Articles | Volume 5, issue 3
https://doi.org/10.5194/wes-5-977-2020
https://doi.org/10.5194/wes-5-977-2020
Brief communication
 | 
03 Aug 2020
Brief communication |  | 03 Aug 2020

Brief communication: Nowcasting of precipitation for leading-edge-erosion-safe mode

Anna-Maria Tilg, Charlotte Bay Hasager, Hans-Jürgen Kirtzel, and Poul Hummelshøj

Related authors

Ship-based lidar measurements for validating ASCAT-derived and ERA5 offshore wind profiles
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11,https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript under review for AMT
Short summary
The impact of Aeolus winds on near-surface wind forecasts over tropical ocean and high-latitude regions
Haichen Zuo and Charlotte Bay Hasager
Atmos. Meas. Tech., 16, 3901–3913, https://doi.org/10.5194/amt-16-3901-2023,https://doi.org/10.5194/amt-16-3901-2023, 2023
Short summary
Vertical extrapolation of Advanced Scatterometer (ASCAT) ocean surface winds using machine-learning techniques
Daniel Hatfield, Charlotte Bay Hasager, and Ioanna Karagali
Wind Energ. Sci., 8, 621–637, https://doi.org/10.5194/wes-8-621-2023,https://doi.org/10.5194/wes-8-621-2023, 2023
Short summary
Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations
Jens Visbech, Tuhfe Göçmen, Charlotte Bay Hasager, Hristo Shkalov, Morten Handberg, and Kristian Pagh Nielsen
Wind Energ. Sci., 8, 173–191, https://doi.org/10.5194/wes-8-173-2023,https://doi.org/10.5194/wes-8-173-2023, 2023
Short summary
Lifetime prediction of turbine blades using global precipitation products from satellites
Merete Badger, Haichen Zuo, Ásta Hannesdóttir, Abdalmenem Owda, and Charlotte Hasager
Wind Energ. Sci., 7, 2497–2512, https://doi.org/10.5194/wes-7-2497-2022,https://doi.org/10.5194/wes-7-2497-2022, 2022
Short summary

Related subject area

Offshore technology
A framework for simultaneous design of wind turbines and cable layout in offshore wind
Juan-Andrés Pérez-Rúa and Nicolaos Antonio Cutululis
Wind Energ. Sci., 7, 925–942, https://doi.org/10.5194/wes-7-925-2022,https://doi.org/10.5194/wes-7-925-2022, 2022
Short summary
Alignment of scanning lidars in offshore wind farms
Andreas Rott, Jörge Schneemann, Frauke Theuer, Juan José Trujillo Quintero, and Martin Kühn
Wind Energ. Sci., 7, 283–297, https://doi.org/10.5194/wes-7-283-2022,https://doi.org/10.5194/wes-7-283-2022, 2022
Short summary
Damping identification of offshore wind turbines using operational modal analysis: a review
Aemilius A. W. van Vondelen, Sachin T. Navalkar, Alexandros Iliopoulos, Daan C. van der Hoek, and Jan-Willem van Wingerden
Wind Energ. Sci., 7, 161–184, https://doi.org/10.5194/wes-7-161-2022,https://doi.org/10.5194/wes-7-161-2022, 2022
Short summary
FAST.Farm load validation for single wake situations at alpha ventus
Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng
Wind Energ. Sci., 6, 1247–1262, https://doi.org/10.5194/wes-6-1247-2021,https://doi.org/10.5194/wes-6-1247-2021, 2021
Short summary
Exploitation of the far-offshore wind energy resource by fleets of energy ships – Part 2: Updated ship design and cost of energy estimate
Aurélien Babarit, Félix Gorintin, Pierrick de Belizal, Antoine Neau, Giovanni Bordogna, and Jean-Christophe Gilloteaux
Wind Energ. Sci., 6, 1191–1204, https://doi.org/10.5194/wes-6-1191-2021,https://doi.org/10.5194/wes-6-1191-2021, 2021
Short summary

Cited articles

Adirosi, E., Baldini, L., Roberto, N., Gatlin, P., and Tokay, A.: Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements, Atmos. Res., 169, 404–415, https://doi.org/10.1016/j.atmosres.2015.07.002, 2016. 
Aoki, M., Iwai, H., Nakagawa, K., Ishii, S., and Mizutani, K.: Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar, J. Atmos. Ocean. Tech., 33, 1949–1966, https://doi.org/10.1175/JTECH-D-15-0111.1, 2016. 
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys., 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973. 
Bech, J. I., Hasager, C. B., and Bak, C.: Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme precipitation events, Wind Energ. Sci., 3, 729–748, https://doi.org/10.5194/wes-3-729-2018, 2018. 
Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., and Schoenhuber, M.: Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis, J. Atmos. Sci., 60, 354–365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2, 2003. 
Download
Short summary
Recently, there has been an increased awareness of leading-edge erosion of wind turbine blades. An option to mitigate the erosion at the leading edges is the deceleration of the wind turbine blades during severe precipitation events. This work shows that a vertically pointing radar can be used to nowcast precipitation events with the required spatial and temporal resolution. Furthermore, nowcasting allows a reduction in the rotational speed prior to the impact of precipitation on the blades.
Altmetrics
Final-revised paper
Preprint