Articles | Volume 4, issue 2
https://doi.org/10.5194/wes-4-273-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-4-273-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Jennifer King
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Katherine Dykes
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Eric Simley
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Jason Roadman
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Andrew Scholbrock
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Patrick Murphy
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Dept. Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA
Julie K. Lundquist
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Dept. Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO 80303, USA
Patrick Moriarty
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Katherine Fleming
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Jeroen van Dam
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Christopher Bay
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Rafael Mudafort
National Wind Technology Center, National Renewable Energy Laboratory,
Golden, CO 80401, USA
Hector Lopez
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Jason Skopek
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Michael Scott
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Brady Ryan
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Charles Guernsey
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Dan Brake
NextEra Energy Resources, 700 Universe Blvd, Juno Beach, FL 33408
Viewed
Total article views: 9,415 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Feb 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
7,076 | 2,222 | 117 | 9,415 | 160 | 98 |
- HTML: 7,076
- PDF: 2,222
- XML: 117
- Total: 9,415
- BibTeX: 160
- EndNote: 98
Total article views: 7,599 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 20 May 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
6,049 | 1,441 | 109 | 7,599 | 154 | 94 |
- HTML: 6,049
- PDF: 1,441
- XML: 109
- Total: 7,599
- BibTeX: 154
- EndNote: 94
Total article views: 1,816 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 18 Feb 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,027 | 781 | 8 | 1,816 | 6 | 4 |
- HTML: 1,027
- PDF: 781
- XML: 8
- Total: 1,816
- BibTeX: 6
- EndNote: 4
Viewed (geographical distribution)
Total article views: 9,415 (including HTML, PDF, and XML)
Thereof 7,276 with geography defined
and 2,139 with unknown origin.
Total article views: 7,599 (including HTML, PDF, and XML)
Thereof 5,854 with geography defined
and 1,745 with unknown origin.
Total article views: 1,816 (including HTML, PDF, and XML)
Thereof 1,422 with geography defined
and 394 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
139 citations as recorded by crossref.
- A physically interpretable data-driven surrogate model for wake steering B. Sengers et al. 10.5194/wes-7-1455-2022
- Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model C. Bay et al. 10.5194/wes-8-401-2023
- Modelling and assessing the near-wake representation and turbulence behaviour of control-oriented wake models P. Hulsman et al. 10.1088/1742-6596/1618/2/022056
- Towards fine tuning wake steering policies in the field: an imitation-based approach C. Bizon Monroc et al. 10.1088/1742-6596/2767/3/032017
- The fluid mechanics of active flow control at very large scales C. Meneveau 10.1017/jfm.2024.846
- Adaptation of Engineering Wake Models using Gaussian Process Regression and High-Fidelity Simulation Data L. Andersson et al. 10.1088/1742-6596/1618/2/022043
- Experimental and numerical study of the wake deflections of scaled vertical axis wind turbine models M. Huang et al. 10.1088/1742-6596/2505/1/012019
- Control-oriented model for secondary effects of wake steering J. King et al. 10.5194/wes-6-701-2021
- Measuring wake deflection from SCADA data during wake steering using machine learning N. Post et al. 10.1088/1742-6596/2767/4/042031
- Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines J. Bossuyt et al. 10.1017/jfm.2021.237
- Highlighting the impact of yaw control by parsing atmospheric conditions based on total variation N. Hamilton 10.1088/1742-6596/1452/1/012006
- Algorithms to harvest the wind D. Monroe 10.1145/3379497
- Machine learning to rapidly predict turbine yaw angles for wake steering A. Stanley et al. 10.1088/1742-6596/2767/8/082011
- Fast yaw optimization for wind plant wake steering using Boolean yaw angles A. Stanley et al. 10.5194/wes-7-741-2022
- Distributed Fixed-Time Fatigue Minimization Control For Waked Wind Farms M. Firouzbahrami et al. 10.1109/TCST.2024.3362518
- Blade planform design optimization to enhance turbine wake control J. Allen et al. 10.1002/we.2699
- Investigating the impact of atmospheric conditions on wake-steering performance at a commercial wind plant E. Simley et al. 10.1088/1742-6596/2265/3/032097
- A point vortex transportation model for yawed wind turbine wakes H. Zong & F. Porté-Agel 10.1017/jfm.2020.123
- A vortex sheet based analytical model of the curled wake behind yawed wind turbines M. Bastankhah et al. 10.1017/jfm.2021.1010
- How wind speed shear and directional veer affect the power production of a megawatt-scale operational wind turbine P. Murphy et al. 10.5194/wes-5-1169-2020
- Wind Tunnel Testing of Yaw by Individual Pitch Control Applied to Wake Steering F. Campagnolo et al. 10.3389/fenrg.2022.883889
- Dynamic wake field reconstruction of wind turbine through Physics-Informed Neural Network and Sparse LiDAR data L. Wang et al. 10.1016/j.energy.2024.130401
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- Wind farm yaw control set-point optimization under model parameter uncertainty M. Howland 10.1063/5.0051071
- Field Validation of Wake Steering Control with Wind Direction Variability E. Simley et al. 10.1088/1742-6596/1452/1/012012
- Wake position tracking using dynamic wake meandering model and rotor loads L. Dong et al. 10.1063/5.0032917
- Wind plant power maximization via extremum seeking yaw control: A wind tunnel experiment D. Kumar et al. 10.1002/we.2799
- A quantitative review of wind farm control with the objective of wind farm power maximization A. Kheirabadi & R. Nagamune 10.1016/j.jweia.2019.06.015
- Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment M. Howland et al. 10.1063/5.0023746
- A Study of the Near Wake Deformation of the X‐Rotor Vertical‐Axis Wind Turbine With Pitched Blades D. Bensason et al. 10.1002/we.2944
- Numerical Validation of Wind Plant Control Strategies S. Gomez-Iradi et al. 10.1088/1742-6596/1618/2/022010
- On the power and control of a misaligned rotor – beyond the cosine law S. Tamaro et al. 10.5194/wes-9-1547-2024
- Unified momentum model for rotor aerodynamics across operating regimes J. Liew et al. 10.1038/s41467-024-50756-5
- Enabling control co-design of the next generation of wind power plants A. Stanley et al. 10.5194/wes-8-1341-2023
- A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes M. Amiri et al. 10.1016/j.rser.2024.114279
- Wind energy-harvesting technologies and recent research progresses in wind farm control models B. Desalegn et al. 10.3389/fenrg.2023.1124203
- Real-time optimization of wind farms using modifier adaptation and machine learning L. Andersson & L. Imsland 10.5194/wes-5-885-2020
- Experimental analysis of the effect of dynamic induction control on a wind turbine wake D. van der Hoek et al. 10.5194/wes-7-1305-2022
- Exploring the complexities associated with full-scale wind plant wake mitigation control experiments J. Duncan Jr. et al. 10.5194/wes-5-469-2020
- Experimental investigation and analytical modelling of active yaw control for wind farm power optimization H. Zong & F. Porté-Agel 10.1016/j.renene.2021.02.059
- Characterizing tilt effects on wind plants R. Scott et al. 10.1063/5.0009853
- Wind tunnel testing of wake steering with dynamic wind direction changes F. Campagnolo et al. 10.5194/wes-5-1273-2020
- A yawed wake model to predict the velocity distribution of curled wake cross-section for wind turbines Q. Yang et al. 10.1016/j.oceaneng.2024.116911
- Design and analysis of a wake steering controller with wind direction variability E. Simley et al. 10.5194/wes-5-451-2020
- On the Robustness of Active Wake Control to Wind Turbine Downtime S. Kanev 10.3390/en12163152
- Validation of induction/steering reserve-boosting active power control by a wind tunnel experiment with dynamic wind direction changes S. Tamaro et al. 10.1088/1742-6596/2767/9/092067
- Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm D. van Binsbergen et al. 10.5194/wes-9-1507-2024
- Wake redirection for active power control: a realistic case study M. Kretschmer et al. 10.1088/1742-6596/1618/2/022059
- Data-driven wake model parameter estimation to analyze effects of wake superposition M. LoCascio et al. 10.1063/5.0163896
- Evaluation of the potential for wake steering for U.S. land-based wind power plants D. Bensason et al. 10.1063/5.0039325
- Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons K. Shaler et al. 10.5194/wes-9-1451-2024
- How does the rotational direction of an upwind turbine affect its downwind neighbour? A. Englberger et al. 10.1088/1742-6596/2265/2/022048
- Turbine power loss during yaw-misaligned free field tests at different atmospheric conditions P. Hulsman et al. 10.1088/1742-6596/2265/3/032074
- Real-time identification of clusters of turbines F. Bernardoni et al. 10.1088/1742-6596/1618/2/022032
- Further calibration and validation of FLORIS with wind tunnel data F. Campagnolo et al. 10.1088/1742-6596/2265/2/022019
- Lifetime fatigue response due to wake steering on a pair of utility-scale wind turbines S. Dana et al. 10.1088/1742-6596/2265/2/022106
- Analytical solutions for yawed wind-turbine wakes with application to wind-farm power optimization by active yaw control Z. Zhang et al. 10.1016/j.oceaneng.2024.117691
- A CFD‐based analysis of dynamic induction techniques for wind farm control applications A. Croce et al. 10.1002/we.2801
- U.S. East Coast Lidar Measurements Show Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1029/2019GL082636
- On the load impact of dynamic wind farm wake mixing strategies J. Frederik & J. van Wingerden 10.1016/j.renene.2022.05.110
- FarmConners wind farm flow control benchmark – Part 1: Blind test results T. Göçmen et al. 10.5194/wes-7-1791-2022
- Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions B. Doekemeijer et al. 10.1016/j.renene.2020.04.007
- Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2 P. Fleming et al. 10.5194/wes-5-945-2020
- Control-oriented modelling of wind direction variability S. Dallas et al. 10.5194/wes-9-841-2024
- Dynamic Flow Modelling for Model-Predictive Wind Farm Control M. van den Broek & J. Wingerden 10.1088/1742-6596/1618/2/022023
- Grand challenges in the design, manufacture, and operation of future wind turbine systems P. Veers et al. 10.5194/wes-8-1071-2023
- The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data R. Braunbehrens et al. 10.5194/wes-8-691-2023
- Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance E. Simley et al. 10.5194/wes-6-1427-2021
- A time‐varying formulation of the curled wake model within the FAST.Farm framework E. Branlard et al. 10.1002/we.2785
- Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow P. Hulsman et al. 10.5194/wes-7-237-2022
- Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms B. Doekemeijer et al. 10.3390/en15061964
- Near-wake structure of full-scale vertical-axis wind turbines N. Wei et al. 10.1017/jfm.2020.578
- Assessment of yaw-control effects on wind turbine-wake interaction: A coupled unsteady vortex lattice method and curled wake model analysis W. Han et al. 10.1016/j.jweia.2023.105559
- A hybrid wake method for simulating yaw tandem wind turbine Y. Yuan et al. 10.1016/j.oceaneng.2024.119549
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- A dynamic model of wind turbine yaw for active farm control G. Starke et al. 10.1002/we.2884
- Assessing Closed-Loop Data-Driven Wind Farm Control Strategies within a Wind Tunnel P. Hulsman et al. 10.1088/1742-6596/2767/3/032049
- Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models P. Brugger et al. 10.5194/wes-5-1253-2020
- A Probabilistic Learning Approach Applied to the Optimization of Wake Steering in Wind Farms J. Almeida & F. Rochinha 10.1115/1.4054501
- Increased power gains from wake steering control using preview wind direction information B. Sengers et al. 10.5194/wes-8-1693-2023
- Koopman Model Predictive Control for Wind Farm Yield Optimization with Combined Thrust and Yaw Control A. Dittmer et al. 10.1016/j.ifacol.2023.10.1037
- Wind farm power optimization through wake steering M. Howland et al. 10.1073/pnas.1903680116
- Decreasing wind speed extrapolation error via domain-specific feature extraction and selection D. Vassallo et al. 10.5194/wes-5-959-2020
- Can wind turbine farms increase settlement of particulate matters during dust events? M. Mataji et al. 10.1063/5.0129481
- Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers S. Macrí et al. 10.5194/wes-6-585-2021
- Collective wind farm operation based on a predictive model increases utility-scale energy production M. Howland et al. 10.1038/s41560-022-01085-8
- Measurement-driven large-eddy simulations of a diurnal cycle during a wake-steering field campaign E. Quon 10.5194/wes-9-495-2024
- The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake J. Rinker et al. 10.3390/en14217313
- The Jensen wind farm parameterization Y. Ma et al. 10.5194/wes-7-2407-2022
- Curled-Skewed Wakes behind Yawed Wind Turbines Subject to Veered Inflow M. Mohammadi et al. 10.3390/en15239135
- Combining wake redirection and derating strategies in a load-constrained wind farm power maximization A. Croce et al. 10.5194/wes-9-1211-2024
- A new method to characterize the curled wake shape under yaw misalignment B. Sengers et al. 10.1088/1742-6596/1618/6/062050
- Wake steering optimization under uncertainty J. Quick et al. 10.5194/wes-5-413-2020
- Wake redirection control for offshore wind farm power and fatigue multi-objective optimisation based on a wind turbine load indicator J. Sun et al. 10.1016/j.energy.2024.133893
- Mechanisms of dynamic near-wake modulation of a utility-scale wind turbine A. Abraham et al. 10.1017/jfm.2021.737
- Monte-Carlo simulations based hub height optimization using FLORIS for two interacting onshore wind farms G. Kütükçü & O. Uzol 10.1063/5.0107244
- Wind farm flow control: prospects and challenges J. Meyers et al. 10.5194/wes-7-2271-2022
- Data–Driven Wake Steering Control for a Simulated Wind Farm Model S. Simani et al. 10.31875/2409-9694.2023.10.02
- Proof-of-concept of a reinforcement learning framework for wind farm energy capture maximization in time-varying wind P. Stanfel et al. 10.1063/5.0043091
- Artificial intelligence-aided wind plant optimization for nationwide evaluation of land use and economic benefits of wake steering D. Harrison-Atlas et al. 10.1038/s41560-024-01516-8
- Effect of Atmospheric Stability on Meandering and Wake Characteristics in Wind Turbine Fluid Dynamics B. Løvøy Alvestad et al. 10.3390/app14178025
- Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer? A. Englberger et al. 10.5194/wes-5-1359-2020
- Vertical wake deflection for floating wind turbines by differential ballast control E. Nanos et al. 10.5194/wes-7-1641-2022
- Power increases using wind direction spatial filtering for wind farm control: Evaluation using FLORIS, modified for dynamic settings M. Sinner et al. 10.1063/5.0039899
- Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1088/1742-6596/1452/1/012023
- Impact of wake steering on loads of downstream wind turbines at an above-rated condition R. Thedin et al. 10.1088/1742-6596/2767/3/032020
- Loads assessment of a fixed‐bottom offshore wind farm with wake steering K. Shaler et al. 10.1002/we.2756
- Maximization of the Power Production of an Offshore Wind Farm R. Balakrishnan & S. Hur 10.3390/app12084013
- On the wake deflection of vertical axis wind turbines by pitched blades M. Huang et al. 10.1002/we.2803
- Active Wake Steering Control Data-Driven Design for a Wind Farm Benchmark S. Simani et al. 10.1016/j.ifacol.2023.10.1504
- Evaluation of the impact of active wake control techniques on ultimate loads for a 10 MW wind turbine A. Croce et al. 10.5194/wes-7-1-2022
- Are steady-state wake models and lookup tables sufficient to design profitable wake steering strategies? A Large Eddy Simulation investigation M. Lejeune et al. 10.1088/1742-6596/2767/9/092075
- Combined wake control of aligned wind turbines for power optimization based on a 3D wake model considering secondary wake steering Y. Liu et al. 10.1016/j.energy.2024.132900
- Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity G. Qian & T. Ishihara 10.1016/j.energy.2020.119680
- A LiDAR-Based Active Yaw Control Strategy for Optimal Wake Steering in Paired Wind Turbines E. Mahmoodi et al. 10.3390/en17225635
- Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant P. Bachant et al. 10.5194/wes-9-2235-2024
- Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-7-345-2022
- Digital twin of wind farms via physics-informed deep learning J. Zhang & X. Zhao 10.1016/j.enconman.2023.117507
- Effects of wind veer on a yawed wind turbine wake in atmospheric boundary layer flow G. Narasimhan et al. 10.1103/PhysRevFluids.7.114609
- Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer W. Shaw et al. 10.5194/wes-7-2307-2022
- Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-5-1315-2020
- Changing the rotational direction of a wind turbine under veering inflow: a parameter study A. Englberger et al. 10.5194/wes-5-1623-2020
- Identification of wind turbine clusters for effective real time yaw control optimization F. Bernardoni et al. 10.1063/5.0036640
- Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation M. Howland & J. Dabiri 10.3390/en14010052
- Wind farm control ‐ Part I: A review on control system concepts and structures L. Andersson et al. 10.1049/rpg2.12160
- Turbulence and Control of Wind Farms C. Shapiro et al. 10.1146/annurev-control-070221-114032
- Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment B. Sengers et al. 10.5194/wes-8-747-2023
- Observability of the ambient conditions in model‐based estimation for wind farm control: A focus on static models B. Doekemeijer & J. van Wingerden 10.1002/we.2495
- Experimental results of wake steering using fixed angles P. Fleming et al. 10.5194/wes-6-1521-2021
- Expert Elicitation on Wind Farm Control J. van Wingerden et al. 10.1088/1742-6596/1618/2/022025
- The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows L. Martínez-Tossas et al. 10.5194/wes-6-555-2021
- Review of wake management techniques for wind turbines D. Houck 10.1002/we.2668
- Wind Farm Loads under Wake Redirection Control S. Kanev et al. 10.3390/en13164088
- Modelling the induction, thrust and power of a yaw-misaligned actuator disk K. Heck et al. 10.1017/jfm.2023.129
- How generalizable is a machine-learning approach for modeling hub-height turbulence intensity? N. Bodini et al. 10.1088/1742-6596/2265/2/022028
- Data-driven optimisation of wind farm layout and wake steering with large-eddy simulations N. Bempedelis et al. 10.5194/wes-9-869-2024
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment D. Houck et al. 10.5194/wes-9-1189-2024
- Wind Farm Modeling with Interpretable Physics-Informed Machine Learning M. Howland & J. Dabiri 10.3390/en12142716
138 citations as recorded by crossref.
- A physically interpretable data-driven surrogate model for wake steering B. Sengers et al. 10.5194/wes-7-1455-2022
- Addressing deep array effects and impacts to wake steering with the cumulative-curl wake model C. Bay et al. 10.5194/wes-8-401-2023
- Modelling and assessing the near-wake representation and turbulence behaviour of control-oriented wake models P. Hulsman et al. 10.1088/1742-6596/1618/2/022056
- Towards fine tuning wake steering policies in the field: an imitation-based approach C. Bizon Monroc et al. 10.1088/1742-6596/2767/3/032017
- The fluid mechanics of active flow control at very large scales C. Meneveau 10.1017/jfm.2024.846
- Adaptation of Engineering Wake Models using Gaussian Process Regression and High-Fidelity Simulation Data L. Andersson et al. 10.1088/1742-6596/1618/2/022043
- Experimental and numerical study of the wake deflections of scaled vertical axis wind turbine models M. Huang et al. 10.1088/1742-6596/2505/1/012019
- Control-oriented model for secondary effects of wake steering J. King et al. 10.5194/wes-6-701-2021
- Measuring wake deflection from SCADA data during wake steering using machine learning N. Post et al. 10.1088/1742-6596/2767/4/042031
- Quantification of wake shape modulation and deflection for tilt and yaw misaligned wind turbines J. Bossuyt et al. 10.1017/jfm.2021.237
- Highlighting the impact of yaw control by parsing atmospheric conditions based on total variation N. Hamilton 10.1088/1742-6596/1452/1/012006
- Algorithms to harvest the wind D. Monroe 10.1145/3379497
- Machine learning to rapidly predict turbine yaw angles for wake steering A. Stanley et al. 10.1088/1742-6596/2767/8/082011
- Fast yaw optimization for wind plant wake steering using Boolean yaw angles A. Stanley et al. 10.5194/wes-7-741-2022
- Distributed Fixed-Time Fatigue Minimization Control For Waked Wind Farms M. Firouzbahrami et al. 10.1109/TCST.2024.3362518
- Blade planform design optimization to enhance turbine wake control J. Allen et al. 10.1002/we.2699
- Investigating the impact of atmospheric conditions on wake-steering performance at a commercial wind plant E. Simley et al. 10.1088/1742-6596/2265/3/032097
- A point vortex transportation model for yawed wind turbine wakes H. Zong & F. Porté-Agel 10.1017/jfm.2020.123
- A vortex sheet based analytical model of the curled wake behind yawed wind turbines M. Bastankhah et al. 10.1017/jfm.2021.1010
- How wind speed shear and directional veer affect the power production of a megawatt-scale operational wind turbine P. Murphy et al. 10.5194/wes-5-1169-2020
- Wind Tunnel Testing of Yaw by Individual Pitch Control Applied to Wake Steering F. Campagnolo et al. 10.3389/fenrg.2022.883889
- Dynamic wake field reconstruction of wind turbine through Physics-Informed Neural Network and Sparse LiDAR data L. Wang et al. 10.1016/j.energy.2024.130401
- Wake steering of multirotor wind turbines G. Speakman et al. 10.1002/we.2633
- Wind farm yaw control set-point optimization under model parameter uncertainty M. Howland 10.1063/5.0051071
- Field Validation of Wake Steering Control with Wind Direction Variability E. Simley et al. 10.1088/1742-6596/1452/1/012012
- Wake position tracking using dynamic wake meandering model and rotor loads L. Dong et al. 10.1063/5.0032917
- Wind plant power maximization via extremum seeking yaw control: A wind tunnel experiment D. Kumar et al. 10.1002/we.2799
- A quantitative review of wind farm control with the objective of wind farm power maximization A. Kheirabadi & R. Nagamune 10.1016/j.jweia.2019.06.015
- Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment M. Howland et al. 10.1063/5.0023746
- A Study of the Near Wake Deformation of the X‐Rotor Vertical‐Axis Wind Turbine With Pitched Blades D. Bensason et al. 10.1002/we.2944
- Numerical Validation of Wind Plant Control Strategies S. Gomez-Iradi et al. 10.1088/1742-6596/1618/2/022010
- On the power and control of a misaligned rotor – beyond the cosine law S. Tamaro et al. 10.5194/wes-9-1547-2024
- Unified momentum model for rotor aerodynamics across operating regimes J. Liew et al. 10.1038/s41467-024-50756-5
- Enabling control co-design of the next generation of wind power plants A. Stanley et al. 10.5194/wes-8-1341-2023
- A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes M. Amiri et al. 10.1016/j.rser.2024.114279
- Wind energy-harvesting technologies and recent research progresses in wind farm control models B. Desalegn et al. 10.3389/fenrg.2023.1124203
- Real-time optimization of wind farms using modifier adaptation and machine learning L. Andersson & L. Imsland 10.5194/wes-5-885-2020
- Experimental analysis of the effect of dynamic induction control on a wind turbine wake D. van der Hoek et al. 10.5194/wes-7-1305-2022
- Exploring the complexities associated with full-scale wind plant wake mitigation control experiments J. Duncan Jr. et al. 10.5194/wes-5-469-2020
- Experimental investigation and analytical modelling of active yaw control for wind farm power optimization H. Zong & F. Porté-Agel 10.1016/j.renene.2021.02.059
- Characterizing tilt effects on wind plants R. Scott et al. 10.1063/5.0009853
- Wind tunnel testing of wake steering with dynamic wind direction changes F. Campagnolo et al. 10.5194/wes-5-1273-2020
- A yawed wake model to predict the velocity distribution of curled wake cross-section for wind turbines Q. Yang et al. 10.1016/j.oceaneng.2024.116911
- Design and analysis of a wake steering controller with wind direction variability E. Simley et al. 10.5194/wes-5-451-2020
- On the Robustness of Active Wake Control to Wind Turbine Downtime S. Kanev 10.3390/en12163152
- Validation of induction/steering reserve-boosting active power control by a wind tunnel experiment with dynamic wind direction changes S. Tamaro et al. 10.1088/1742-6596/2767/9/092067
- Hyperparameter tuning framework for calibrating analytical wake models using SCADA data of an offshore wind farm D. van Binsbergen et al. 10.5194/wes-9-1507-2024
- Wake redirection for active power control: a realistic case study M. Kretschmer et al. 10.1088/1742-6596/1618/2/022059
- Data-driven wake model parameter estimation to analyze effects of wake superposition M. LoCascio et al. 10.1063/5.0163896
- Evaluation of the potential for wake steering for U.S. land-based wind power plants D. Bensason et al. 10.1063/5.0039325
- Wind farm structural response and wake dynamics for an evolving stable boundary layer: computational and experimental comparisons K. Shaler et al. 10.5194/wes-9-1451-2024
- How does the rotational direction of an upwind turbine affect its downwind neighbour? A. Englberger et al. 10.1088/1742-6596/2265/2/022048
- Turbine power loss during yaw-misaligned free field tests at different atmospheric conditions P. Hulsman et al. 10.1088/1742-6596/2265/3/032074
- Real-time identification of clusters of turbines F. Bernardoni et al. 10.1088/1742-6596/1618/2/022032
- Further calibration and validation of FLORIS with wind tunnel data F. Campagnolo et al. 10.1088/1742-6596/2265/2/022019
- Lifetime fatigue response due to wake steering on a pair of utility-scale wind turbines S. Dana et al. 10.1088/1742-6596/2265/2/022106
- Analytical solutions for yawed wind-turbine wakes with application to wind-farm power optimization by active yaw control Z. Zhang et al. 10.1016/j.oceaneng.2024.117691
- A CFD‐based analysis of dynamic induction techniques for wind farm control applications A. Croce et al. 10.1002/we.2801
- U.S. East Coast Lidar Measurements Show Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1029/2019GL082636
- On the load impact of dynamic wind farm wake mixing strategies J. Frederik & J. van Wingerden 10.1016/j.renene.2022.05.110
- FarmConners wind farm flow control benchmark – Part 1: Blind test results T. Göçmen et al. 10.5194/wes-7-1791-2022
- Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions B. Doekemeijer et al. 10.1016/j.renene.2020.04.007
- Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2 P. Fleming et al. 10.5194/wes-5-945-2020
- Control-oriented modelling of wind direction variability S. Dallas et al. 10.5194/wes-9-841-2024
- Dynamic Flow Modelling for Model-Predictive Wind Farm Control M. van den Broek & J. Wingerden 10.1088/1742-6596/1618/2/022023
- Grand challenges in the design, manufacture, and operation of future wind turbine systems P. Veers et al. 10.5194/wes-8-1071-2023
- The wind farm as a sensor: learning and explaining orographic and plant-induced flow heterogeneities from operational data R. Braunbehrens et al. 10.5194/wes-8-691-2023
- Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance E. Simley et al. 10.5194/wes-6-1427-2021
- A time‐varying formulation of the curled wake model within the FAST.Farm framework E. Branlard et al. 10.1002/we.2785
- Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow P. Hulsman et al. 10.5194/wes-7-237-2022
- Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms B. Doekemeijer et al. 10.3390/en15061964
- Near-wake structure of full-scale vertical-axis wind turbines N. Wei et al. 10.1017/jfm.2020.578
- Assessment of yaw-control effects on wind turbine-wake interaction: A coupled unsteady vortex lattice method and curled wake model analysis W. Han et al. 10.1016/j.jweia.2023.105559
- A hybrid wake method for simulating yaw tandem wind turbine Y. Yuan et al. 10.1016/j.oceaneng.2024.119549
- Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy B. Doekemeijer et al. 10.5194/wes-6-159-2021
- A dynamic model of wind turbine yaw for active farm control G. Starke et al. 10.1002/we.2884
- Assessing Closed-Loop Data-Driven Wind Farm Control Strategies within a Wind Tunnel P. Hulsman et al. 10.1088/1742-6596/2767/3/032049
- Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models P. Brugger et al. 10.5194/wes-5-1253-2020
- A Probabilistic Learning Approach Applied to the Optimization of Wake Steering in Wind Farms J. Almeida & F. Rochinha 10.1115/1.4054501
- Increased power gains from wake steering control using preview wind direction information B. Sengers et al. 10.5194/wes-8-1693-2023
- Koopman Model Predictive Control for Wind Farm Yield Optimization with Combined Thrust and Yaw Control A. Dittmer et al. 10.1016/j.ifacol.2023.10.1037
- Wind farm power optimization through wake steering M. Howland et al. 10.1073/pnas.1903680116
- Decreasing wind speed extrapolation error via domain-specific feature extraction and selection D. Vassallo et al. 10.5194/wes-5-959-2020
- Can wind turbine farms increase settlement of particulate matters during dust events? M. Mataji et al. 10.1063/5.0129481
- Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers S. Macrí et al. 10.5194/wes-6-585-2021
- Collective wind farm operation based on a predictive model increases utility-scale energy production M. Howland et al. 10.1038/s41560-022-01085-8
- Measurement-driven large-eddy simulations of a diurnal cycle during a wake-steering field campaign E. Quon 10.5194/wes-9-495-2024
- The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake J. Rinker et al. 10.3390/en14217313
- The Jensen wind farm parameterization Y. Ma et al. 10.5194/wes-7-2407-2022
- Curled-Skewed Wakes behind Yawed Wind Turbines Subject to Veered Inflow M. Mohammadi et al. 10.3390/en15239135
- Combining wake redirection and derating strategies in a load-constrained wind farm power maximization A. Croce et al. 10.5194/wes-9-1211-2024
- A new method to characterize the curled wake shape under yaw misalignment B. Sengers et al. 10.1088/1742-6596/1618/6/062050
- Wake steering optimization under uncertainty J. Quick et al. 10.5194/wes-5-413-2020
- Wake redirection control for offshore wind farm power and fatigue multi-objective optimisation based on a wind turbine load indicator J. Sun et al. 10.1016/j.energy.2024.133893
- Mechanisms of dynamic near-wake modulation of a utility-scale wind turbine A. Abraham et al. 10.1017/jfm.2021.737
- Monte-Carlo simulations based hub height optimization using FLORIS for two interacting onshore wind farms G. Kütükçü & O. Uzol 10.1063/5.0107244
- Wind farm flow control: prospects and challenges J. Meyers et al. 10.5194/wes-7-2271-2022
- Data–Driven Wake Steering Control for a Simulated Wind Farm Model S. Simani et al. 10.31875/2409-9694.2023.10.02
- Proof-of-concept of a reinforcement learning framework for wind farm energy capture maximization in time-varying wind P. Stanfel et al. 10.1063/5.0043091
- Artificial intelligence-aided wind plant optimization for nationwide evaluation of land use and economic benefits of wake steering D. Harrison-Atlas et al. 10.1038/s41560-024-01516-8
- Effect of Atmospheric Stability on Meandering and Wake Characteristics in Wind Turbine Fluid Dynamics B. Løvøy Alvestad et al. 10.3390/app14178025
- Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer? A. Englberger et al. 10.5194/wes-5-1359-2020
- Vertical wake deflection for floating wind turbines by differential ballast control E. Nanos et al. 10.5194/wes-7-1641-2022
- Power increases using wind direction spatial filtering for wind farm control: Evaluation using FLORIS, modified for dynamic settings M. Sinner et al. 10.1063/5.0039899
- Offshore Wind Turbines Will Encounter Very Low Atmospheric Turbulence N. Bodini et al. 10.1088/1742-6596/1452/1/012023
- Impact of wake steering on loads of downstream wind turbines at an above-rated condition R. Thedin et al. 10.1088/1742-6596/2767/3/032020
- Loads assessment of a fixed‐bottom offshore wind farm with wake steering K. Shaler et al. 10.1002/we.2756
- Maximization of the Power Production of an Offshore Wind Farm R. Balakrishnan & S. Hur 10.3390/app12084013
- On the wake deflection of vertical axis wind turbines by pitched blades M. Huang et al. 10.1002/we.2803
- Active Wake Steering Control Data-Driven Design for a Wind Farm Benchmark S. Simani et al. 10.1016/j.ifacol.2023.10.1504
- Evaluation of the impact of active wake control techniques on ultimate loads for a 10 MW wind turbine A. Croce et al. 10.5194/wes-7-1-2022
- Are steady-state wake models and lookup tables sufficient to design profitable wake steering strategies? A Large Eddy Simulation investigation M. Lejeune et al. 10.1088/1742-6596/2767/9/092075
- Combined wake control of aligned wind turbines for power optimization based on a 3D wake model considering secondary wake steering Y. Liu et al. 10.1016/j.energy.2024.132900
- Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity G. Qian & T. Ishihara 10.1016/j.energy.2020.119680
- A LiDAR-Based Active Yaw Control Strategy for Optimal Wake Steering in Paired Wind Turbines E. Mahmoodi et al. 10.3390/en17225635
- Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant P. Bachant et al. 10.5194/wes-9-2235-2024
- Optimal closed-loop wake steering – Part 2: Diurnal cycle atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-7-345-2022
- Digital twin of wind farms via physics-informed deep learning J. Zhang & X. Zhao 10.1016/j.enconman.2023.117507
- Effects of wind veer on a yawed wind turbine wake in atmospheric boundary layer flow G. Narasimhan et al. 10.1103/PhysRevFluids.7.114609
- Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer W. Shaw et al. 10.5194/wes-7-2307-2022
- Optimal closed-loop wake steering – Part 1: Conventionally neutral atmospheric boundary layer conditions M. Howland et al. 10.5194/wes-5-1315-2020
- Changing the rotational direction of a wind turbine under veering inflow: a parameter study A. Englberger et al. 10.5194/wes-5-1623-2020
- Identification of wind turbine clusters for effective real time yaw control optimization F. Bernardoni et al. 10.1063/5.0036640
- Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation M. Howland & J. Dabiri 10.3390/en14010052
- Wind farm control ‐ Part I: A review on control system concepts and structures L. Andersson et al. 10.1049/rpg2.12160
- Turbulence and Control of Wind Farms C. Shapiro et al. 10.1146/annurev-control-070221-114032
- Validation of an interpretable data-driven wake model using lidar measurements from a field wake steering experiment B. Sengers et al. 10.5194/wes-8-747-2023
- Observability of the ambient conditions in model‐based estimation for wind farm control: A focus on static models B. Doekemeijer & J. van Wingerden 10.1002/we.2495
- Experimental results of wake steering using fixed angles P. Fleming et al. 10.5194/wes-6-1521-2021
- Expert Elicitation on Wind Farm Control J. van Wingerden et al. 10.1088/1742-6596/1618/2/022025
- The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows L. Martínez-Tossas et al. 10.5194/wes-6-555-2021
- Review of wake management techniques for wind turbines D. Houck 10.1002/we.2668
- Wind Farm Loads under Wake Redirection Control S. Kanev et al. 10.3390/en13164088
- Modelling the induction, thrust and power of a yaw-misaligned actuator disk K. Heck et al. 10.1017/jfm.2023.129
- How generalizable is a machine-learning approach for modeling hub-height turbulence intensity? N. Bodini et al. 10.1088/1742-6596/2265/2/022028
- Data-driven optimisation of wind farm layout and wake steering with large-eddy simulations N. Bempedelis et al. 10.5194/wes-9-869-2024
- Design and analysis of a wake model for spatially heterogeneous flow A. Farrell et al. 10.5194/wes-6-737-2021
- Method to predict the minimum measurement and experiment durations needed to achieve converged and significant results in a wind energy field experiment D. Houck et al. 10.5194/wes-9-1189-2024
1 citations as recorded by crossref.
Latest update: 15 Jan 2025
Short summary
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. For two closely spaced turbines, an approximate 14 % increase in energy was measured on the downstream turbine over a 10° sector, with a 4 % increase in energy production of the combined turbine pair.
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes...
Altmetrics
Final-revised paper
Preprint