Journal cover Journal topic
Wind Energy Science The interactive open-access journal of the European Academy of Wind Energy
Journal topic

Journal metrics

CiteScore value: 0.6
CiteScore
0.6
h5-index value: 13
h5-index13
Download
Short summary
The present publication has contributed towards making vortex wake models ready for application to certification load calculations. The reduction in flapwise blade root moment fatigue loading using vortex wake models instead of the blade element momentum method has been verified using dedicated CFD simulations. A validation effort against a long-term field measurement campaign featuring 2.5 MW turbines has confirmed the improved prediction of unsteady load characteristics by vortex wake models.
WES | Articles | Volume 5, issue 2
Wind Energ. Sci., 5, 699–719, 2020
https://doi.org/10.5194/wes-5-699-2020

Special issue: Wind Energy Science Conference 2019

Wind Energ. Sci., 5, 699–719, 2020
https://doi.org/10.5194/wes-5-699-2020

Research article 11 Jun 2020

Research article | 11 Jun 2020

Validation and accommodation of vortex wake codes for wind turbine design load calculations

Koen Boorsma et al.

Related authors

Efficient Bayesian calibration of aerodynamic wind turbine models using surrogate modeling
Benjamin Sanderse, Vinit V Dighe, Koen Boorsma, and Gerard Schepers
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-58,https://doi.org/10.5194/wes-2021-58, 2021
Preprint under review for WES
Short summary
Characterization of the unsteady aerodynamic response of a floating offshore wind turbine to surge motion
Simone Mancini, Koen Boorsma, Marco Caboni, Marion Cormier, Thorsten Lutz, Paolo Schito, and Alberto Zasso
Wind Energ. Sci., 5, 1713–1730, https://doi.org/10.5194/wes-5-1713-2020,https://doi.org/10.5194/wes-5-1713-2020, 2020
Short summary

Related subject area

Aerodynamics and hydrodynamics
Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves
Mohammad Youssef Mahfouz, Climent Molins, Pau Trubat, Sergio Hernández, Fernando Vigara, Antonio Pegalajar-Jurado, Henrik Bredmose, and Mohammad Salari
Wind Energ. Sci., 6, 867–883, https://doi.org/10.5194/wes-6-867-2021,https://doi.org/10.5194/wes-6-867-2021, 2021
Short summary
A simplified model for transition prediction applicable to wind-turbine rotors
Thales Fava, Mikaela Lokatt, Niels Sørensen, Frederik Zahle, Ardeshir Hanifi, and Dan Henningson
Wind Energ. Sci., 6, 715–736, https://doi.org/10.5194/wes-6-715-2021,https://doi.org/10.5194/wes-6-715-2021, 2021
Short summary
Experimental investigation of wind turbine wake and load dynamics during yaw maneuvers
Stefano Macrí, Sandrine Aubrun, Annie Leroy, and Nicolas Girard
Wind Energ. Sci., 6, 585–599, https://doi.org/10.5194/wes-6-585-2021,https://doi.org/10.5194/wes-6-585-2021, 2021
Short summary
The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
Luis A. Martínez-Tossas, Jennifer King, Eliot Quon, Christopher J. Bay, Rafael Mudafort, Nicholas Hamilton, Michael F. Howland, and Paul A. Fleming
Wind Energ. Sci., 6, 555–570, https://doi.org/10.5194/wes-6-555-2021,https://doi.org/10.5194/wes-6-555-2021, 2021
Short summary
Surrogate-based aeroelastic design optimization of tip extensions on a modern 10 MW wind turbine
Thanasis Barlas, Néstor Ramos-García, Georg Raimund Pirrung, and Sergio González Horcas
Wind Energ. Sci., 6, 491–504, https://doi.org/10.5194/wes-6-491-2021,https://doi.org/10.5194/wes-6-491-2021, 2021
Short summary

Cited articles

Bangga, G.: Comparison of blade element method and CFD simulations of a 10 MW wind turbine, Fluids, 3, 73, https://doi.org/10.3390/fluids3040073, 2018. a
Bangga, G., Lutz, T., Jost, E., and Krämer, E.: CFD studies on rotational augmentation at the inboard sections of a 10 MW wind turbine rotor, J. Renew. Sustain. Energ., 9, 023304, https://doi.org/10.1063/1.4978681, 2017. a, b
Belessis, M., Chasapogiannis, P., and Voutsinas, S.: Free-wake modelling of rotor aerodynamics: recent developments and future perspectives, in: EWEC 2001, WIP-Renewable Energies, Munich, 2001. a
Boorsma, K.: Validation of BEM and Vortex-wake models with full scale on-site measurements, TKI WoZ Vortexloads WP3, Tech. Rep. TNO 2019 R11390, TNO, available at: http://publications.tno.nl/publication/34634925/ZAvbME/TNO-2019-R11390.pdf (last access: 10 June 2020), 2019. a
Boorsma, K. and Schepers, J.: Final report of IEA Task 29, Mexnext (Phase 3), ECN-E-18-003, Energy Research Center of the Netherlands, available at: https://www.ecn.nl/publications/ECN-E--18-003 (last access: 10 June 2020), 2018. a, b
Publications Copernicus
Download
Short summary
The present publication has contributed towards making vortex wake models ready for application to certification load calculations. The reduction in flapwise blade root moment fatigue loading using vortex wake models instead of the blade element momentum method has been verified using dedicated CFD simulations. A validation effort against a long-term field measurement campaign featuring 2.5 MW turbines has confirmed the improved prediction of unsteady load characteristics by vortex wake models.
Citation