Articles | Volume 2, issue 1
https://doi.org/10.5194/wes-2-133-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/wes-2-133-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Turbulence characterization from a forward-looking nacelle lidar
DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark
Jakob Mann
DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark
Nikolay Dimitrov
DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark
Viewed
Total article views: 3,846 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Dec 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,097 | 1,608 | 141 | 3,846 | 162 | 115 |
- HTML: 2,097
- PDF: 1,608
- XML: 141
- Total: 3,846
- BibTeX: 162
- EndNote: 115
Total article views: 2,908 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Mar 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,443 | 1,326 | 139 | 2,908 | 161 | 114 |
- HTML: 1,443
- PDF: 1,326
- XML: 139
- Total: 2,908
- BibTeX: 161
- EndNote: 114
Total article views: 938 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Dec 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
654 | 282 | 2 | 938 | 1 | 1 |
- HTML: 654
- PDF: 282
- XML: 2
- Total: 938
- BibTeX: 1
- EndNote: 1
Viewed (geographical distribution)
Total article views: 3,846 (including HTML, PDF, and XML)
Thereof 3,476 with geography defined
and 370 with unknown origin.
Total article views: 2,908 (including HTML, PDF, and XML)
Thereof 2,650 with geography defined
and 258 with unknown origin.
Total article views: 938 (including HTML, PDF, and XML)
Thereof 826 with geography defined
and 112 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
36 citations as recorded by crossref.
- A method to correct for the effect of blockage and wakes on power performance measurements A. Sebastiani et al. 10.5194/wes-8-1795-2023
- A Machine Learning Approach to Correct Turbulence Intensity measured by Floating Lidars G. Rapisardi et al. 10.1088/1742-6596/2767/9/092050
- Wind turbine load validation using lidar‐based wind retrievals N. Dimitrov et al. 10.1002/we.2385
- Influence of nacelle-lidar scanning patterns on inflow turbulence characterization W. Fu et al. 10.1088/1742-6596/2265/2/022016
- Unsteady responses and correlation characteristics of propeller blades under turbulence excitation H. Yao et al. 10.1016/j.oceaneng.2022.112631
- Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements D. Conti et al. 10.5194/wes-5-1129-2020
- Evaluation of lidar-assisted wind turbine control under various turbulence characteristics F. Guo et al. 10.5194/wes-8-149-2023
- Impact of floating turbine motion on nacelle lidar turbulence measurements A. Peña et al. 10.1088/1742-6596/2767/4/042003
- Field Study of Turbulence Intensity measurement by Nacelle Mounted Lidar (NML) Z. Liang et al. 10.1088/1742-6596/2265/2/022104
- Characterization of turbulence under different stability conditions using lidar scanning data R. Rai et al. 10.1088/1742-6596/1452/1/012085
- Error analysis of low-fidelity models for wake steering based on field measurements S. Letizia et al. 10.1088/1742-6596/2767/4/042029
- Detection of wakes in the inflow of turbines using nacelle lidars D. Held & J. Mann 10.5194/wes-4-407-2019
- Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum D. Held & J. Mann 10.5194/amt-11-6339-2018
- Turbulence velocity spectra and intensities in the inflow of a turbine rotor I. Milne & J. Graham 10.1017/jfm.2019.339
- The space-time structure of turbulence for lidar-assisted wind turbine control F. Guo et al. 10.1016/j.renene.2022.05.133
- Characterization of wind turbine flow through nacelle-mounted lidars: a review S. Letizia et al. 10.3389/fmech.2023.1261017
- Investigating Suppression of Cloud Return with a Novel Optical Configuration of a Doppler Lidar L. Jin et al. 10.3390/rs14153576
- Turbulence statistics from three different nacelle lidars W. Fu et al. 10.5194/wes-7-831-2022
- How does turbulence change approaching a rotor? J. Mann et al. 10.5194/wes-3-293-2018
- Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals D. Conti et al. 10.5194/wes-6-841-2021
- The lidar probe volume averaging effect: A wind tunnel investigation in streamwise turbulence with continuous-wave lidar S. Uluocak et al. 10.1088/1742-6596/2767/4/042027
- Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics D. Conti et al. 10.5194/wes-6-1117-2021
- Very short-term forecast of near-coastal flow using scanning lidars L. Valldecabres et al. 10.5194/wes-3-313-2018
- Dependence of turbulence estimations on nacelle lidar scanning strategies W. Fu et al. 10.5194/wes-8-677-2023
- High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning K. Brown & T. Herges 10.5194/amt-15-7211-2022
- Østerild: A natural laboratory for atmospheric turbulence A. Peña 10.1063/1.5121486
- Inflow characterization using measurements from the SpinnerLidar: the ScanFlow experiment A. Peña et al. 10.1088/1742-6596/1037/5/052027
- Lower Order Description and Reconstruction of Sparse Scanning Lidar Measurements of Wind Turbine Inflow Using Proper Orthogonal Decomposition A. Kidambi Sekar et al. 10.3390/rs14112681
- Analysis and design of an adaptive turbulence-based controller for wind turbines L. Dong et al. 10.1016/j.renene.2021.06.080
- Overview of preparation for the American WAKE ExperimeNt (AWAKEN) P. Moriarty et al. 10.1063/5.0141683
- Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars Y. Chen et al. 10.5194/wes-7-539-2022
- Lidar-based Estimation of Turbulence Intensity for Controller Scheduling D. Schlipf et al. 10.1088/1742-6596/1618/3/032053
- Turbulence Measurements with Dual-Doppler Scanning Lidars A. Peña & J. Mann 10.3390/rs11202444
- Wind turbine wake characterization using the SpinnerLidar measurements D. Conti et al. 10.1088/1742-6596/1618/6/062040
- Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar A. Sebastiani et al. 10.1016/j.apenergy.2024.122985
- Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements H. Beck & M. Kühn 10.3390/rs9060561
35 citations as recorded by crossref.
- A method to correct for the effect of blockage and wakes on power performance measurements A. Sebastiani et al. 10.5194/wes-8-1795-2023
- A Machine Learning Approach to Correct Turbulence Intensity measured by Floating Lidars G. Rapisardi et al. 10.1088/1742-6596/2767/9/092050
- Wind turbine load validation using lidar‐based wind retrievals N. Dimitrov et al. 10.1002/we.2385
- Influence of nacelle-lidar scanning patterns on inflow turbulence characterization W. Fu et al. 10.1088/1742-6596/2265/2/022016
- Unsteady responses and correlation characteristics of propeller blades under turbulence excitation H. Yao et al. 10.1016/j.oceaneng.2022.112631
- Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements D. Conti et al. 10.5194/wes-5-1129-2020
- Evaluation of lidar-assisted wind turbine control under various turbulence characteristics F. Guo et al. 10.5194/wes-8-149-2023
- Impact of floating turbine motion on nacelle lidar turbulence measurements A. Peña et al. 10.1088/1742-6596/2767/4/042003
- Field Study of Turbulence Intensity measurement by Nacelle Mounted Lidar (NML) Z. Liang et al. 10.1088/1742-6596/2265/2/022104
- Characterization of turbulence under different stability conditions using lidar scanning data R. Rai et al. 10.1088/1742-6596/1452/1/012085
- Error analysis of low-fidelity models for wake steering based on field measurements S. Letizia et al. 10.1088/1742-6596/2767/4/042029
- Detection of wakes in the inflow of turbines using nacelle lidars D. Held & J. Mann 10.5194/wes-4-407-2019
- Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum D. Held & J. Mann 10.5194/amt-11-6339-2018
- Turbulence velocity spectra and intensities in the inflow of a turbine rotor I. Milne & J. Graham 10.1017/jfm.2019.339
- The space-time structure of turbulence for lidar-assisted wind turbine control F. Guo et al. 10.1016/j.renene.2022.05.133
- Characterization of wind turbine flow through nacelle-mounted lidars: a review S. Letizia et al. 10.3389/fmech.2023.1261017
- Investigating Suppression of Cloud Return with a Novel Optical Configuration of a Doppler Lidar L. Jin et al. 10.3390/rs14153576
- Turbulence statistics from three different nacelle lidars W. Fu et al. 10.5194/wes-7-831-2022
- How does turbulence change approaching a rotor? J. Mann et al. 10.5194/wes-3-293-2018
- Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals D. Conti et al. 10.5194/wes-6-841-2021
- The lidar probe volume averaging effect: A wind tunnel investigation in streamwise turbulence with continuous-wave lidar S. Uluocak et al. 10.1088/1742-6596/2767/4/042027
- Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics D. Conti et al. 10.5194/wes-6-1117-2021
- Very short-term forecast of near-coastal flow using scanning lidars L. Valldecabres et al. 10.5194/wes-3-313-2018
- Dependence of turbulence estimations on nacelle lidar scanning strategies W. Fu et al. 10.5194/wes-8-677-2023
- High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning K. Brown & T. Herges 10.5194/amt-15-7211-2022
- Østerild: A natural laboratory for atmospheric turbulence A. Peña 10.1063/1.5121486
- Inflow characterization using measurements from the SpinnerLidar: the ScanFlow experiment A. Peña et al. 10.1088/1742-6596/1037/5/052027
- Lower Order Description and Reconstruction of Sparse Scanning Lidar Measurements of Wind Turbine Inflow Using Proper Orthogonal Decomposition A. Kidambi Sekar et al. 10.3390/rs14112681
- Analysis and design of an adaptive turbulence-based controller for wind turbines L. Dong et al. 10.1016/j.renene.2021.06.080
- Overview of preparation for the American WAKE ExperimeNt (AWAKEN) P. Moriarty et al. 10.1063/5.0141683
- Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars Y. Chen et al. 10.5194/wes-7-539-2022
- Lidar-based Estimation of Turbulence Intensity for Controller Scheduling D. Schlipf et al. 10.1088/1742-6596/1618/3/032053
- Turbulence Measurements with Dual-Doppler Scanning Lidars A. Peña & J. Mann 10.3390/rs11202444
- Wind turbine wake characterization using the SpinnerLidar measurements D. Conti et al. 10.1088/1742-6596/1618/6/062040
- Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar A. Sebastiani et al. 10.1016/j.apenergy.2024.122985
1 citations as recorded by crossref.
Latest update: 21 Nov 2024
Short summary
Nacelle lidars are nowadays extensively used to scan the turbine inflow. Thus, it is important to characterize turbulence from their measurements. We present two methods to perform turbulence estimation and demonstrate them using two types of lidars. With one method we can estimate the along-wind unfiltered variance accurately. With the other we can estimate the filtered radial velocity variance accurately and velocity-tensor parameters under neutral and high wind-speed conditions.
Nacelle lidars are nowadays extensively used to scan the turbine inflow. Thus, it is important...
Altmetrics
Final-revised paper
Preprint