Research article
26 May 2020
Research article | 26 May 2020
Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
Henrik Asmuth et al.
Related authors
Micro-scale model comparison (benchmark) at the moderately complex forested site Ryningsnäs
Stefan Ivanell, Johan Arnqvist, Matias Avila, Dalibor Cavar, Roberto Aurelio Chavez-Arroyo, Hugo Olivares-Espinosa, Carlos Peralta, Jamal Adib, and Björn Witha
Wind Energ. Sci., 3, 929–946, https://doi.org/10.5194/wes-3-929-2018,https://doi.org/10.5194/wes-3-929-2018, 2018
Short summary
Related subject area
Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine
Jörg Alber, Rodrigo Soto-Valle, Marinos Manolesos, Sirko Bartholomay, Christian Navid Nayeri, Marvin Schönlau, Christian Menzel, Christian Oliver Paschereit, Joachim Twele, and Jens Fortmann
Wind Energ. Sci., 5, 1645–1662, https://doi.org/10.5194/wes-5-1645-2020,https://doi.org/10.5194/wes-5-1645-2020, 2020
Short summary
Cartographing dynamic stall with machine learning
Matthew Lennie, Johannes Steenbuck, Bernd R. Noack, and Christian Oliver Paschereit
Wind Energ. Sci., 5, 819–838, https://doi.org/10.5194/wes-5-819-2020,https://doi.org/10.5194/wes-5-819-2020, 2020
Short summary
Power curve and wake analyses of the Vestas multi-rotor demonstrator
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019,https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary
Blind test comparison on the wake behind a yawed wind turbine
Franz Mühle, Jannik Schottler, Jan Bartl, Romain Futrzynski, Steve Evans, Luca Bernini, Paolo Schito, Martín Draper, Andrés Guggeri, Elektra Kleusberg, Dan S. Henningson, Michael Hölling, Joachim Peinke, Muyiwa S. Adaramola, and Lars Sætran
Wind Energ. Sci., 3, 883–903, https://doi.org/10.5194/wes-3-883-2018,https://doi.org/10.5194/wes-3-883-2018, 2018
Numerical analyses and optimizations on the flow in the nacelle region of a wind turbine
Pascal Weihing, Tim Wegmann, Thorsten Lutz, Ewald Krämer, Timo Kühn, and Andree Altmikus
Wind Energ. Sci., 3, 503–531, https://doi.org/10.5194/wes-3-503-2018,https://doi.org/10.5194/wes-3-503-2018, 2018
Short summary
About the suitability of different numerical methods to reproduce model wind turbine measurements in a wind tunnel with a high blockage ratio
Annette Claudia Klein, Sirko Bartholomay, David Marten, Thorsten Lutz, George Pechlivanoglou, Christian Navid Nayeri, Christian Oliver Paschereit, and Ewald Krämer
Wind Energ. Sci., 3, 439–460, https://doi.org/10.5194/wes-3-439-2018,https://doi.org/10.5194/wes-3-439-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear
Jan Bartl, Franz Mühle, Jannik Schottler, Lars Sætran, Joachim Peinke, Muyiwa Adaramola, and Michael Hölling
Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018,https://doi.org/10.5194/wes-3-329-2018, 2018
Short summary
How does turbulence change approaching a rotor?
Jakob Mann, Alfredo Peña, Niels Troldborg, and Søren J. Andersen
Wind Energ. Sci., 3, 293–300, https://doi.org/10.5194/wes-3-293-2018,https://doi.org/10.5194/wes-3-293-2018, 2018
Short summary
Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width
Jannik Schottler, Jan Bartl, Franz Mühle, Lars Sætran, Joachim Peinke, and Michael Hölling
Wind Energ. Sci., 3, 257–273, https://doi.org/10.5194/wes-3-257-2018,https://doi.org/10.5194/wes-3-257-2018, 2018
Short summary
Assessment of wind turbine component loads under yaw-offset conditions
Rick Damiani, Scott Dana, Jennifer Annoni, Paul Fleming, Jason Roadman, Jeroen van Dam, and Katherine Dykes
Wind Energ. Sci., 3, 173–189, https://doi.org/10.5194/wes-3-173-2018,https://doi.org/10.5194/wes-3-173-2018, 2018
Short summary
Free-flow wind speed from a blade-mounted flow sensor
Mads Mølgaard Pedersen, Torben Juul Larsen, Helge Aagaard Madsen, and Søren Juhl Andersen
Wind Energ. Sci., 3, 121–138, https://doi.org/10.5194/wes-3-121-2018,https://doi.org/10.5194/wes-3-121-2018, 2018
Short summary
A validation and code-to-code verification of FAST for a megawatt-scale wind turbine with aeroelastically tailored blades
Srinivas Guntur, Jason Jonkman, Ryan Sievers, Michael A. Sprague, Scott Schreck, and Qi Wang
Wind Energ. Sci., 2, 443–468, https://doi.org/10.5194/wes-2-443-2017,https://doi.org/10.5194/wes-2-443-2017, 2017
Short summary
Cited articles
Abkar, M.: Impact of Subgrid-Scale Modeling in Actuator-Line Based Large-Eddy
Simulation of Vertical-Axis Wind Turbine Wakes, Atmoshere, 9, 256,
https://doi.org/10.3390/atmos9070257, 2018.
a
Abkar, M. and Porté-Agel, F.: The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms, Energies, 6, 2338–2361,
https://doi.org/10.3390/en6052338, 2013.
a
Abkar, M., Sharifi, A., and Porté-Agel, F.: Wake flow in a wind farm during a diurnal cycle, J. Turbul., 17, 420–441,
https://doi.org/10.1080/14685248.2015.1127379, 2016.
a
Ahmad, N. H., Inagaki, A., Kanda, M., Onodera, N., and Aoki, T.: Large-Eddy
Simulation of the Gust Index in an Urban Area Using the Lattice Boltzmann
Method, Bound.-Lay. Meteorol., 163, 447–467,
https://doi.org/10.1007/s10546-017-0233-6, 2017.
a
Andersen, S. J., Witha, B., Breton, S.-P., Sørensen, J. N., Mikkelsen, R. F., and Ivanell, S.: Quantifying variability of Large Eddy Simulations of very large wind farms, J. Phys. Conf. Ser., 625, 012027,
https://doi.org/10.1088/1742-6596/625/1/012027, 2015.
a
Andre, M., Mier-Torrecilla, M., and Wüchner, R.: Numerical simulation of
wind loads on a parabolic trough solar collector using lattice Boltzmann and
finite element methods, J. Win. Eng. Ind. Aerod., 146, 185–194,
https://doi.org/10.1016/j.jweia.2015.08.010, 2015.
a
Asmuth, H., Olivares-Espinosa, H., Nilsson, K., and Ivanell, S.: The Actuator
Line Model in Lattice Boltzmann Frameworks: Numerical Sensitivity and
Computational Performance, J. Phys. Conf. Ser., 1256, 012022,
https://doi.org/10.1088/1742-6596/1256/1/012022, 2019.
a,
b,
c,
d
Avallone, F., van der Velden, W. C. P., Ragni, D., and Casalino, D.: Noise
reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations, J. Fluid. Mech., 848, 560–591,
https://doi.org/10.1017/jfm.2018.377, 2018.
a
Banari, A., Gehrke, M., Janßen, C. F., and Rung, T.: Numerical simulation of
nonlinear interactions in a naturally transitional flat plate boundary layer,
Comput. Fluids, 104502,
https://doi.org/10.1016/j.compfluid.2020.104502, in press, 2020.
a
Bauweraerts, P. and Meyers, J.: On the Feasibility of Using Large-Eddy
Simulations for Real-Time Turbulent-Flow Forecasting in the Atmospheric
Boundary Layer, Bound.-Lay. Meteorol., 171, 213–235,
https://doi.org/10.1007/s10546-019-00428-5, 2019.
a
Bechmann, A., Sørensen, N. N., and Zahle, F.: CFD simulations of the MEXICO rotor, Wind Energy, 14, 677–689,
https://doi.org/10.1002/we.450, 2011.
a
Bhatnagar, P., Gross, E., and Krook, M.: A Model for Collision Processes in
Gases. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems, Phys. Rev., 94, 511–525,
https://doi.org/10.1103/PhysRev.94.511, 1954.
a
Bouzidi, M., Firdaouss, M., and Lallemand, P.: Momentum transfer of a
Boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 3452–3459,
https://doi.org/10.1063/1.1399290, 2001.
a
Churchfield, M. J., Lee, S., Moriarty, P., Martinez, L., Leonardi, S., Vijayakumar, G., and Brasseur, J.: A large-eddy simulation of wind-plant aerodynamics, in: Proc. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 9–12 January 2012, Nashville, Tennessee, 1–19,
https://doi.org/10.2514/6.2012-537, 2012a.
a
Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical
study of the effects of atmospheric and wake turbulence on wind turbine
dynamics, J. Turbul., 13, N14,
https://doi.org/10.1080/14685248.2012.668191, 2012b.
a
Ciri, U., Rotea, M., Santoni, C., and Leonardi, S.: Large-eddy simulations with extremum-seeking control for individual wind turbine power optimization, Wind Energy, 20, 1617–1634,
https://doi.org/10.1002/we.2112, 2017.
a
Deskos, G., Laizet, S., and Piggott, M. D.: Turbulence-resolving simulations of wind turbine wakes, Renew. Energ., 134, 989–1002,
https://doi.org/10.1016/j.renene.2018.11.084, 2019.
a,
b
d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. T. Roy. Soc. Lond. A, 360, 437–451,
https://doi.org/10.1098/rsta.2001.0955, 2002.
a
Fang, J., Peringer, A., Stupariu, M.-S., Pǎtru-Stupariu, I., Buttler, A.,
Golay, F., and Porté-Agel, F.: Shifts in wind energy potential following
land-use driven vegetation dynamics in complex terrain, Sci. Total Environ.,
639, 374–384,
https://doi.org/10.1016/j.scitotenv.2018.05.083, 2018.
a
Far, E. K., Geier, M., Kutscher, K., and Krafczyk, M.: Simulation of micro
aggregate breakage in turbulent flows by the cumulant lattice Boltzmann
method, Comput. Fluids, 140, 222–231,
https://doi.org/10.1016/j.compfluid.2016.10.001, 2016.
a
Far, E. K., Geier, M., Kutscher, K., and Krafczyk, M.: Implicit Large Eddy Simulation of Flow in a Micro-Orifice with the Cumulant Lattice Boltzmann Method, Computation, 5, 23,
https://doi.org/10.3390/computation5020023, 2017.
a
Fleming, P., Gebraad, P. M., Lee, S., Wingerden, J., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.: Simulation comparison of wake mitigation control strategies for a two-turbine case, Wind Energy, 18, 2135–2143,
https://doi.org/10.1002/we.1810, 2015.
a
Foti, D. and Duraisamy, K.: Implicit Large-Eddy Simulation of Wind Turbine
Wakes and Turbine-Wake Interactions using the Vorticity Transport Equations,
Proc. AIAA Aviation 2019 Forum, 17–21 June 2019, Dallas, Texas,
https://doi.org/10.2514/6.2019-2841, 2019.
a
Gehrke, M., Janßen, C., and Rung, T.: Scrutinizing lattice Boltzmann
methods for direct numerical simulations of turbulent channel flows, Comput.
Fluids, 156, 247–263,
https://doi.org/10.1016/j.compfluid.2017.07.005, 2017.
a,
b,
c
Gehrke, M., Banari, A., and Rung, T.: Performance of Under-Resolved, Model-Free LBM Simulations in Turbulent Shear Flows, Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, Prog. Hybrid RANS-LES Model., 143, 3–18,
https://doi.org/10.1007/978-3-030-27607-2_1, 2020.
a
Geier, M., Schönherr, M., Pasquali, A., and Krafczyk, M.: The cumulant
lattice Boltzmann equation in three dimensions: Theory and validation, Comput. Math. Appl., 70, 507–547,
https://doi.org/10.1016/j.camwa.2015.05.001, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i
Geier, M., Pasquali, A., and Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part II: Application to flow around a sphere at drag crisis, J. Comput. Phys., 348, 889–898,
https://doi.org/10.1016/j.jcp.2017.07.004, 2017a.
a
Geier, M., Pasquali, A., and Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I:
Derivation and validation, J. Comput. Phys., 348, 862–888,
https://doi.org/10.1016/j.jcp.2017.05.040, 2017b.
a,
b,
c,
d,
e,
f,
g
Geller, S., Uphoff, S., and Krafczyk, M.: Turbulent jet computations based on
MRT and Cascaded Lattice Boltzmann models, Comput. Math. Appl., 65, 1956–1966,
https://doi.org/10.1016/j.camwa.2013.04.013, 2013.
a
Gilling, L.: TuGen: Synthetic Turbulence Generator, Manual and User's Guide,
Tech. Rep. 76, Department of Civil Engineering, Aalborg University, Aalborg, 2009. a
Ginzburg, I. and Adler, P.: Boundary flow condition analysis for the
three-dimensional lattice Boltzmann model, J. Phys. II France, 4, 191–214,
https://doi.org/10.1051/jp2:1994123, 1994.
a
Ginzburg, I., Verhaeghe, F., and d'Humières, D.: Two-Relaxation-Time
Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed
Boundary Conditions, Commun. Comput. Phys., 3, 427–478, 2008. a
Guo, Z., Zheng, C., and Shi, B.: Lattice Boltzmann equation with multiple
effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77,
036707,
https://doi.org/10.1103/PhysRevE.77.036707, 2008.
a
Hansen, M. O.: Aerodynamics of Wind Turbines, Earthscan, London, UK, 2008.
a,
b
Hong, P.-Y., Huang, L.-M., Lin, L.-S., and Lin, C.-A.: Scalable
multi-relaxation-time lattice Boltzmann simulations on multi-GPU cluster, Comput. Fluids, 110, 1–8,
https://doi.org/10.1016/j.compfluid.2014.12.010, 2016.
a
Hou, S., Sterling, J., Chen, S., and Doolen, D.: A Lattice Boltzmann Subgrid
Model for High Reynolds Number Flows, in: Pattern Formation and Lattice Gas
Automata, Fields. Inst. Commun., vol. 6, arXiv:comp-gas/9401004, 1996.
a,
b
Ivanell, S., Mikkelsen, R., Sørensen, J. N., and Henningson, D.: Stability
Analysis of the Tip Vortices of a Wind Turbine, Wind Energy, 13, 705–715,
https://doi.org/10.1002/we.391, 2010.
a,
b
Ivanell, S., Arnqvist, J., Avila, M., Cavar, D., Chavez-Arroyo, R. A.,
Olivares-Espinosa, H., Peralta, C., Adib, J., and Witha, B.: Microscale model
comparison (benchmark) at the moderate complex forested site
Ryningsnäs, Wind Energ. Sci., 3, 929–946,
https://doi.org/10.5194/wes-3-929-2018, 2018.
a
Jafari, S. and Mohammad, R.: Shear-improved Smagorinsky modeling of turbulent
channel flow using generalized Lattice Boltzmann equation, Int. J. Numer.
Meth. Fluids, 67, 700–712,
https://doi.org/10.1002/fld.2384, 2011.
a
Janßen, C. F., Mierke, D., Überrück, M., Gralher, S., and Rung, T.: Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow
Problems in Civil and Environmental Engineering, Computation, 3, 354,
https://doi.org/10.3390/computation3030354, 2015.
a
Janßen, C. F., Mierke, D., and Rung, T.: On the development of an efficient numerical ice tank for the simulation of fluid-ship-rigid-ice interactions on graphics processing units, Comput. Fluids, 155, 22–32,
https://doi.org/10.1016/j.compfluid.2017.05.006, iCMMES2015, 2017.
a
Jha, P. K., Churchfield, M. J., Moriarty, P. J., and Schmitz, S.: Guidelines
for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines
on Large-Eddy Simulation-Type Grids, J. Sol. Energy Eng., 136, 03100,
https://doi.org/10.1115/1.4026252, 2013.
a
Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW
Reference Wind Turbine for Offshore System Development, Tech. Rep. NREL/TP-500-38060, NREL, Golden, Colorado, 2009. a
Kang, S. K. and Hassan, Y. A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows, J. Comput. Phys., 232, 100–117,
https://doi.org/10.1016/j.jcp.2012.07.023, 2013.
a
Khan, A.: Finite element analysis of aerodynamic coefficients of a HAWT blade
using LBM method, AIP Conference Proc., 1980, 040007,
https://doi.org/10.1063/1.5044317, 2018.
a
King, M.-F., Khan, A., Delbosc, N., Gough, H. L., Halios, C., Barlow, J. F.,
and Noakes, C. J.: Modelling urban airflow and natural ventilation using a
GPU-based lattice-Boltzmann method, Build. Environ., 125, 273–284,
https://doi.org/10.1016/j.buildenv.2017.08.048, 2017.
a
Krafczyk, M., Tölke, J., and Luo, L.-S.: Large-eddy simulations with a
multiple-relaxation-time LBE model, Int. J. Mod. Phys. B, 17, 33–39,
https://doi.org/10.1142/S0217979203017059, 2003.
a
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., and Viggen, E. M.: The Lattice Boltzmann Method – Principles and Practice, Springer, Heidelberg, Germany, 2016.
a,
b,
c,
d
Kutscher, K., Geier, M., and Krafczyk, M.: Multiscale simulation of turbulent
flow interacting with porous media based on a massively parallel
implementation of the cumulant lattice Boltzmann method, Comput. Fluids, 193,
103733,
https://doi.org/10.1016/j.compfluid.2018.02.009, 2019.
a
Lallemand, P. and Luo, L.-S.: Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys.
Rev. E, 61, 6546–6562,
https://doi.org/10.1103/PhysRevE.61.6546, 2000.
a
Lenz, S., Schönherr, M., Geier, M., Krafczyk, M., Pasquali, A., Christen,
A., and Giometto, M.: Towards real-time simulation of turbulent air flow over
a resolved urban canopy using the cumulant lattice Boltzmann method on a
GPGPU, J. Win. Eng. Ind. Aerod., 189, 151–162,
https://doi.org/10.1016/j.jweia.2019.03.012, 2019.
a,
b,
c,
d,
e,
f,
g
Malaspinas, O. and Sagaut, P.: Advanced large-eddy simulation for lattice
Boltzmann methods: The approximate deconvolution model, Phys. Fluids, 23, 105103,
https://doi.org/10.1063/1.3650422, 2011.
a
Martínez-Tossas, L. A. and Meneveau, C.: Filtered lifting line theory and
application to the actuator line model, J. Fluid Mech., 863, 269–292,
https://doi.org/10.1017/jfm.2018.994, 2019.
a
Martínez-Tossas, L. A., Churchfield, M. J., and Leonardi, S.: Large eddy
simulations of the flow past wind turbines: actuator line and disk modeling,
Wind Energy, 18, 1047–1060,
https://doi.org/10.1002/we.1747, 2015.
a
Martínez-Tossas, L. A., Churchfield, M. J., Yilmaz, A. E., Sarlak, H.,
Johnson, P. L., Sørensen, J. N., Meyers, J., and Meneveau, C.: Comparison
of four large-eddy simulation research codes and effects of model coefficient
and inflow turbulence in actuator-line-based wind turbine modeling, J.
Renew. Sustain. Energ., 10, 033301,
https://doi.org/10.1063/1.5004710, 2018.
a,
b,
c,
d,
e
Mehta, D., van Zuijlen, A., Koren, B., Holierhoek, J., and Bijl, H.: Large Eddy Simulation of wind farm aerodynamics: A review, J. Wind Eng. Ind. Aerodyn., 133, 1–17,
https://doi.org/10.1016/j.jweia.2014.07.002, 2014.
a,
b
Meng, H., Lien, F.-S., and Li, L.: Elastic actuator line modelling for
wake-induced fatigue analysis of horizontal axis wind turbine blade, Renew.
Energ., 116, 423–437,
https://doi.org/10.1016/j.renene.2017.08.074, 2018.
a
Merlier, L., Jacob, J., and Sagaut, P.: Lattice-Boltzmann Large-Eddy Simulation of pollutant dispersion in street canyons including tree planting effects, Atmos. Environ., 195, 89–103,
https://doi.org/10.1016/j.atmosenv.2018.09.040, 2018.
a
Merlier, L., Jacob, J., and Sagaut, P.: Lattice-Boltzmann large-eddy simulation of pollutant dispersion in complex urban environment with dense gas effect: Model evaluation and flow analysis, Build. Environ., 148, 634–652,
https://doi.org/10.1016/j.buildenv.2018.11.009, 2019.
a
Meyer Forsting, A. R., Pirrung, G. R., and Ramos-García, N.: A vortex-based tip/smearing correction for the actuator line, Wind Energ. Sci.,
4, 369–383,
https://doi.org/10.5194/wes-4-369-2019, 2019.
a
Michelsen, J. A.: Basis3D – A platform for development of multiblock PDE
solvers, Tech. Rep. Report AFM 92-05, Technical University of Denmark, DTU,
Roskilde, Denmark, 1994a. a
Michelsen, J. A.: Block structured multigrid solution of 2D and 3D elliptic
PDE's, Tech. Rep. Report AFM 94-06, Technical University of Denmark, DTU,
Roskilde, Denmark, 1994b. a
Mierke, D., Janßen, C., and Rung, T.: An efficient algorithm for the
calculation of sub-grid distances for higher-order LBM boundary conditions in
a GPU simulation environment, Comput. Math. Appl., 79, 66–87,
https://doi.org/10.1016/j.camwa.2018.04.022, 2018.
a
Mohebbi, M. and Rezvani, M. A.: Multi objective optimization of aerodynamic
design of high speed railway windbreaks using Lattice Boltzmann Method and
wind tunnel test results, Int. J. Rail Transport., 6, 183–201,
https://doi.org/10.1080/23248378.2018.1463873, 2018.
a
Munters, W. and Meyers, J.: Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization, Energies, 11,
177,
https://doi.org/10.3390/en11010177, 2018.
a
Nathan, J., Masson, C., and Dufresne, L.: Near-wake analysis of actuator line
method immersed in turbulent flow using large-eddy simulations, Wind Energ.
Sci., 3, 905–917,
https://doi.org/10.5194/wes-3-905-2018, 2018.
a
Nathen, P., Haussmann, M., Krause, M., and Adams, N.: Adaptive filtering for
the simulation of turbulent flows with lattice Boltzmann methods, Comput.
Fluids, 172, 510–523,
https://doi.org/10.1016/j.compfluid.2018.03.042, 2018.
a
Nebenführ, B. and Davidson, L.: Prediction of wind-turbine fatigue loads in forest regions based on turbulent LES inflow fields, Wind Energy, 20,
1003–1015,
https://doi.org/10.1002/we.2076, 2017.
a
Nilsson, K., Ivanell, S., Hansen, K. S., Mikkelsen, R., Sørensen, J. N.,
Breton, S.-P., and Henningson, D.: Large eddy simulations of the Lillegrund
wind farm, Wind Energy, 18, 449–467,
https://doi.org/10.1002/we.1707, 2015.
a,
b
Nishimura, S., Hayashi, K., Nakaye, S., Yoshimoto, M., Suga, K., and Inamuro,
T.: Implicit Large-Eddy Simulation of rotating and non-rotating machinery with Cumulant Lattice Boltzmann method aiming for industrial applications,
Proc. AIAA Aviation 2019 Forum, 17–21 June 2019, Dallas, Texas,
https://doi.org/10.2514/6.2019-3526, 2019.
a,
b
Obrecht, C., Kuznik, F., Tourancheau, B., and Roux, J.-J.: Multi-GPU
implementation of the lattice Boltzmann method, Comput. Math. Appl., 65, 252–261,
https://doi.org/10.1016/j.camwa.2011.02.020, 2013.
a,
b
Olivares-Espinosa, H., Breton, S.-P., Nilsson, K., Masson, C., Dufresne, L.,
and Ivanell, S.: Assessment of Turbulence Modelling in the Wake of an Actuator Disk with a Decaying Turbulence Inflow, Appl. Sci., 8, 1530,
https://doi.org/10.3390/app8091530, 2018.
a
Onodera, N. and Idomura, Y.: Acceleration of Wind Simulation Using Locally
Mesh-Refined Lattice Boltzmann Method on GPU-Rich Supercomputers, in:
Supercomputing Frontiers, edited by: Yokota, R. and Wu, W., Springer International Publishing, Cham, 128–145, 2018.
a,
b,
c
Onodera, N., Idomura, Y., Ali, Y., and Shimokawabe, T.: Communication Reduced
Multi-time-step Algorithm for Real-time Wind Simulation on GPU-based
Supercomputers, in: Proc. The International Conference for High Performance
Computing, Networking, Storage, and Analysis, Dallas, USA,
https://doi.org/10.1109/ScalA.2018.00005, 2018.
a
Pasquali, A., Geier, M., and Krafczyk, M.: Near-wall treatment for the
simulation of turbulent flow by the cumulant lattice Boltzmann method, Comput. Math. Appl., 79, 195–212,
https://doi.org/10.1016/j.camwa.2017.11.022, 2017.
a,
b
Porté-Agel, F., Wu, Y.-T., Lu, H., and Conzemius, R. J.: Large-eddy
simulation of atmospheric boundary layer flow through wind turbines and wind farms, J. Win. Eng. Ind. Aerod., 99, 154–168,
https://doi.org/10.1016/j.jweia.2011.01.011, 2011.
a
Premnath, K. N., Pattison, M. J., and Banerjee, S.: Generalized lattice
Boltzmann equation with forcing term for computation of wall-bounded turbulent flows, Phys. Rev. E, 79, 026703,
https://doi.org/10.1103/PhysRevE.79.026703, 2009a.
a
Premnath, K. N., Pattison, M. J., and Banerjee, S.: Dynamic subgrid scale
modeling of turbulent flows using lattice-Boltzmann method, Physica A, 388,
2640–2658,
https://doi.org/10.1016/j.physa.2009.02.041, 2009b.
a
Qian, Y.-H., D'Humières, D., and Lallemand, P.: Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 17, 479–484,
https://doi.org/10.1209/0295-5075/17/6/001, 1992.
a
Rullaud, S., Blondel, F., and Cathelain, M.: Actuator-Line Model in a Lattice
Boltzmann Framework for Wind Turbine Simulations, J. Phys.: Conf. Ser., 1037, 022023,
https://doi.org/10.1088/1742-6596/1037/2/022023, 2018.
a
Sanderse, B., van der Pijl, S., and Koren, B.: Review of computational fluid
dynamics for wind turbine wake aerodynamics, Wind Energy, 14, 799–819,
https://doi.org/10.1002/we.458, 2011.
a
Sarlak, H.: Large Eddy Simulation of Turbulent Flows in Wind Energy, PhD thesis, DTU Wind Energy, Denmark, 2014.
a,
b
Sarlak, H., Meneveau, C., and Sørensen, J.: Role of subgrid-scale modeling
in large eddy simulation of wind turbine wake interactions, Renew. Energ.,
77, 386–399,
https://doi.org/10.1016/j.renene.2014.12.036, 2015a.
a
Sarlak, H., Meneveau, C., Sørensen, J. N., and Mikkelsen, R.: Quantifying
the Impact of Subgrid Scale Models in Actuator-Line Based LES of Wind Turbine
Wakes in Laminar and Turbulent Inflow, in: Direct and Large-Eddy Simulation IX, edited by: Fröhlich, J., Kuerten, H., Geurts, B. J., and Armenio, V., Springer International Publishing, Cham, 169–175, 2015b. a
Sarlak, H., Nishino, T., Martínez-Tossas, L., Meneveau, C., and Sørensen, J.: Assessment of blockage effects on the wake characteristics
and power of wind turbines, Renew. Energ., 93, 340–352,
https://doi.org/10.1016/j.renene.2016.01.101, 2016.
a
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S.,
Sørensen, J. N., and Henningson, D. S.: Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid. Mech., 755, 705–731,
https://doi.org/10.1017/jfm.2014.326, 2014.
a,
b
Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., and
Krafczyk, M.: Multi-thread implementations of the lattice Boltzmann method
on non-uniform grids for CPUs and GPUs, Comput. Math. Appl., 61,
3730–3743,
https://doi.org/10.1016/j.camwa.2011.04.012, 2011.
a,
b
Sørensen, J. N., Mikkelsen, R. F., Henningson, D. S., Ivanell, S., Sarmast, S., and Andersen, S. J.: Simulation of wind turbine wakes using the actuator line technique, Philos. T. Roy. Soc. Lond. A, 373, 20140071,
https://doi.org/10.1098/rsta.2014.0071, 2015.
a,
b
Sørensen, N. N.: General purpose flow solver applied to flow over hills,
PhD thesis, Risø National Laboratory, Roskilde, Denmark, 1995. a
Storey, R., Cater, J., and Norris, S.: Large eddy simulation of turbine loading and performance in a wind farm, Renew. Energ., 95, 31–42,
https://doi.org/10.1016/j.renene.2016.03.067, 2016.
a
Tölke, S., Freudiger, S., and Krafczyk, M.: An adaptive scheme using
hierarchical grids for lattice Boltzmann multi-phase flow simulations, Comput. Fluids, 35, 820–830,
https://doi.org/10.1016/j.compfluid.2005.08.010, 2006.
a
Troldborg, N.: Actuator Line Modeling of Wind Turbine Wakes, PhD thesis,
Technical University of Denmark, Department of Mechanical Engineering, Lyngby, Denmark, 2008.
a,
b
Troldborg, N., Sørensen, J. N., and Mikkelsen, R.: Numerical simulations of wake characteristics of a wind turbine in uniform inflow, Wind Energy, 13,
86–99,
https://doi.org/10.1002/we.345, 2010.
a,
b,
c,
d,
e
van der Laan, M. P., Andersen, S. J., Ramos García, N., Angelou, N.,
Pirrung, G. R., Ott, S., Sjöholm, M., Sørensen, K. H., Vianna Neto, J. X., Kelly, M., Mikkelsen, T. K., and Larsen, G. C.: Power curve and wake
analyses of the Vestas multi-rotor demonstrator, Wind Energ. Sci., 4, 251–271,
https://doi.org/10.5194/wes-4-251-2019, 2019.
a
van der Velden, W., Pröbsting, S., van Zuijlen, A., de Jong, A., Guan, Y., and Morris, S.: Numerical and experimental investigation of a beveled
trailing-edge flow field and noise emission, J. Sound Vib., 384, 113–129,
https://doi.org/10.1016/j.jsv.2016.08.005, 2016.
a
Weickert, M., Teike, G., Schmidt, O., and Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework, Comput.
Math. Appl., 59, 2200–2214,
https://doi.org/10.1016/j.camwa.2009.08.060, 2010.
a
White, A. T. and Chong, C. K.: Rotational invariance in the three-dimensional
lattice Boltzmann method is dependent on the choice of lattice, J. Comput.
Phys., 230, 6367–6378,
https://doi.org/10.1016/j.jcp.2011.04.031, 2011.
a,
b
Wilhelm, S., Jacob, J., and Sagaut, P.: An explicit power-law-based wall model for lattice Boltzmann method – Reynolds-averaged numerical simulations of the flow around airfoils, Phys. Fluids, 30, 065111,
https://doi.org/10.1063/1.5031764, 2018.
a
Yu, H., Girimaji, S. S., and Luo, L.-S.: DNS and LES of decaying isotropic
turbulence with and without frame rotation using lattice Boltzmann method, J.
Comput. Phys., 209, 599–616,
https://doi.org/10.1016/j.jcp.2005.03.022, 2005.
a,
b
Yu, H., Luo, L.-S., and Girimaji, S. S.: LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, 35, 957–965,
https://doi.org/10.1016/j.compfluid.2005.04.009, 2006.
a,
b
Zhiqiang, L., Yunke, W., Jie, H., Zhihong, Z., and Wenqi, C.: The study on
performance and aerodynamics of micro counter-rotating HAWT, Energy, 161,
939–954,
https://doi.org/10.1016/j.energy.2018.07.049, 2018.
a