thus identifying the key research areas that could further enable commercial uptake and success. To this end, we have structured the discussion on challenges and opportunities into four main areas: (1) insight into control flow physics, (2) algorithms and AI, (3) validation and industry implementation, and (4) integrating control with system design
(co-design).
Michael J. LoCascio, Christopher J. Bay, Majid Bastankhah, Garrett E. Barter, Paul A. Fleming, and Luis A. Martínez-Tossas
Wind Energ. Sci., 7, 1137–1151, https://doi.org/10.5194/wes-7-1137-2022, https://doi.org/10.5194/wes-7-1137-2022, 2022
Short summary
Short summary
This work introduces the FLOW Estimation and Rose Superposition (FLOWERS) wind turbine wake model. This model analytically integrates the wake over wind directions to provide a time-averaged flow field. This new formulation is used to perform layout optimization. The FLOWERS model provides a smooth flow field over an entire wind plant at fraction of the computational cost of the standard numerical integration approach.
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci., 7, 741–757, https://doi.org/10.5194/wes-7-741-2022, https://doi.org/10.5194/wes-7-741-2022, 2022
Short summary
Short summary
In wind plants, turbines can be yawed to steer their wakes away from downstream turbines and achieve an increase in plant power. The yaw angles become expensive to solve for in large farms. This paper presents a new method to solve for the optimal turbine yaw angles in a wind plant. The yaw angles are defined as Boolean variables – each turbine is either yawed or nonyawed. With this formulation, most of the gains from wake steering can be reached with a large reduction in computational expense.
Paul Fleming, Michael Sinner, Tom Young, Marine Lannic, Jennifer King, Eric Simley, and Bart Doekemeijer
Wind Energ. Sci., 6, 1521–1531, https://doi.org/10.5194/wes-6-1521-2021, https://doi.org/10.5194/wes-6-1521-2021, 2021
Short summary
Short summary
The paper presents a new validation campaign of wake steering at a commercial wind farm. The campaign uses fixed yaw offset positions, rather than a table of optimal yaw offsets dependent on wind direction, to enable comparison with engineering models of wake steering. Additionally, by applying the same offset in beneficial and detrimental conditions, we are able to collect important data for assessing second-order wake model predictions.
Liang Dong, Wai Hou Lio, and Eric Simley
Wind Energ. Sci., 6, 1491–1500, https://doi.org/10.5194/wes-6-1491-2021, https://doi.org/10.5194/wes-6-1491-2021, 2021
Short summary
Short summary
This paper suggests that the impacts of different turbulence models should be considered as uncertainties while evaluating the benefits of lidar-assisted control (LAC) in wind turbine design. The value creation of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In particular, the difference in coherence is more significant for larger rotors.
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021, https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Short summary
Wake steering is a wind farm control strategy in which upstream wind turbines are misaligned with the wind to deflect their low-velocity wakes away from downstream turbines, increasing overall power production. Here, we present results from a two-turbine wake-steering experiment at a commercial wind plant. By analyzing the wind speed dependence of wake steering, we find that the energy gained tends to increase for higher wind speeds because of both the wind conditions and turbine operation.
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021, https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Short summary
Most current wind turbine wake models struggle to accurately simulate spatially variant wind conditions at a low computational cost. In this paper, we present an adaptation of NREL's FLOw Redirection and Induction in Steady State (FLORIS) wake model, which calculates wake losses in a heterogeneous flow field using local weather measurement inputs. Two validation studies are presented where the adapted model consistently outperforms previous versions of FLORIS that simulated uniform flow only.
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary
Short summary
This paper highlights the secondary effects of wake steering, including yaw-added wake recovery and secondary steering. These effects enhance the value of wake steering especially when applied to a large wind farm. This paper models these secondary effects using an analytical model proposed in the paper. The results of this model are compared with large-eddy simulations for several cases including 2-turbine, 3-turbine, 5-turbine, and 38-turbine cases.
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021, https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Short summary
In this paper a three-dimensional steady-state solver for flow through a wind farm is developed and validated. The computational cost of the solver is on the order of seconds for large wind farms. The model is validated using high-fidelity simulations and SCADA.
Peter Brugger, Mithu Debnath, Andrew Scholbrock, Paul Fleming, Patrick Moriarty, Eric Simley, David Jager, Jason Roadman, Mark Murphy, Haohua Zong, and Fernando Porté-Agel
Wind Energ. Sci., 5, 1253–1272, https://doi.org/10.5194/wes-5-1253-2020, https://doi.org/10.5194/wes-5-1253-2020, 2020
Short summary
Short summary
A wind turbine can actively influence its wake by turning the rotor out of the wind direction to deflect the wake away from a downstream wind turbine. This technique was tested in a field experiment at a wind farm, where the inflow and wake were monitored with remote-sensing instruments for the wind speed. The behaviour of the wake deflection agrees with the predictions of two analytical models, and a bias of the wind direction perceived by the yawed wind turbine led to suboptimal power gains.
Patrick Murphy, Julie K. Lundquist, and Paul Fleming
Wind Energ. Sci., 5, 1169–1190, https://doi.org/10.5194/wes-5-1169-2020, https://doi.org/10.5194/wes-5-1169-2020, 2020
Short summary
Short summary
We present and evaluate an improved method for predicting wind turbine power production based on measurements of the wind speed and direction profile across the rotor disk for a wind turbine in complex terrain. By comparing predictions to actual power production from a utility-scale wind turbine, we show this method is more accurate than methods based on hub-height wind speed or surface-based atmospheric characterization.
Cited articles
Abkar, M. and Porté-Agel, F.: Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition, Renew. Energ., 70, 142–152, 2014. a
Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations, J. Comput. Phys., 142, 1–46, 1998. a
Brown, K., Houck, D., Maniaci, D., Westergaard, C., and Kelley, C.: Accelerated wind-turbine wake recovery through actuation of the tip-vortex instability, AIAA J., 60, 3298–3310, 2022. a
Brown, K., Bortolotti, P., Branlard, E., Chetan, M., Dana, S., deVelder, N., Doubrawa, P., Hamilton, N., Ivanov, H., Jonkman, J., Kelley, C., and Zalkind, D.: One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST, Wind Energ. Sci., 9, 1791–1810, https://doi.org/10.5194/wes-9-1791-2024, 2024. a
Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S., and Meneveau, C.: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer, J. Renew. Sustain. Energ., 2, 013106, https://doi.org/10.1063/1.3289735, 2010. a, b
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluid., 22, 015110, https://doi.org/10.1063/1.3291077, 2010. a, b, c, d
Choukulkar, A., Pichugina, Y., Clack, C. T., Calhoun, R., Banta, R., Brewer, A., and Hardesty, M.: A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting, Wind Energy, 19, 1439–1452, 2016. a
Coquelet, M., Moens, M., Bricteux, L., Crismer, J.-B., and Chatelain, P.: Performance assessment of wake mitigation strategies, J. Phys. Conf. Ser., 2265, 032078, https://doi.org/10.1088/1742-6596/2265/3/032078, 2022. a
DNV: NYSERDA Floating LiDAR Buoy Data, https://data.ny.gov/Energy-Environment/Floating-LiDAR-BUOY-Data-Beginning-August-2019/xdq2-qf34/about_data (last accesss: 30 September 2023). a
El-Asha, S., Zhan, L., and Iungo, G. V.: Quantification of power losses due to wind turbine wake interactions through SCADA, meteorological and wind LiDAR data, Wind Energy, 20, 1823–1839, 2017. a
Fleming, P., King, J., Dykes, K., Simley, E., Roadman, J., Scholbrock, A., Murphy, P., Lundquist, J. K., Moriarty, P., Fleming, K., van Dam, J., Bay, C., Mudafort, R., Lopez, H., Skopek, J., Scott, M., Ryan, B., Guernsey, C., and Brake, D.: Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1, Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, 2019. a
Frederik, J. A., Doekemeijer, B. M., Mulders, S. P., and van Wingerden, J. W.: The helix approach: Using dynamic individual pitch control to enhance wake mixing in wind farms, Wind Energy, 23, 1739–1751, https://doi.org/10.1002/we.2513, 2020a. a, b, c
Frederik, J. A., Weber, R., Cacciola, S., Campagnolo, F., Croce, A., Bottasso, C., and van Wingerden, J.-W.: Periodic dynamic induction control of wind farms: proving the potential in simulations and wind tunnel experiments, Wind Energ. Sci., 5, 245–257, https://doi.org/10.5194/wes-5-245-2020, 2020b. a
Frederik, J. A., Simley, E., Brown, K. A., Yalla, G. R., Cheung, L. C., and Fleming, P. A.: Comparison of wind farm control strategies under realistic offshore wind conditions: turbine quantities of interest, Wind Energ. Sci., 10, 755–777, https://doi.org/10.5194/wes-10-755-2025, 2025. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Abbas, N. J., Meng, F., Bortolotti, P., Skrzypinski, W., et al.: IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine, Tech. Rep., National Renew. Energ. Laboratory (NREL), Golden, CO (United States), https://www.osti.gov/biblio/1603478 (last access: 22 January 2022), 2020 a, b, c
Gebraad, P. M., Teeuwisse, F. W., Van Wingerden, J., Fleming, P. A., Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant power optimization through yaw control using a parametric model for wake effects – a CFD simulation study, Wind Energy, 19, 95–114, 2016. a
Hamilton, N., Suk Kang, H., Meneveau, C., and Bayoán Cal, R.: Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer., J. Renew. Sustain. Energ., 4, 063105, https://doi.org/10.1063/1.4761921, 2012. a
Heck, K. S. and Howland, M. F.: Coriolis effects on wind turbine wakes across atmospheric boundary layer regimes, arXiv [preprint], https://doi.org/10.48550/arXiv.2403.12190, 2024. a
Howland, M. F., Lele, S. K., and Dabiri, J. O.: Wind farm power optimization through wake steering, P. Natl. Acad. Sci. USA, 116, 14495–14500, https://doi.org/10.1073/pnas.1903680116, 2019. a
Alan S. Hsieh, Lawrence C. Cheung, Myra L. Blaylock, Kenneth A. Brown, Daniel R. Houck, Thomas G. Herges, Nathaniel B. deVelder, David C. Maniaci, Gopal R. Yalla, Philip J. Sakievich, William C. Radunz, Bruno S. Carmo; Model intercomparison of the ABL, turbines, and wakes within the AWAKEN wind farms under neutral stability conditions. J. Renew. Sustain. Energ., 17, 023301, https://doi.org/10.1063/5.0211729, 2025. a
Jiménez, Á., Crespo, A., and Migoya, E.: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw, Wind energy, 13, 559–572, 2010. a
King, J., Fleming, P., King, R., Martínez-Tossas, L. A., Bay, C. J., Mudafort, R., and Simley, E.: Control-oriented model for secondary effects of wake steering, Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021, 2021. a
Klomp, E. D., and G. Sovran.: Experimentally determined optimum geometries for rectilinear diffusers with rectangular, conical or annular cross-section(Optimum geometry for rectilinear diffuser with rectangular, conical or annular cross section noting flow regime, performance characteristics and boundary layer effect), FLUID MECHANICS OF INTERNAL FLOW, PROCEEDINGS OF A SUMPOSIUM, WARREN, MICH 20.21, 270–319, 1967. a
Korb, H., Asmuth, H., and Ivanell, S.: The characteristics of helically deflected wind turbine wakes., J. Fluid Mechan., 965, A2, https://doi.org/10.1017/jfm.2023.390, 2023. a
Lebron, J., Castillo, L., and Meneveau, C.: Experimental study of the kinetic energy budget in a wind turbine streamtube, J. Turbulence, 13, https://doi.org/10.1080/14685248.2012.705005, 2012. a, b, c, d
Lignarolo, L., Ragni, D., Scarano, F., Ferreira, C. S., and Van Bussel, G.: Tip-vortex instability and turbulent mixing in wind-turbine wakes, J. Fluid Mech., 781, 467–493, 2015. a
Marten, D., Paschereit, C. O., Huang, X., Meinke, M., Schroeder, W., Mueller, J., and Oberleithner, K.: Predicting wind turbine wake breakdown using a free vortex wake code, AIAA J., 58, 4672–4685, 2020. a
Munters, W. and Meyers, J.: Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization, Energies, 11, 177, https://doi.org/10.3390/en11010177, 2018a. a
Munters, W. and Meyers, J.: Towards practical dynamic induction control of wind farms: analysis of optimally controlled wind-farm boundary layers and sinusoidal induction control of first-row turbines, Wind Energ. Sci., 3, 409–425, https://doi.org/10.5194/wes-3-409-2018, 2018b. a
National Renew. Energ. Laboratory: ROSCO v2.8.0, GitHub [code], https://github.com/NREL/ROSCO (last access: 23 March 2024), 2024a. a
National Renewable Energy Laboratory: OpenFAST v3.5.0, GitHub [code], https://github.com/OpenFAST/openfast (last access: 23 March 2024), 2024b. a
Nygaard, N. G.: Wakes in very large wind farms and the effect of neighbouring wind farms, J. Phys. Conf. Ser., 524, 012162, https://doi.org/10.1088/1742-6596/524/1/012162, 2014. a
Okulov, V. L., Naumov, I. V., Mikkelsen, R. F., Kabardin, I. K., and Sørensen, J. N.: A regular Strouhal number for large-scale instability in the far wake of a rotor, J. Fluid Mech., 747, 369–380, 2014. a
Pope, S. B.: Turbulent flows, Meas. Sci. Technol., 12, 2020–2021, 2001. a
Sathe, A., Banta, R., Pauscher, L., Vogstad, K., Schlipf, D., and Wylie, S.: Estimating turbulence statistics and parameters from ground-and nacelle-based lidar measurements: IEA Wind expert report, https://findit.dtu.dk/en/catalog/56211f065804eed53b000041 (last access: 3 August 2020), 2015. a
Sharma, A., Brazell, M. J., Vijayakumar, G., Ananthan, S., Cheung, L., deVelder, N., Henry de Frahan, M. T., Matula, N., Mullowney, P., Rood, J., Sakievich, P., Almgren, A., Crozier, P. S., and Sprague, M.: ExaWind: Open-source CFD for hybrid-RANS/LES geometry-resolved wind turbine simulations in atmospheric flows, Wind Energy, 27, 225–257, https://doi.org/10.1002/we.2886, 2024. a
Simley, E., Fleming, P., and King, J.: Design and analysis of a wake steering controller with wind direction variability, Wind Energ. Sci., 5, 451–468, https://doi.org/10.5194/wes-5-451-2020, 2020. a, b
Sorensen, J. N. and Shen, W. Z.: Numerical modeling of wind turbine wakes, J. Fluids Eng., 124, 393–399, 2002. a
Sprague, M. A., Ananthan, S., Vijayakumar, G., and Robinson, M.: ExaWind: A multifidelity modeling and simulation environment for wind energy, in: Journal of Physics: Conference Series, NAWEA WindTech 2019, Amherst, MA USA, 14–16 October 2019, vol. 1452, p. 012071, IOP Publishing, https://doi.org/10.1088/1742-6596/1452/1/012071, 2020. a
Sverdrup, K., Nikiforakis, N., and Almgren, A.: Highly parallelisable simulations of time-dependent viscoplastic fluid flow with structured adaptive mesh refinement, Phys. Fluids, 30, 093102, https://doi.org/10.1063/1.5049202, 2018. a
Taschner, E., Becker, M., Verzijlbergh, R., and Van Wingerden, J.: Comparison of helix and wake steering control for varying turbine spacing and wind direction, J. Phys. Conf. Ser., 2767, 032023, https://doi.org/10.1088/1742-6596/2767/3/032023, 2024. a, b, c
Van der Hoek, D., den Abbeele, B. V., Simao Ferreira, C., and van Wingerden, J.-W.: Maximizing wind farm power output with the helix approach: Experimental validation and wake analysis using tomographic particle image velocimetry, Wind Energy, 27, 463–482, 2024. a
Wagner, R., Courtney, M., Gottschall, J., and Lindelöw-Marsden, P.: Accounting for the speed shear in wind turbine power performance measurement, Wind Energy, 14, 993–1004, 2011. a
Yalla, G.: Actuator Line Model Calibration, GitHub [code], https://exawind.github.io/amr-wind/walkthrough/calibration.html, last access: 30 October 2024. a
Yalla, G. R., Brown, K., Cheung, L., Houck, D., deVelder, N., and Hamilton, N.: Spectral proper orthogonal decomposition of active wake mixing dynamics in a stable atmospheric boundary layer, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2025-14, in review, 2025. a, b, c
Short summary
This paper presents one half of a companion paper series that studies strategies to reduce negative aerodynamic interference (i.e., wake effects) between nearby wind turbines in a wind farm. The approach leverages high-fidelity flow simulations of an open-source design for a wind turbine. Complimenting the companion paper’s analysis of the power and loading effects of the wake-control strategies, this article uncovers the underlying fluid-dynamic causes for these effects.
This paper presents one half of a companion paper series that studies strategies to reduce...
Altmetrics
Final-revised paper
Preprint