Elexon: BMRS Market Index Prices,
https://bmrs.elexon.co.uk/market-index-prices (last access: 30 January 2026), 2025. a
Elia Group: Update on Princess Elisabeth Island,
https://www.eliagroup.eu/en/press/2025/02/20250206_update-princess-elisabeth-island (last access: 3 February 2026), 2025. a
ENTSO-E: Transparency Platform,
https://newtransparency.entsoe.eu/ (last access: 30 January 2026), 2025. a
Ergun, H., Dave, J., Van Hertem, D., and Geth, F.: Optimal Power Flow for AC–DC Grids: Formulation, Convex Relaxation, Linear Approximation, and Implementation, IEEE Transactions on Power Systems, 34, 2980–2990,
https://doi.org/10.1109/TPWRS.2019.2897835, 2019.
a
European Commission: A Hydrogen Strategy for a Climate-Neutral Europe,
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301 (last access: 30 January 2026), 2020.
a,
b
Federal Public Service Economy of Belgium: Digital Database Princess Elisabeth zone, Wind Resource Assessment,
https://offshore.digital-database.economie.fgov.be/#/category/59 (last access: 20 December 2023), 2024.
a,
b
International Energy Agency: Net Zero by 2050: A Roadmap for the Global Energy Sector, Report, International Energy Agency,
https://www.iea.org/reports/net-zero-by-2050 (last access: 30 January 2026), 2021. a
Ju, Y., Chen, C., Wu, L., and Liu, H.: General Three-Phase Linear Power Flow for Active Distribution Networks With Good Adaptability Under a Polar Coordinate System, IEEE Access, 6, 34043–34050,
https://doi.org/10.1109/ACCESS.2018.2839641, 2018.
a
Katic, I., Højstrup, J., and Jensen, N. O.: A Simple Model for Cluster Efficiency, in: EWEC'86. Proceedings, A. Raguzzi, Rome, European Wind Energy Association Conference and Exhibition, 7–9 October 1986, Rome, Italy, vol. 1, 407–410,
https://orbit.dtu.dk/files/106427419/A_Simple_Model_for_Cluster_Efficiency_EWEC_86_.pdf (last access: 30 January 2026), 1987. a
Korompili, A., Wu, Q., and Zhao, H.: Review of VSC HVDC connection for offshore wind power integration, Renewable and Sustainable Energy Reviews, 59, 1405–1414,
https://doi.org/10.1016/j.rser.2016.01.064, 2016.
a
Liu, F., Fredriksson, A., and Markidis, S.: A survey of HPC algorithms and frameworks for large-scale gradient-based nonlinear optimization, J. Supercomput., 78, 17513–17542,
https://doi.org/10.1007/s11227-022-04555-8, 2022.
a
Lüth, A., Werner, Y., Egging-Bratseth, R., and Kazempour, J.: Electrolysis as a flexibility resource on energy islands: The case of the North Sea, Energy Policy, 185, 113921,
https://doi.org/10.1016/j.enpol.2023.113921, 2024.
a
Matute, G., Yusta, J., Beyza, J., and Correas, L.: Multi-state techno-economic model for optimal dispatch of grid connected hydrogen electrolysis systems operating under dynamic conditions, International Journal of Hydrogen Energy, 46, 1449–1460,
https://doi.org/10.1016/j.ijhydene.2020.10.019, 2021.
a,
b
Mohy-ud-din, G., Heidari, R., Ergun, H., and Geth, F.: AC–DC security-constrained optimal power flow for the Australian National Electricity Market, Electric Power Systems Research, 234, 110784,
https://doi.org/10.1016/j.epsr.2024.110784, 2024.
a
Neuwirth, M., Fleiter, T., Manz, P., and Hofmann, R.: The future potential hydrogen demand in energy-intensive industries – a site-specific approach applied to Germany, Energy Conversion and Management, 252, 115052,
https://doi.org/10.1016/j.enconman.2021.115052, 2022.
a
Østergaard, J., Christensen, E., Halsnæs, K., Riisager-Simonsen, C., Lisbjerg, D., Jensen, A., Duus, J., Madsen, H., Frandsen, H., Savaghebi, M., Zhang, W., Keles, D., Ladenburg, J., Vest, M., Seger, B., Mortensen, N., Sin, G., Kitzing, L., Kolios, A., Thomsen, K., Dominkovic, D., Katsanos, E., Zania, V., Riisager, A., Astrup, T., Sulayman, A., Hoffmann, U., Andersen, D., Brückner, L., Andersen, M., and Uhd, L.: Denmark as the Energy Island Pioneer, Technical University of Denmark,
https://orbit.dtu.dk/en/publications/denmark-as-the-energy-island-pioneer/ (last access: 30 January 2026), 2023. a
Raheli, E., Werner, Y., and Kazempour, J.: A conic model for electrolyzer scheduling, Computers & Chemical Engineering, 179, 108450,
https://doi.org/10.1016/j.compchemeng.2023.108450, 2023.
a
Rodrigues, S., Restrepo, C., Kontos, E., Teixeira Pinto, R., and Bauer, P.: Trends of offshore wind projects, Renewable and Sustainable Energy Reviews, 49, 1114–1135,
https://doi.org/10.1016/j.rser.2015.04.092, 2015.
a
Teng, Y., Wang, Z., Li, Y., Ma, Q., Hui, Q., and Li, S.: Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility, CSEE Journal of Power and Energy Systems, 5, 266–274,
https://doi.org/10.17775/CSEEJPES.2019.00190, 2019.
a
Ueckerdt, F., Verpoort, P. C., Anantharaman, R., Bauer, C., Beck, F., Longden, T., and Roussanaly, S.: On the cost competitiveness of blue and green hydrogen, Joule, 8, 104–128,
https://doi.org/10.1016/j.joule.2023.12.004, 2024.
a
Useche-Arteaga, M., Gomis-Bellmunt, O., Cheah-Mane, M., Lacerda, V., and Gebraad, P.: AC energy islands for the optimal integration of offshore wind energy resources: Operation strategies using multi-objective nonlinear programming, Sustainable Energy, Grids and Networks, 40, 101576,
https://doi.org/10.1016/j.segan.2024.101576, 2024.
a,
b,
c
Useche-Arteaga, M., Gebraad, P. M. O., Lacerda, V. A., Cheah-Mane, M., Castro Valerio, B., and Gomis-Bellmunt, O.: Energy Islands: Opportunities, Challenges, and Topologies, IEEE Access, 13, 194366–194381,
https://doi.org/10.1109/ACCESS.2025.3632648, 2025.
a,
b
Useche-Arteaga, M., Pieter, G., Albernaz Lacerda, V., Cheah-Mane, M., and Gomis-Bellmunt, O.: Optimizing the Operation of Energy Islands with Predictive Nonlinear Programming – A case study based on the Princess Elisabeth Energy Island, Zenodo [code],
https://doi.org/10.5281/zenodo.18414805, 2026.
a
Valerio, B. C., Lacerda, V. A., Cheah-Mane, M., Gebraad, P., and Gomis-Bellmunt, O.: An optimal power flow tool for AC/DC systems, applied to the analysis of the North Sea Grid for offshore wind integration, IEEE Transactions on Power Systems, 1–14,
https://doi.org/10.1109/TPWRS.2025.3533889, 2025.
a,
b
Viaene, P., Baert, P., Ghysels, V., Remy, X., Czupper, L., and Aerts, W.: Belgian offshore wind – upcoming tendering of the Princess Elisabeth zone, Clifford Chance,
https://www.cliffordchance.com/content/dam/cliffordchance/briefings/2023/07/belgian-offshore-wind-tenders-final.pdf (last access: 30 January 2026), 2022. a
Wächter, A. and Biegler, L. T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106, 25–57,
https://doi.org/10.1007/s10107-004-0559-y, 2006.
a
Williams, R. and Zhao, F.: Global Offshore Wind Report 2023, Global Wind Energy Council,
https://yenader.org/wp-content/uploads/2023/09/GWEC-Global-Offshore-Wind-Report-2023.pdf (last access: 30 January 2026), 2023.
a,
b
Xiang, M., Yu, J., Yang, Z., Yang, Y., Yu, H., and He, H.: Probabilistic power flow with topology changes based on deep neural network, International Journal of Electrical Power & Energy Systems, 117, 105650,
https://doi.org/10.1016/j.ijepes.2019.105650, 2020.
a
Yang, J., Chi, H., Cheng, M., Dong, M., Li, S., and Yao, H.: Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system, Renewable Energy, 212, 1005–1019,
https://doi.org/10.1016/j.renene.2023.05.094, 2023.
a
Yang, Y., Hong, W., and Li, S.: Deep ensemble learning based probabilistic load forecasting in smart grids, Energy, 189, 116324,
https://doi.org/10.1016/j.energy.2019.116324, 2019.
a
Youwind: Youwind Application, a web-based wind park development tool,
https://app.youwindrenewables.com (last access: 30 January 2026), 2025.
a,
b
Zahle, F., Barlas, A., Lønbæk, K., Bortolotti, P., Zalkind, D., Wang, L., Labuschagne, C., Sethuraman, L., and Barter, G.: Definition of the IEA Wind 22-Megawatt Offshore Reference Wind Turbine, Technical University of Denmark, dTU Wind Energy Report E-0243 IEA Wind TCP Task 55,
https://doi.org/10.11581/DTU.00000317, 2024.
a