Articles | Volume 4, issue 2
Wind Energ. Sci., 4, 273–285, 2019
https://doi.org/10.5194/wes-4-273-2019
Wind Energ. Sci., 4, 273–285, 2019
https://doi.org/10.5194/wes-4-273-2019

Research article 20 May 2019

Research article | 20 May 2019

Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1

Paul Fleming et al.

Related authors

Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
FLOWERS: An integral approach to engineering wake models
Michael LoCascio, Christopher Bay, Majid Bastankhah, Garrett Barter, Paul Fleming, and Luis Martínez-Tossas
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-116,https://doi.org/10.5194/wes-2021-116, 2021
Preprint under review for WES
Short summary
Fast Yaw Optimization for Wind Plant Wake Steering Using Boolean Yaw Angles
Andrew P. J. Stanley, Christopher Bay, Rafael Mudafort, and Paul Fleming
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-108,https://doi.org/10.5194/wes-2021-108, 2021
Preprint under review for WES
Short summary
Design and analysis of a wake model for spatially heterogeneous flow
Alayna Farrell, Jennifer King, Caroline Draxl, Rafael Mudafort, Nicholas Hamilton, Christopher J. Bay, Paul Fleming, and Eric Simley
Wind Energ. Sci., 6, 737–758, https://doi.org/10.5194/wes-6-737-2021,https://doi.org/10.5194/wes-6-737-2021, 2021
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary

Related subject area

Control and system identification
Results from a wake-steering experiment at a commercial wind plant: investigating the wind speed dependence of wake-steering performance
Eric Simley, Paul Fleming, Nicolas Girard, Lucas Alloin, Emma Godefroy, and Thomas Duc
Wind Energ. Sci., 6, 1427–1453, https://doi.org/10.5194/wes-6-1427-2021,https://doi.org/10.5194/wes-6-1427-2021, 2021
Short summary
Model-based design of a wave-feedforward control strategy in floating wind turbines
Alessandro Fontanella, Mees Al, Jan-Willem van Wingerden, and Marco Belloli
Wind Energ. Sci., 6, 885–901, https://doi.org/10.5194/wes-6-885-2021,https://doi.org/10.5194/wes-6-885-2021, 2021
Short summary
Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections
Sebastian Perez-Becker, David Marten, and Christian Oliver Paschereit
Wind Energ. Sci., 6, 791–814, https://doi.org/10.5194/wes-6-791-2021,https://doi.org/10.5194/wes-6-791-2021, 2021
Short summary
Wind inflow observation from load harmonics: initial steps towards a field validation
Marta Bertelè, Carlo L. Bottasso, and Johannes Schreiber
Wind Energ. Sci., 6, 759–775, https://doi.org/10.5194/wes-6-759-2021,https://doi.org/10.5194/wes-6-759-2021, 2021
Short summary
Control-oriented model for secondary effects of wake steering
Jennifer King, Paul Fleming, Ryan King, Luis A. Martínez-Tossas, Christopher J. Bay, Rafael Mudafort, and Eric Simley
Wind Energ. Sci., 6, 701–714, https://doi.org/10.5194/wes-6-701-2021,https://doi.org/10.5194/wes-6-701-2021, 2021
Short summary

Cited articles

Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a, b
Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018. a
Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine wakes, Renew. Energ., 70, 116–123, 2014. a
Bastankhah, M. and Porté-Agel, F.: Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., 806, 506–541, 2016. a
Bossanyi, E.: Combining induction control and wake steering for wind farm energy and fatigue loads optimisation, J. Phys. Conf. Ser., 1037, 032011, https://doi.org/10.1088/1742-6596/1037/3/032011, 2018. a
Short summary
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. For two closely spaced turbines, an approximate 14 % increase in energy was measured on the downstream turbine over a 10° sector, with a 4 % increase in energy production of the combined turbine pair.