Articles | Volume 5, issue 2
https://doi.org/10.5194/wes-5-623-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/wes-5-623-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
Henrik Asmuth
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Wind Energy Section, 62167 Visby, Sweden
Hugo Olivares-Espinosa
Department of Earth Sciences, Uppsala University, Wind Energy Section, 62167 Visby, Sweden
Stefan Ivanell
Department of Earth Sciences, Uppsala University, Wind Energy Section, 62167 Visby, Sweden
Viewed
Total article views: 3,653 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Dec 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,510 | 1,073 | 70 | 3,653 | 80 | 72 |
- HTML: 2,510
- PDF: 1,073
- XML: 70
- Total: 3,653
- BibTeX: 80
- EndNote: 72
Total article views: 2,896 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 26 May 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,193 | 638 | 65 | 2,896 | 74 | 65 |
- HTML: 2,193
- PDF: 638
- XML: 65
- Total: 2,896
- BibTeX: 74
- EndNote: 65
Total article views: 757 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Dec 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
317 | 435 | 5 | 757 | 6 | 7 |
- HTML: 317
- PDF: 435
- XML: 5
- Total: 757
- BibTeX: 6
- EndNote: 7
Viewed (geographical distribution)
Total article views: 3,653 (including HTML, PDF, and XML)
Thereof 2,978 with geography defined
and 675 with unknown origin.
Total article views: 2,896 (including HTML, PDF, and XML)
Thereof 2,493 with geography defined
and 403 with unknown origin.
Total article views: 757 (including HTML, PDF, and XML)
Thereof 485 with geography defined
and 272 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
27 citations as recorded by crossref.
- Sliding mesh simulations of a wind turbine rotor with actuator line lattice‐Boltzmann method A. Ribeiro & C. Muscari 10.1002/we.2821
- Numerical investigation of flow past a cylinder using cumulant lattice Boltzmann method E. Xing et al. 10.1063/5.0195370
- Numerical simulation of the flow and output of a Savonius hydraulic turbine using the lattice Boltzmann method T. Uchiyama et al. 10.1063/5.0189278
- Assessment of a heterogeneous computing CFD code in wind farm simulations B. López et al. 10.1088/1742-6596/2265/4/042046
- Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines L. Cacciali et al. 10.3390/en17194847
- Wind turbine wake inflow over a heterogeneous forest - comparison between measurement and LES simulation G. Navarro Diaz et al. 10.1088/1742-6596/1934/1/012008
- Actuator line model using simplified force calculation methods G. Navarro Diaz et al. 10.5194/wes-8-363-2023
- Wind Turbine Response in Waked Inflow: A Modelling Benchmark Against Full-Scale Measurements H. Asmuth et al. 10.2139/ssrn.3940154
- Dutch Offshore Wind Atlas Validation against Cabauw Meteomast Wind Measurements S. Knoop et al. 10.3390/en13246558
- LES on wind turbines by comparison of Vortex Particle Method and Finite Volume Method codes M. Roperch et al. 10.1088/1742-6596/2767/9/092038
- How Fast is Fast Enough? Industry Perspectives on the Use of Large-eddy Simulation in Wind Energy H. Asmuth et al. 10.1088/1742-6596/2505/1/012001
- A multidisciplinary model coupling Lattice-Boltzmann-based CFD and a Social Force Model for the simulation of pollutant dispersion in evacuation situations F. Marlow et al. 10.1016/j.buildenv.2021.108212
- Lattice Boltzmann simulations for multiple tidal turbines using actuator line model S. Watanabe & C. Hu 10.1007/s42241-022-0037-0
- Scale-resolving turbulent channel flow simulations using a dynamic cumulant lattice Boltzmann method M. Gehrke & T. Rung 10.1063/5.0098032
- The characteristics of helically deflected wind turbine wakes H. Korb et al. 10.1017/jfm.2023.390
- Exploring the application of reinforcement learning to wind farm control H. Korb et al. 10.1088/1742-6596/1934/1/012022
- Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers H. Asmuth et al. 10.1063/5.0065701
- WakeNet 0.1 - A Simple Three-dimensional Wake Model Based on Convolutional Neural Networks H. Asmuth & H. Korb 10.1088/1742-6596/2265/2/022066
- Evaluation of a lattice Boltzmann-based wind-turbine actuator line model against a Navier-Stokes approach H. Schottenhamml et al. 10.1088/1742-6596/2265/2/022027
- A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes M. Amiri et al. 10.1016/j.rser.2024.114279
- On (non-)conservative body forces, vorticity generation and energy conversion in ideal flows G. van Kuik 10.1017/jfm.2022.317
- Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements H. Asmuth et al. 10.1016/j.renene.2022.04.047
- CFD simulation of a multi-rotor system using diffuser augmented wind turbines by lattice Boltzmann method S. Watanabe et al. 10.1088/1742-6596/2767/7/072002
- Validation of a Lattice Boltzmann Solver Against Wind Turbine Response and Wake Measurements H. Korb et al. 10.1088/1742-6596/2505/1/012008
- Lattice Boltzmann simulation for wake interactions of aligned wind turbines using actuator line model with turbine control S. Watanabe & C. Hu 10.1088/1742-6596/2767/5/052020
- Periodic hill flow simulations with a parameterized cumulant lattice Boltzmann method M. Gehrke & T. Rung 10.1002/fld.5085
- Computational Fluid Dynamics (CFD) applications in Floating Offshore Wind Turbine (FOWT) dynamics: A review W. Zhang et al. 10.1016/j.apor.2024.104075
27 citations as recorded by crossref.
- Sliding mesh simulations of a wind turbine rotor with actuator line lattice‐Boltzmann method A. Ribeiro & C. Muscari 10.1002/we.2821
- Numerical investigation of flow past a cylinder using cumulant lattice Boltzmann method E. Xing et al. 10.1063/5.0195370
- Numerical simulation of the flow and output of a Savonius hydraulic turbine using the lattice Boltzmann method T. Uchiyama et al. 10.1063/5.0189278
- Assessment of a heterogeneous computing CFD code in wind farm simulations B. López et al. 10.1088/1742-6596/2265/4/042046
- Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines L. Cacciali et al. 10.3390/en17194847
- Wind turbine wake inflow over a heterogeneous forest - comparison between measurement and LES simulation G. Navarro Diaz et al. 10.1088/1742-6596/1934/1/012008
- Actuator line model using simplified force calculation methods G. Navarro Diaz et al. 10.5194/wes-8-363-2023
- Wind Turbine Response in Waked Inflow: A Modelling Benchmark Against Full-Scale Measurements H. Asmuth et al. 10.2139/ssrn.3940154
- Dutch Offshore Wind Atlas Validation against Cabauw Meteomast Wind Measurements S. Knoop et al. 10.3390/en13246558
- LES on wind turbines by comparison of Vortex Particle Method and Finite Volume Method codes M. Roperch et al. 10.1088/1742-6596/2767/9/092038
- How Fast is Fast Enough? Industry Perspectives on the Use of Large-eddy Simulation in Wind Energy H. Asmuth et al. 10.1088/1742-6596/2505/1/012001
- A multidisciplinary model coupling Lattice-Boltzmann-based CFD and a Social Force Model for the simulation of pollutant dispersion in evacuation situations F. Marlow et al. 10.1016/j.buildenv.2021.108212
- Lattice Boltzmann simulations for multiple tidal turbines using actuator line model S. Watanabe & C. Hu 10.1007/s42241-022-0037-0
- Scale-resolving turbulent channel flow simulations using a dynamic cumulant lattice Boltzmann method M. Gehrke & T. Rung 10.1063/5.0098032
- The characteristics of helically deflected wind turbine wakes H. Korb et al. 10.1017/jfm.2023.390
- Exploring the application of reinforcement learning to wind farm control H. Korb et al. 10.1088/1742-6596/1934/1/012022
- Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers H. Asmuth et al. 10.1063/5.0065701
- WakeNet 0.1 - A Simple Three-dimensional Wake Model Based on Convolutional Neural Networks H. Asmuth & H. Korb 10.1088/1742-6596/2265/2/022066
- Evaluation of a lattice Boltzmann-based wind-turbine actuator line model against a Navier-Stokes approach H. Schottenhamml et al. 10.1088/1742-6596/2265/2/022027
- A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes M. Amiri et al. 10.1016/j.rser.2024.114279
- On (non-)conservative body forces, vorticity generation and energy conversion in ideal flows G. van Kuik 10.1017/jfm.2022.317
- Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements H. Asmuth et al. 10.1016/j.renene.2022.04.047
- CFD simulation of a multi-rotor system using diffuser augmented wind turbines by lattice Boltzmann method S. Watanabe et al. 10.1088/1742-6596/2767/7/072002
- Validation of a Lattice Boltzmann Solver Against Wind Turbine Response and Wake Measurements H. Korb et al. 10.1088/1742-6596/2505/1/012008
- Lattice Boltzmann simulation for wake interactions of aligned wind turbines using actuator line model with turbine control S. Watanabe & C. Hu 10.1088/1742-6596/2767/5/052020
- Periodic hill flow simulations with a parameterized cumulant lattice Boltzmann method M. Gehrke & T. Rung 10.1002/fld.5085
- Computational Fluid Dynamics (CFD) applications in Floating Offshore Wind Turbine (FOWT) dynamics: A review W. Zhang et al. 10.1016/j.apor.2024.104075
Latest update: 13 Oct 2024
Short summary
The presented work investigates the potential of the lattice Boltzmann method (LBM) for numerical simulations of wind turbine wakes. The LBM is a rather novel, alternative approach for computational fluid dynamics (CFD) that allows for significantly faster simulations. The study shows that the method provides similar results when compared to classical CFD approaches while only requiring a fraction of the computational demand.
The presented work investigates the potential of the lattice Boltzmann method (LBM) for...
Special issue
Altmetrics
Final-revised paper
Preprint