Articles | Volume 6, issue 3
Wind Energ. Sci., 6, 917–933, 2021
https://doi.org/10.5194/wes-6-917-2021
Wind Energ. Sci., 6, 917–933, 2021
https://doi.org/10.5194/wes-6-917-2021

Research article 10 Jun 2021

Research article | 10 Jun 2021

A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence

Kenneth Loenbaek et al.

Related authors

A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021,https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
Optimal relationship between power and design-driving loads for wind turbine rotors using 1-D models
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Bjarke Dam
Wind Energ. Sci., 5, 155–170, https://doi.org/10.5194/wes-5-155-2020,https://doi.org/10.5194/wes-5-155-2020, 2020
Short summary

Related subject area

Design methods, reliability and uncertainty modelling
Aeroelastic loads on a 10 MW turbine exposed to extreme events selected from a year-long large-eddy simulation over the North Sea
Gerard Schepers, Pim van Dorp, Remco Verzijlbergh, Peter Baas, and Harmen Jonker
Wind Energ. Sci., 6, 983–996, https://doi.org/10.5194/wes-6-983-2021,https://doi.org/10.5194/wes-6-983-2021, 2021
Short summary
Optimal scheduling of the next preventive maintenance activity for a wind farm
Quanjiang Yu, Michael Patriksson, and Serik Sagitov
Wind Energ. Sci., 6, 949–959, https://doi.org/10.5194/wes-6-949-2021,https://doi.org/10.5194/wes-6-949-2021, 2021
Short summary
A method for preliminary rotor design – Part 1: Radially Independent Actuator Disc model
Kenneth Loenbaek, Christian Bak, Jens I. Madsen, and Michael McWilliam
Wind Energ. Sci., 6, 903–915, https://doi.org/10.5194/wes-6-903-2021,https://doi.org/10.5194/wes-6-903-2021, 2021
Short summary
Wind farm layout optimization using pseudo-gradients
Erik Quaeghebeur, René Bos, and Michiel B. Zaaijer
Wind Energ. Sci., 6, 815–839, https://doi.org/10.5194/wes-6-815-2021,https://doi.org/10.5194/wes-6-815-2021, 2021
Short summary
On the scaling of wind turbine rotors
Helena Canet, Pietro Bortolotti, and Carlo L. Bottasso
Wind Energ. Sci., 6, 601–626, https://doi.org/10.5194/wes-6-601-2021,https://doi.org/10.5194/wes-6-601-2021, 2021
Short summary

Cited articles

Bak, C.: Aerodynamic design of wind turbine rotors, in: vol. 1, Woodhead Publishing Limited, Rosklilde, Denmark, https://doi.org/10.1533/9780857097286.1.59, 2013. a
Bak, C., Zahle, F., Bitsche, R., Yde, A., Henriksen, L. C., Nata, A., and Hansen, M. H.: Description of the DTU 10 MW Reference Wind Turbine, DTU Wind Energy Report-I-0092, DTU, Rosklilde, Denmark, 1–138, https://doi.org/10.1017/CBO9781107415324.004, 2013. a
Bottasso, C. L., Campagnolo, F., and Croce, A.: Multi-disciplinary constrained optimization of wind turbines, Multibody Syst. Dynam., 27, 21–53, https://doi.org/10.1007/s11044-011-9271-x, 2012. a
Buck, J. A. and Garvey, S. D.: Analysis of Force-Capping for Large Wind Turbine Rotors, Wind Eng., 39, 213–228, https://doi.org/10.1260/0309-524X.39.2.213, 2015a.  a
Buck, J. A. and Garvey, S. D.: Redefining the design objectives of large offshore wind turbine rotors, Wind Energy, 18, 835–850, https://doi.org/10.1002/we.1733, 2015b. a
Short summary
A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain the Pareto-optimal relationship between power and loads through the use of KKT multipliers, leaving an optimization problem that can be solved at each radial station independently. Combining it with a simple cost function it is possible to analytically solve for the optimal power per cost with given inputs for the aerodynamics and the cost function.