Articles | Volume 9, issue 6
https://doi.org/10.5194/wes-9-1323-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/wes-9-1323-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Swinging motion of a kite with suspended control unit flying turning manoeuvres
Mark Schelbergen
CORRESPONDING AUTHOR
Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, the Netherlands
Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, the Netherlands
Related authors
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Short summary
We have presented a methodology for including multiple wind profile shapes in a wind resource description that are identified using a data-driven approach. These shapes go beyond the height range for which conventional wind profile relationships are developed. Moreover, they include non-monotonic shapes such as low-level jets. We demonstrated this methodology for an on- and offshore reference location using DOWA data and efficiently estimated the annual energy production of a pumping AWE system.
Jelle Agatho Wilhelm Poland, Johannes Marinus van Spronsen, Mac Gaunaa, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-77, https://doi.org/10.5194/wes-2025-77, 2025
Revised manuscript under review for WES
Short summary
Short summary
We tested a small model of an energy-generating kite in a wind tunnel to study its aerodynamic behavior. By comparing measurements to computer simulations, we validated the models and identified where they match the real performance and where they fall short. These insights will guide more accurate aerodynamic modeling and inform design choices for kites used in airborne wind energy systems.
Rishikesh Joshi, Dominic von Terzi, and Roland Schmehl
Wind Energ. Sci., 10, 695–718, https://doi.org/10.5194/wes-10-695-2025, https://doi.org/10.5194/wes-10-695-2025, 2025
Short summary
Short summary
This paper presents a methodology for assessing the system design and scaling trends in airborne wind energy (AWE). A multi-disciplinary design, analysis, and optimisation (MDAO) framework was developed, integrating power, energy production, and cost models for the fixed-wing ground-generation (GG) AWE concept. Using the levelized cost of electricity (LCoE) as the design objective, we found that the optimal size of systems lies between the rated power of 100 and 1000 kW.
Helena Schmidt, Renatto M. Yupa-Villanueva, Daniele Ragni, Roberto Merino-Martínez, Piet J. R. van Gool, and Roland Schmehl
Wind Energ. Sci., 10, 579–595, https://doi.org/10.5194/wes-10-579-2025, https://doi.org/10.5194/wes-10-579-2025, 2025
Short summary
Short summary
This study investigates noise annoyance caused by airborne wind energy systems (AWESs), a novel wind energy technology that uses kites to harness high-altitude winds. Through a listening experiment with 75 participants, sharpness was identified as the key factor predicting annoyance. Fixed-wing kites generated more annoyance than soft-wing kites, likely due to their sharper, more tonal sound. The findings can help improve AWESs’ designs, reducing noise-related disturbances for nearby residents.
Oriol Cayon, Simon Watson, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-182, https://doi.org/10.5194/wes-2024-182, 2025
Revised manuscript accepted for WES
Short summary
Short summary
This study demonstrates how kites used to generate wind energy can act as sensors to measure wind conditions and system behaviour. By combining data from existing sensors, such as those measuring position, speed, and forces on the tether, a sensor fusion technique accurately estimates wind conditions and kite performance. This approach can be integrated into control systems to help optimise energy generation and enhance the reliability of these systems in changing wind conditions.
Dylan Eijkelhof, Nicola Rossi, and Roland Schmehl
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-139, https://doi.org/10.5194/wes-2024-139, 2024
Revised manuscript has not been submitted
Short summary
Short summary
This study compares circular and figure-of-eight flight shapes for flying kite wind energy systems, assessing power output, stability, and system lifespan. Results show that circular patterns are ideal for maximizing energy in compact areas, while figure-of-eight paths, especially flying up in the centre of the figure, deliver smoother, more consistent power and have a longer expected kite lifespan. These findings offer valuable insights to enhance design and performance of kite systems.
Christoph Elfert, Dietmar Göhlich, and Roland Schmehl
Wind Energ. Sci., 9, 2261–2282, https://doi.org/10.5194/wes-9-2261-2024, https://doi.org/10.5194/wes-9-2261-2024, 2024
Short summary
Short summary
This article presents a tow test procedure for measuring the steering behaviour of tethered membrane wings. The experimental set-up includes a novel onboard sensor system for measuring the position and orientation of the towed wing, complemented by an attached low-cost multi-hole probe for measuring the relative flow velocity vector at the wing. The measured data (steering gain and dead time) can be used to improve kite models and simulate the operation of airborne wind energy systems.
Rishikesh Joshi, Roland Schmehl, and Michiel Kruijff
Wind Energ. Sci., 9, 2195–2215, https://doi.org/10.5194/wes-9-2195-2024, https://doi.org/10.5194/wes-9-2195-2024, 2024
Short summary
Short summary
This paper presents a fast cycle–power computation model for fixed-wing ground-generation airborne wind energy systems. It is suitable for sensitivity and scalability studies, which makes it a valuable tool for design and innovation trade-offs. It is also suitable for integration with cost models and systems engineering tools, enhancing its applicability in assessing the potential of airborne wind energy in the broader energy system.
Maaike Sickler, Bart Ummels, Michiel Zaaijer, Roland Schmehl, and Katherine Dykes
Wind Energ. Sci., 8, 1225–1233, https://doi.org/10.5194/wes-8-1225-2023, https://doi.org/10.5194/wes-8-1225-2023, 2023
Short summary
Short summary
This paper investigates the effect of wind farm layout on the performance of offshore wind farms. A regular farm layout is compared to optimised irregular layouts. The irregular layouts have higher annual energy production, and the power production is less sensitive to wind direction. However, turbine towers require thicker walls to counteract increased fatigue due to increased turbulence levels in the farm. The study shows that layout optimisation can be used to maintain high-yield performance.
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Short summary
We have presented a methodology for including multiple wind profile shapes in a wind resource description that are identified using a data-driven approach. These shapes go beyond the height range for which conventional wind profile relationships are developed. Moreover, they include non-monotonic shapes such as low-level jets. We demonstrated this methodology for an on- and offshore reference location using DOWA data and efficiently estimated the annual energy production of a pumping AWE system.
Cited articles
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control, Mathematical Programming Computation, 11, 1–36, https://doi.org/10.1007/s12532-018-0139-4, 2019. a
Borobia, R., Sanchez-Arriaga, G., Serino, A., and Schmehl, R.: Flight-Path Reconstruction and Flight Test of Four-Line Power Kites, J. Guid. Control, 41, 2604–2614, https://doi.org/10.2514/1.G003581, 2018. a
Bosch, A., Schmehl, R., Tiso, P., and Rixen, D.: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and Technology, Springer, Berlin Heidelberg, Chap. 17, 307–323, ISBN 978-3-642-39964-0, https://doi.org/10.1007/978-3-642-39965-7_17, 2013. a
Breukels, J., Schmehl, R., and Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and Technology, Springer, Berlin Heidelberg, Chap. 16, 287–305, ISBN 978-3-642-39964-0, https://doi.org/10.1007/978-3-642-39965-7_16, 2013. a
Cayon, O., Gaunaa, M., and Schmehl, R.: Fast Aero-Structural Model of a Leading-Edge Inflatable Kite, Energies, 16, 3061, https://doi.org/10.3390/en16073061, 2023. a
Duport, C.: Modeling with consideration of the fluid-structure interaction of the behavior under load of a kite for auxiliary traction of ships, PhD thesis, ENSTA Bretagne, https://tel.archives-ouvertes.fr/tel-02383312 (last access: 4 April 2024), 2018. a
Fagiano, L., Quack, M., Bauer, F., Carnel, L., and Oland, E.: Autonomous Airborne Wind Energy Systems: Accomplishments and Challenges, Annual Review of Control, Robotics, and Autonomous Systems, 5, 603–631, https://doi.org/10.1146/annurev-control-042820-124658, 2022. a
Fechner, U., van der Vlugt, R., Schreuder, E., and Schmehl, R.: Dynamic Model of a Pumping Kite Power System, Renew. Energ., 83, 705–716, https://doi.org/10.1016/j.renene.2015.04.028, 2015. a, b, c
Folkersma, M. A. M.: Aeroelasticity of Membrane Kites: Airborne Wind Energy Applications, PhD thesis, Delft University of Technology, Delft, https://doi.org/10.4233/uuid:eae39f5a-49bc-438b-948f-b6ab51208068, 2022. a
Geschiere, N.: Dynamic modelling of a flexible kite for power generation, Master's thesis, Delft University of Technology, http://resolver.tudelft.nl/uuid:6478003a-3c77-40ce-862e-24579dcd1eab (last access: 4 April 2024), 2014. a
Gohl, F. and Luchsinger, R. H.: Simulation based wing design for kite power, in: Airborne Wind Energy, edited by: Ahrens, U., Diehl, M., and Schmehl, R., Green Energy and Technology, Springer, Berlin Heidelberg, Chap. 18, 325–338, https://doi.org/10.1007/978-3-642-39965-7_18, 2013. a
Loyd, M. L.: Crosswind kite power, J. Energy, 4, 106–111, https://doi.org/10.2514/3.48021, 1980. a
Oehler, J. and Schmehl, R.: Aerodynamic characterization of a soft kite by in situ flow measurement, Wind Energ. Sci., 4, 1–21, https://doi.org/10.5194/wes-4-1-2019, 2019. a, b, c
Oehler, J., van Reijen, M., and Schmehl, R.: Experimental Investigation of Soft Kite Performance During Turning Maneuvers, J. Phys. Conf. Ser., 1037, 052004, https://doi.org/10.1088/1742-6596/1037/5/052004, 2018. a
Peschel, J., Breuer, J., and Schmehl, R.: Kitepower – Commercializing a 100 kW Mobile Wind Energy System, in: Book of Abstracts of the International Airborne Wind Energy Conference (AWEC 2017), edited by: Diehl, M., Leuthold, R., and Schmehl, R., 47–51, University of Freiburg | Delft University of Technology, Freiburg, Germany, http://resolver.tudelft.nl/uuid:9e9a6bdb-f5f4-4868-bed6-f25dc5ee42f0 (last access: 4 April 2024), 2017. a
Poland, J. A. W. and Schmehl, R.: Modelling Aero-Structural Deformation of Flexible Membrane Kites, Energies, 16, 5264, https://doi.org/10.3390/en16145264, 2023. a
Rapp, S., Schmehl, R., Oland, E., and Haas, T.: Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems, J. Guid. Control Dynam., 42, 2456–2473, https://doi.org/10.2514/1.G004246, 2019. a
Roullier, A.: Experimental analysis of a kite system’s dynamics, Master's thesis, EPFL, https://doi.org/10.5281/zenodo.7752407, 2020. a
Salma, V., Friedl, F., and Schmehl, R.: Reliability and Safety of Airborne Wind Energy Systems, Wind Energy, 23, 340–356, https://doi.org/10.1002/we.2433, 2019. a
Sánchez-Arriaga, G., Pastor-Rodríguez, A., Sanjurjo-Rivo, M., and Schmehl, R.: A lagrangian flight simulator for airborne wind energy systems, Appl. Math. Model., 69, 665–684, https://doi.org/10.1016/j.apm.2018.12.016, 2019. a
Schelbergen, M.: Swinging Motion of a Kite with Suspended Control Unit Flying Turning Manoeuvres, 4TU.ResearchData [code], https://doi.org/10.4121/e08cd09a-bad8-48c5-b6cb-66f90ac467c3, 2024. a
Schelbergen, M. and Schmehl, R.: Validation of the quasi-steady performance model for pumping airborne wind energy systems, J. Phys. Conf. Ser., 1618, 032003, https://doi.org/10.1088/1742-6596/1618/3/032003, 2020. a
Schelbergen, M., Schmehl, R., Buchholz, B., Breuer, J., and Peschel, J.: Kitepower flight data acquired on 8 October 2019, 4TU.Centre for Research Data [data set], https://doi.org/10.4121/19376174, 2024. a, b
Schmehl, R. and Oehler, J.: 25 m2 LEI V3 tube kite transitioning to traction phase and starting to fly figure eight manoeuvres. Video footage of onboard camera, Copernicus Publications, TIB [video], https://doi.org/10.5446/37583, 2018. a
Thedens, P.: An Integrated Aero-Structural Model for Ram-Air Kite Simulations With Application to Airborne Wind Energy, PhD thesis, Delft University of Technology, Delft, https://doi.org/10.4233/uuid:16e90401-62fc-4bc3-bf04-7a8c7bb0e2ee, 2022. a
Vermillion, C., Cobb, M., Fagiano, L., Leuthold, R., Diehl, M., Smith, R. S., Wood, T. A., Rapp, S., Schmehl, R., Olinger, D., and Demetriou, M.: Electricity in the Air: Insights From Two Decades of Advanced Control Research and Experimental Flight Testing of Airborne Wind Energy Systems, Annu. Rev. Control, 52, 330–357, https://doi.org/10.1016/j.arcontrol.2021.03.002, 2021. a
Williams, P., Lansdorp, B., and Ockels, W. J.: Modeling and Control of a Kite on a Variable Length Flexible Inelastic Tether, in: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, USA, https://doi.org/10.2514/6.2007-6705, 2007. a
Zanon, M., Gros, S., Andersson, J., and Diehl, M.: Airborne Wind Energy Based on Dual Airfoils, IEEE T. Contr. Syst. T., 21, 1215–1222, https://doi.org/10.1109/TCST.2013.2257781, 2013. a, b, c
Short summary
We present a novel two-point model of a kite with a suspended control unit to describe the characteristic swinging motion of this assembly during turning manoeuvres. Quasi-steady and dynamic model variants are combined with a discretised tether model, and simulation results are compared with measurement data of an instrumented kite system. By resolving the pitch of the kite, the model allows for computing the angle of attack, which is essential for estimating the generated aerodynamic forces.
We present a novel two-point model of a kite with a suspended control unit to describe the...
Altmetrics
Final-revised paper
Preprint