Articles | Volume 8, issue 2
https://doi.org/10.5194/wes-8-289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-8-289-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring limiting factors of wear in pitch bearings of wind turbines with real-scale tests
Karsten Behnke
CORRESPONDING AUTHOR
Fraunhofer IWES, Department Validation and Reliability, Am Schleusengraben 22, 21029 Hamburg, Germany
Florian Schleich
Fraunhofer IWES, Department Validation and Reliability, Am Schleusengraben 22, 21029 Hamburg, Germany
Related authors
Arne Bartschat, Karsten Behnke, and Matthias Stammler
Wind Energ. Sci., 8, 1495–1510, https://doi.org/10.5194/wes-8-1495-2023, https://doi.org/10.5194/wes-8-1495-2023, 2023
Short summary
Short summary
Blade bearings are among the most stressed and challenging components of a wind turbine. Experimental investigations using different test rigs and real-size blade bearings have been able to show that rather short time intervals of only several hours of turbine operation can cause wear damage on the raceways of blade bearings. The proposed methods can be used to assess wear-critical operation conditions and to validate control strategies as well as lubricants for the application.
Oliver Menck, Florian Schleich, and Matthias Stammler
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-53, https://doi.org/10.5194/wes-2025-53, 2025
Revised manuscript under review for WES
Short summary
Short summary
The paper discusses how to calculate the life of a blade bearing that is a roller bearing, as opposed to ball bearings, which most papers on the subject discuss. The raceway fatigue life of the bearing is calculated in a very detailed manner. This includes a validated finite element simulation model, and an approach to determine loads for all operating conditions that the wind turbine experiences.
Matthias Stammler and Florian Schleich
Wind Energ. Sci., 10, 813–826, https://doi.org/10.5194/wes-10-813-2025, https://doi.org/10.5194/wes-10-813-2025, 2025
Short summary
Short summary
The structures at the center of wind turbine rotors are loaded by three rotor blades. The rotor blades have different loads, which depend on their positions and the incoming wind. The number of possible different loads is too high to simulate each of them for later design of the structures. This work attempts to reduce the number of necessary simulations by exploring inherent relations between the loads of the three rotor blades.
Arne Bartschat, Karsten Behnke, and Matthias Stammler
Wind Energ. Sci., 8, 1495–1510, https://doi.org/10.5194/wes-8-1495-2023, https://doi.org/10.5194/wes-8-1495-2023, 2023
Short summary
Short summary
Blade bearings are among the most stressed and challenging components of a wind turbine. Experimental investigations using different test rigs and real-size blade bearings have been able to show that rather short time intervals of only several hours of turbine operation can cause wear damage on the raceways of blade bearings. The proposed methods can be used to assess wear-critical operation conditions and to validate control strategies as well as lubricants for the application.
Oliver Menck, Matthias Stammler, and Florian Schleich
Wind Energ. Sci., 5, 1743–1754, https://doi.org/10.5194/wes-5-1743-2020, https://doi.org/10.5194/wes-5-1743-2020, 2020
Short summary
Short summary
Blade bearings of wind turbines experience unusual loads compared to bearings in other industrial applications, which adds some difficulty to the application of otherwise well-established calculation methods, like fatigue lifetime. As a result, different methods for such calculations can be found in the literature. This paper compares three approaches of varying complexity and comes to the conclusion that the simplest of the methods is very inaccurate compared to the more complex methods.
Cited articles
Becker, D.: Hoch belastete Großwälzlagerungen in Windenergieanlagen,
Zugl.: Clausthal, Techn. Univ., Diss., 2011, Fortschrittsberichte des
Instituts für Tribologie und Energiewandlungsmaschinen, 16, Shaker,
Aachen, 143 pp., ISBN 978-3-8440-0997-2, 2012.
Bossanyi, E. A.: Individual Blade Pitch Control for Load Reduction, Wind
Energ., 6, 119–128, https://doi.org/10.1002/we.76, 2003.
Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E., and Graham, M.: Wind
Energy Handbook, Third edition, Wiley, Hoboken, NJ, ISBN 9781119451143, 2021.
Chen, L., Li, Z. G., Qiu, M., and Xia, X.: Influence of groove shape on
clearance in four-point-contact slewing bearing, J. Braz. Soc. Mech. Sci., 36, 461–467, https://doi.org/10.1007/s40430-013-0118-7, 2014.
Dahl, P.: A solid friction model, Technical report, Aerospace Corp El Segundo Ca, https://typeset.io/papers/a-solid-friction-model-1tauddpqp2
(last access: 12 February 2023), 1968.
Daidié, A., Chaib, Z., and Ghosn, A.: 3D Simplified Finite Elements
Analysis of Load and Contact Angle in a Slewing Ball Bearing, J.
Mech. Design, 130, 082601, https://doi.org/10.1115/1.2918915, 2008.
Fouvry, S., Liskiewicz, T., Kapsa, P., Hannel, S., and Sauger, E.: An energy
description of wear mechanisms and its applications to oscillating sliding
contacts, Wear, 255, 287–298,
https://doi.org/10.1016/S0043-1648(03)00117-0, 2003.
Grebe, M. and Feinle, P.: Brinelling, False-Brinelling, false
False-Brinelling? – Ursachen von Stillstandsmarkierungen und geeignete
Laborprüfungen: Reibung, Schmierung und Verschleiß, GfT, Moers, ISBN 3-00-003404-8,
2006.
Grebe, M., Feinle, P., and Hunsicker, W.: Various Influence Factors on the
Development of Standstill Marks (False-Brinelling Effect), in: Friction,
wear and wear protection: International Symposium on Friction, Wear and Wear
Protection 2008 Aachen, Germany [from April 9th to 11th, 2008], basics –
materials – tools – parts – coatings- processes, edited by: Fischer, A. and
Bobzin, K., WILEY-VCH, Weinheim, 290–300,
https://doi.org/10.1002/9783527628513.ch35, 2009.
Harris, T. A. and Kotzalas, M. N.: Advanced Concepts of Bearing Technology,
CRC Press, ISBN 9780429123344, 2006.
Harris, T. A., Rumbarger, J. H., and Butterfield, C. P.: Wind Turbine Design
Guideline: DG03: Yaw and Pitch Rolling Bearing Life, NREL, Golden, NREL/TP-500-42362, https://www.tib.eu/de/suchen/id/ntis:d76795d65d62ee8fbe4e25d60146bea866a1c08f/Wind-Turbine-Design-Guideline-DG03-Yaw-and-Pitch?cHash=c18270feaca58708a8667727d62c55cc (last access: 12 February 2023), 2009.
Hau, E.: Windkraftanlagen: Grundlagen. Technik. Einsatz. Wirtschaftlichkeit,
6. Aufl. 2016, Springer Berlin Heidelberg, Berlin, Heidelberg, 997 pp., ISBN 9783662531549,
2017.
Hentschke, C.: Größeneinfluss Wälzlagerverschleiß: Einfluss der Wälzlager-Baugröße auf das Verschleißverhalten von Wälzlagern ; Abschlussbericht, Forschungsvorhaben Nr. 327 III, FVA-Heft, vol. 984, FVA, https://www.tib.eu/de/suchen/id/TIBKAT:690167377 (last access: 12 February 2023) 2011.
Houpert, L.: An Engineering Approach to Hertzian Contact Elasticity – Part
I, J. Tribol., 123, 582–588, https://doi.org/10.1115/1.1308043,
2001.
IEC: Wind turbines – Part 1: Design requirements, 4th ed, International
standard, International Electrotechnical Commission, Geneva, 85 pp., ISBN 978-2-8322-7972-4, 2019.
Leupold, S., Schelenz, R., and Jacobs, G.: Method to determine the local
load cycles of a blade bearing using flexible multi-body simulation, Forsch.
Ingenieurwes., 85, 211–218, https://doi.org/10.1007/s10010-021-00457-y,
2021.
Schaeffler Technologies AG & Co. KG: Wälzlagerpraxis: Handbuch zur Gestaltung und Berechnung von Wälzlagerungen, 5, Auflage, Vereinigte Fachverlage GmbH, Mainz, ISBN 3783004152, 2019.
Schleich, F.: Finite element modelling of large slewing bearings, Presentation on IQPC Wind Turbine Bearings conference 2019, Hamburg, 14–15 May 2019,
2019.
Schwack, F.: Untersuchungen zum Betriebsverhalten oszillierender
Wälzlager am Beispiel von Rotorblattlagern in Windenergieanlagen:
Untersuchungen zum Betriebsverhalten oszillierender Wälzlager am
Beispiel von Rotorblattlagern in Windenergieanlagen, Hannover
Institutionelles Repositorium der Leibniz Universität Hannover, https://doi.org/10.15488/9756, 2020.
Schwack, F., Stammler, M., Bartschat, A., Pape F., and Poll G.: Solutions to
reduce wear in wind turbine blade bearings, BEARING WORLD, Kaiserslautern, Presentation on Bearing World 2018,
Kaiserslautern, 8 March 2018, https://bearingworld.org/about-us/retrospect/2018/
(last access: 17 February 2023),
2018.
Schwack, F., Bader, N., Leckner, J., Demaille, C., and Poll, G.: A study of
grease lubricants under wind turbine pitch bearing conditions, Wear,
454–455, 203335, https://doi.org/10.1016/j.wear.2020.203335, 2020.
Schwack, F., Halmos, F., Stammler, M., Poll, G., and Glavatskih, S.: Wear in
wind turbine pitch bearings – A comparative design study, Wind Energ., 25, 700–718,
https://doi.org/10.1002/we.2693, 2021.
Sommer, K., Heinz, R., and Schöfer, J.: Verschleiß metallischer
Werkstoffe: Erscheinungsformen sicher beurteilen, Praxis Werkzeugtechnik,
Vieweg + Teubner, Wiesbaden, 599 pp., ISBN 978-3-8351-0126-5, 2010.
Stammler, M.: Endurance Test Strategies for Pitch Bearings of Wind Turbines,
Fakultuät für Bauingenieurwesen und Geodäsie, Gottfried Wilhelm
Leibniz Universität Hannover, Hannover, ISBN 9783839616420, 2020.
Stammler, M., Reuter, A., and Poll, G.: Cycle counting of roller bearing
oscillations – case study of wind turbine individual pitching system,
Renewable Energy Focus, 25, 40–47,
https://doi.org/10.1016/j.ref.2018.02.004, 2018a.
Stammler, M., Baust, S., Reuter, A., and Poll, G.: Load distribution in a
roller-type rotor blade bearing, J. Phys.-Conf. Ser., 1037, 42016,
https://doi.org/10.1088/1742-6596/1037/4/042016, 2018b.
Stammler, M., Thomas, P., Reuter, A., Schwack, F., and Poll, G.: Effect of
load reduction mechanisms on loads and blade bearing movements of wind
turbines, Wind Energ., 23, 274–290, https://doi.org/10.1002/we.2428, 2019.
Tallian, T. E.: Failure atlas for Hertz contact machine elements, ASME
Press, New York, 404 pp., ISBN 978-0791800089, 1992.
Tetora, S., Schadow, C., and Bartel, D. (Eds.): Experimentelle Untersuchung
der Einflussparameter auf False- Brinelling-Schäden in stillstehenden
fettgeschmierten Wälzlagern: Reibung, Schmierung und Verschleiß, Conference: 62. Tribologie-Fachtagung 2021, 27–29 September 2021, online,
https://www.gft-ev.de/de/tribologie-fachtagung-2021/
(last access: 17 February 2023),
2021.
Wandel S. and Bartschat B.: Wear development due to Oscillating Movement
Operating Conditions as Employed in Rotor Blade Bearings in Wind Turbines,
Society of Tribologists and Lubrication Engineers – STLE, 2021, Presentation on STLE Annual Meeting & Exhibition 2021, 17–20 May 2021, online,
https://www.stle.org/images/PDF/STLE_ORG/AM/2021/Program/2021STLEPreliminaryProgramGuide_3.2.21.pdf
(last access: 17 February 2023), 2021.
Wandel, S., Bader, N., Schwack, F., Glodowski, J., Lehnhardt, B., and Poll,
G.: Starvation and relubrication mechanisms in grease lubricated oscillating
bearings, Tribol. Int., 165, 107276,
https://doi.org/10.1016/j.triboint.2021.107276, 2022.
Short summary
The objective of this work is to find limits within typical operating conditions of a wind turbine below which wear on the bearing raceway does not occur. It covers the test of blade bearings with an outer diameter of 2.6 m. The test parameters are based on a 3 MW reference turbine and are compared to values from the literature. It was shown that it can be possible to avoid wear, which again can be used to design a wind turbine controller.
The objective of this work is to find limits within typical operating conditions of a wind...
Altmetrics
Final-revised paper
Preprint