Articles | Volume 2, issue 1
Wind Energ. Sci., 2, 133–152, 2017
https://doi.org/10.5194/wes-2-133-2017
Wind Energ. Sci., 2, 133–152, 2017
https://doi.org/10.5194/wes-2-133-2017
Research article
13 Mar 2017
Research article | 13 Mar 2017

Turbulence characterization from a forward-looking nacelle lidar

Alfredo Peña et al.

Related authors

Current and future wind energy resources in the North Sea according to CMIP6
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-52,https://doi.org/10.5194/wes-2022-52, 2022
Preprint under review for WES
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary
Turbulence statistics from three different nacelle lidars
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022,https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics
Davide Conti, Nikolay Dimitrov, Alfredo Peña, and Thomas Herges
Wind Energ. Sci., 6, 1117–1142, https://doi.org/10.5194/wes-6-1117-2021,https://doi.org/10.5194/wes-6-1117-2021, 2021
Short summary
Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals
Davide Conti, Vasilis Pettas, Nikolay Dimitrov, and Alfredo Peña
Wind Energ. Sci., 6, 841–866, https://doi.org/10.5194/wes-6-841-2021,https://doi.org/10.5194/wes-6-841-2021, 2021
Short summary

Related subject area

Wind and turbulence
Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands
Caleb Phillips, Lindsay M. Sheridan, Patrick Conry, Dimitrios K. Fytanidis, Dmitry Duplyakin, Sagi Zisman, Nicolas Duboc, Matt Nelson, Rao Kotamarthi, Rod Linn, Marc Broersma, Timo Spijkerboer, and Heidi Tinnesand
Wind Energ. Sci., 7, 1153–1169, https://doi.org/10.5194/wes-7-1153-2022,https://doi.org/10.5194/wes-7-1153-2022, 2022
Short summary
Comparing and validating intra-farm and farm-to-farm wakes across different mesoscale and high-resolution wake models
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022,https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Large-eddy simulation of airborne wind energy farms
Thomas Haas, Jochem De Schutter, Moritz Diehl, and Johan Meyers
Wind Energ. Sci., 7, 1093–1135, https://doi.org/10.5194/wes-7-1093-2022,https://doi.org/10.5194/wes-7-1093-2022, 2022
Short summary
Investigation into boundary layer transition using wall-resolved large-eddy simulations and modeled inflow turbulence
Brandon Arthur Lobo, Alois Peter Schaffarczyk, and Michael Breuer
Wind Energ. Sci., 7, 967–990, https://doi.org/10.5194/wes-7-967-2022,https://doi.org/10.5194/wes-7-967-2022, 2022
Short summary
Evaluation of the global-blockage effect on power performance through simulations and measurements
Alessandro Sebastiani, Alfredo Peña, Niels Troldborg, and Alexander Meyer Forsting
Wind Energ. Sci., 7, 875–886, https://doi.org/10.5194/wes-7-875-2022,https://doi.org/10.5194/wes-7-875-2022, 2022
Short summary

Cited articles

Aitken, M. L., Rhodes, M. E., and Lundquist, J. K.: Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks, J. Atmos. Ocean. Tech., 29, 347–355, 2012.
Batchelor, G. K.: The theory of homogeneous turbulence, Cambridge University, Cambridge, 1953.
Bingöl, F., Mann, J., and Larsen, G. C.: Lidar Measurements of Wake Dynamics Part I: One Dimensional Scanning, Wind Energy, 13, 51–61, 2010.
Borraccino, A., Courtney, M., and Wagner, R.: Generic methodology for calibrating profiling nacelle lidars, Tech. Rep. DTU Wind Energy E-0086, Roskilde, Denmark, DTU Wind Energy, 2015.
Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind statistics from average spectrum of continuous-wave lidar, Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, 2013.
Download
Short summary
Nacelle lidars are nowadays extensively used to scan the turbine inflow. Thus, it is important to characterize turbulence from their measurements. We present two methods to perform turbulence estimation and demonstrate them using two types of lidars. With one method we can estimate the along-wind unfiltered variance accurately. With the other we can estimate the filtered radial velocity variance accurately and velocity-tensor parameters under neutral and high wind-speed conditions.