Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 0.6 CiteScore
    0.6
  • h5-index value: 13 h5-index 13
WES | Articles | Volume 5, issue 2
Wind Energ. Sci., 5, 699–719, 2020
https://doi.org/10.5194/wes-5-699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 699–719, 2020
https://doi.org/10.5194/wes-5-699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Jun 2020

Research article | 11 Jun 2020

Validation and accommodation of vortex wake codes for wind turbine design load calculations

Koen Boorsma et al.

Viewed

Total article views: 895 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
602 275 18 895 22 16
  • HTML: 602
  • PDF: 275
  • XML: 18
  • Total: 895
  • BibTeX: 22
  • EndNote: 16
Views and downloads (calculated since 22 Jan 2020)
Cumulative views and downloads (calculated since 22 Jan 2020)

Viewed (geographical distribution)

Total article views: 634 (including HTML, PDF, and XML) Thereof 630 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 13 Aug 2020
Publications Copernicus
Download
Short summary
The present publication has contributed towards making vortex wake models ready for application to certification load calculations. The reduction in flapwise blade root moment fatigue loading using vortex wake models instead of the blade element momentum method has been verified using dedicated CFD simulations. A validation effort against a long-term field measurement campaign featuring 2.5 MW turbines has confirmed the improved prediction of unsteady load characteristics by vortex wake models.
The present publication has contributed towards making vortex wake models ready for application...
Citation